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The 3′ untranslated region (UTR) of the hepatitis C virus (HCV) genome plays a significant
role in replication including the poly(U) tract (You and Rice, 2008). Here we established
an HCV clone that is infectious in vitro and in vivo, from an Egyptian patient with chronic
HCV infection and hepatocellular carcinoma (HCC). First, we inoculated the patient
plasma into a humanized chimeric mouse and passaged. We observed HCV genotype
4a propagation in the chimeric mouse sera at 1.7 × 107 copies/mL after 6 weeks.
Next, we cloned the entire HCV sequence from the HCV-infected chimeric mouse
sera using RT-PCR, and 5′ and 3′ RACE methodologies. We obtained first a shorter
clone (HCV-G4 KM short, GenBank: AB795432.1), which contained 9,545 nucleotides
with 341 nucleotides of the 5′UTR and 177 nucleotides of the 3′UTR, and this was
frequently obtained for unknown reasons. We also obtained a longer clone by dividing
the HCV genome into three fragments and the poly (U) sequences. We obtained a longer
3′UTR sequence than that of the HCV-G4 KM short clone, which contained 9,617
nucleotides. This longer clone possessed a 3′-UTR of 249 nucleotides (HCV-G4 KM
long, GenBank: AB795432.2), because of a 71-nucleotide longer poly (U) stretch. The
HCV-G4-KM long clone, but not the HCV-G4-KM short clone, could establish infection
in human hepatoma HuH-7 cells. HCV RNAs carrying a nanoluciferase (NL) reporter
were also constructed and higher replication activity was observed with G4-KM long-NL
in vitro. Next, both short and long RNAs were intra-hepatically injected into humanized
chimeric mice. Viral propagation was only observed for the chimeric mouse injected
with the HCV-G4 KM long RNA in the sera after 21 days (1.64 × 106 copies/mL) and
continued until 10 weeks post inoculation (wpi; 1.45–4.74 × 107 copies/mL). Moreover,
sequencing of the HCV genome in mouse sera at 6 wpi revealed the sequence of the
HCV-G4-KM long clone. Thus, the in vitro and in vivo results of this study indicate that
the sequence of the HCV-G4-KM long RNA is that of an infectious clone.
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INTRODUCTION

Hepatitis C virus (HCV) belongs to the Flaviviridae family
and genus Hepacivirus and possesses a single-stranded RNA
with positive polarity (Choo et al., 1989). Approximately, 58
million people are estimated to be currently infected with HCV
(WHO, 2021). Based on the diversity of the HCV genome,
it has been classified into seven genetically distinct genotypes
(HCV 1–7) (Smith et al., 2014; Tsukiyama-Kohara and Kohara,
2017). A recent report suggested the existence of eight HCV
genotypes (Borgia et al., 2018). HCV genotype 4 appears to
be mainly found in Africa and the Middle East; in particular,
HCV isolated in Egypt is mostly classified as genotype 4
(Iles et al., 2014). The characteristics of HCV genotype 4
have not been fully clarified, mostly because of the lack of
an available infection system. An infectious clone of HCV
genotype 4a has been previously developed in vivo (Strain
ED43) (Gottwein et al., 2010), and was cloned from the plasma
of chimpanzees inoculated with plasma from patients with
chronic hepatitis C.

After the discovery of HCV (Choo et al., 1989; Kolykhalov
et al., 1997), an efficient infection system was first established
using the HCV genotype 2a clone, JFH-1 (Lindenbach et al., 2005;
Wakita et al., 2005). The HCV JFH-1 clones can replicate both
in vitro and in vivo. This HCV infection system has contributed
to the development of direct-acting antivirals (DAAs), which

target HCV protease and polymerase and efficiently suppress
viral replication (Spengler, 2018).

To better understand the characteristics of HCV genotype 4a
in patient plasma, we aimed to construct an infectious clone for
HCV genotype 4a from chimeric mice with humanized livers
(Mercer et al., 2001) inoculated with Egyptian chronic hepatitis
C patient plasma. We first cloned the full-length sequence of
the HCV genome from the sera of these chimeric mice. We
obtained clones with a shorter 3′UTR (G4 KM short) and longer
3′UTR (G4 KM long). It has been previously reported that
3′UTR plays a significant role in HCV replication, and this is
composed of a stem-loop structure, poly(U) stretch and 3′X
region (Tanaka et al., 1995; You and Rice, 2008). The infectivity
of the HCV genotype 4a clones was examined by transfecting of
RNA into cell culture and chimeric mice with humanized livers.

MATERIALS AND METHODS

Infection of Hepatitis C Virus Genotype
4a in Chimeric Mice With Humanized
Liver
Chimeric mice with humanized livers were purchased from
PhoenixBio Co., Ltd. They were intravenously infected with
plasma from Egyptian patients (HCV-positive, multiple hepatic
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FIGURE 1 | Strategy for HCV-G4 cloning. (A) Strategy for HCV-G4 KM short cloning. Fragment A, B, C, D and 3′X were amplified from cDNA which was reverse
transcribed with RNA isolated from HCV-G4- infected chimeric mouse sera. HCV genes were amplified using primer sets of each fragment as described in Table 1.
(B) Fragment E was generated from Fragment A, B, and C using restriction enzymes. We obtained Fragment G with a 71-nucleotide longer poly U sequence, which
was used for the construction of HCV-G4 KM long.
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TABLE 1 | Primers used to clone HCV genotype 4a.

Name Sequence Region Sense

HCV-G4 KM short: Fragment A

5′G4 5′-
ACCTGCTCTCTATGAGAGCAAC-3′

5′ terminal sense

5′RACE AS 5′-CTTTCGCGACCCAACACTACT-
3′

5′UTR anti-sense

HCV-G4 KM short: Fragment B

HCV-4G-5S 5′-GCTCTCTATGAGAGCAACAC-3′ 5′UTR (1st ) sense

HCV-4G-4058R 5′-CTTGGTGCTCTTACCACTCC′ NS3 (1st ) anti-sense

HCV-4G-22S 5′-CACTCCACCATGAACCGCTC-3′ 5′UTR (2nd ) sense

HCV-4G-4038R 5′-CTGTTGGTGCGTGCAGGTGC-3′ NS3 (2nd ) anti-sense

HCV-G4 KM short: Fragment C

HCV-4G-2922S 5′-GTTCCATCCTTCGACGTGCG-3′ NS2 (1st ) sense

HCV-4G-7061R 5′-GACCCTGGTAGCGGTAGACC-3′ NS5A (1st ) anti-sense

HCV-4G-2975S 5′-CCTGGCCTGTCCACATTTGG-3′ NS2 (2nd) sense

HCV-4G-7041R 5′-CCCACAAGAGGTTAGCCTCG-3′ NS5A (2nd) anti-sense

HCV-G4 KM short: Fragment D

HCV-4G-5965S 5′-CCACAGAGGACTTGGTGAAC-3′ NS4B (1st ) sense

HCV-4G-9518R 5′-GCACTCTCTGCAGTCATGCG-3′ NS5B (1st ) anti-sense

HCV-4G-5981S 5′-GAACCTGCTCCCGGCCATTC-3′ NS4B (2nd) sense

HCV-4G-9484R 5′-CACAGCTAGCCGTGACTAGG-3′ NS5B (2nd) anti-sense

HCV-G4 KM short or long: 3′X

3′RACE_4a_S 5′-GGTGGCTCCATCTTAGCCCT-3′ 3′UTR(3′X) sense

3′R-1A 5′-
TACATGATCTGCAGAGAGGCCA-3′

3′UTR(3′X) Anti-sense

HCV-G4 KM long

Fragment F

HCV-4G-5447S 5′-CCAACAGTTCGACGAAATGG-3′ NS4A (1st ) sense

HCV-4G- 8553R 5′-CTAAGTCGTCGCCGCAAACC-3′ NS55 (1st ) anti-sense

HCV-4G- 5465S 5′-GGAAGAGTGTTCCAAACACC-3′ NS4A (2nd ) sense

HCV-4G 8532R 5′-GCATAGTGCAGTCTCTCAGC-3′ NS5B (2nd ) anti-sense

Fragment G

HCV-4G-5965S 5′-CCACAGAGGACTTGGTGAAC-3′ NS3 (1st ) sense

HCV-4G- G-9590R 5′-GCACTCTCTGCAGTCATGCG-3′ 3′UTR (1st ) anti-sense

HCV-4G-5981S 5′-GAACCTGCTCCCGGCCATTC-3′ NS4B (2nd ) sense

HCV-4G-9556R 5′-CACAGCTAGCCGTGACTAGG-3′ 3′UTR (2nd ) anti-sense

*Fragment E was generated from Fragment A, B and C using restriction enzymes.

focal lesions, splenomegaly) containing 104 copies of viral RNA
(Katsume et al., 2013). After a few weeks, the mice were sacrificed,
and sera were obtained for further experimentation. Isolation
and quantitation of HCV-RNA were performed, as described
previously (Takeuchi et al., 1999).

Cloning of Hepatitis C Virus Genotype 4a
cDNA and Construction of an Infectious
Clone
Construction of the infectious HCV genotype 4a clone was
performed as follows. First, RNA was extracted from the serum
of a chimeric mouse using the acid guanidinium thiocyanate-
phenol-chloroform extraction method, as described previously
(Katsume et al., 2013) or SepaGene RV-R (Sanko Junyaku
Co.). Then, cDNA was synthesized using Superscript III
reverse transcriptase and amplified using PrimeSTAR GXL DNA
polymerase (Takara Bio Co.) in fragment A–G and 3′X (Figure 1)
with the primer sets described in Table 1. PCR conditions were as

follows: 98◦C for 5 min, 30 cycles of 98◦C for 10 s, 60◦C for 15 s,
and 68◦C for 1 min/kb, and finally 68◦C for 7 min. Amplified
DNA fragments were subcloned into a low-copy number vector,
pSMART (Lucigen Co.). Construction of the infectious HCV
genotype 4a clone was performed using restriction enzymes or
an In-Fusion HD cloning kit (Clontech Co.).

To clone the 5′UTR, total RNA was extracted from chimeric
mouse sera (10 mL) with ISOGEN-LS and treated with DNase,
followed by cDNA synthesis using Superscript III reverse
transcriptase (Thermo Fisher Scientific Co.) and a 5′RACE
antisense primer (5′RACE System for amplification of cDNA
ends, ver. 2, Invitrogen Co.). The target region was amplified
after dCTP tailing, according to the manufacturer’s protocol.
Cloning of the 3′UTR was performed using RNA extracted
from chimeric mice; cDNA was synthesized using Superscript
III reverse transcriptase and amplified, as reported previously
(Tanaka et al., 1996; Tsuchihara et al., 1997).

Confirmation of the Hepatitis C Virus
cDNA Clone
Transcription of HCV-G4 KM short or HCV G4-KM long
RNA was performed using the MEGA script T7 transcription
kit (Thermo Fisher Scientific Co.) or T7 RiboMax Express
kit (Promega Co.) and characterized by formaldehyde agarose
gel electrophoresis. The transcribed RNAs were purified using
NucAway spin columns (Thermo Fisher Scientific Co.) and
phenol chloroform extraction. RNA size markers (Millennium
RNA markers) were purchased from Thermo Fisher Scientific
Co. Expression of HCV proteins was performed via the
transfection of HCV-G4 KM short or HCV-G4 KM long plasmids
with recombinant vaccinia virus carrying T7 RNA polymerase
(Shuman et al., 1988) or the transfection of purified RNA via
electroporation (Gene Pulser, BioRad Co.) into HuH7/K4 cells
(Salem et al., 2013). HCV proteins were detected using specific
antibodies (Tsukiyama-Kohara et al., 2004), namely core (MoAb
#3–12), E1 (rabbit polyclonal Ab RR3), E2 (rabbit polyclonal Ab,
RR6), NS2 (rabbit polyclonal Ab), NS3 (rabbit polyclonal Ab,
R212), NS4A/B (rabbit polyclonal Ab, RR12), NS5A (MoAb 32-
2), and NS5B (MoAb 14-5) (Tsukiyama-Kohara et al., 2004), by
western blotting or immunofluorescence assays.

Immunohistochemistry
The sectioned liver tissue of HCV-infected chimeric mice in
OCT blocks was fixed with cold acetone at −20◦C for 5 min,
washed once with PBS, treated with 0.03% H2O2 for 10 min
at room temperature, blocked with Odyssey blocking buffer
(LI-COR Co.), and reacted with anti-HCV core RR8 (Ishida
et al., 2001) biotinylated antibody and streptavidin-Alexa488.
Stained tissues were observed using fluorescent microscope (BZ-
X700, Keyence Co.).

Construction of Hepatitis C Virus -G4
Expressing NL Reporter and Replication
Assay
To monitor replication, the HCV-G4 NL reporter
clone was constructed by digesting HCV-G4KM long
or G4 KM short clones with NsiI and inserted in
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the NL gene fused at its C-terminus to the foot
and mouth disease virus (FMDV) 2A autoprotease
after amplification with primers (IF-G4p7-nLuc-F21
5′-gcccgaaagagcttatgcaATGAACTCCTTCTCCACAAGC-3′, IF-
G4NS2-2A-R20 5′-cacctcctgatcataGGGCCCTGGGTTGGACT
CGA-3′) using PCR targeting a region between p7 and NS2,
as described (Shimakami et al., 2011; Yamane et al., 2014),
with the In Fusion-HD cloning kit. Transfection of HCV-G4
NL reporter RNA was performed by electroporating 10 µg of
in vitro transcribed viral RNA into 5 × 106 Huh-7.5 cells stably
expressing SEC14L2 (Saeed et al., 2015) with a Gene Pulser
Xcell Total System (250V, 950 µF and 50 �) (Yamane et al.,
2014). Secreted NL activity was measured in 20 µL aliquots
of the supernatant fluids using the Nano-Glo Luciferase Assay
System (Promega) according to the manufacturer’s protocol.
The luminescent signal was measured using a Mithras LB940
Multimode Microplate Reader (Berthold).

Ethical Statement
All experimental protocols in this study, including animal
experiments, were approved by the regional ethics

committee of Kagoshima University (K28002), Tokyo
Metropolitan Institute of Medical Science, and Phoenix
Bio Co. Patient samples were obtained according to the
Declaration of Helsinki and approved by the Suez Canal
University (Egypt).

RESULTS

Infection of Chimeric Mice Harboring
Humanized Livers With Patient Sera
SCID mice transplanted with normal human hepatocytes
carrying a plasminogen activator transgene (Alb-uPA) are highly
susceptible to HCV infection (Mercer et al., 2001). Chronic
hepatitis C patient plasma (104 copies, genotype 4a) (Katsume
et al., 2013) was intravenously injected into chimeric mice with
humanized livers and used as infection source for naive chimeric
mice (Figure 2). HCV-infected chimeric mice were bled weekly to
obtain sera (Figure 2A) and measured for HCV RNA quantities.
HCV RNA levels reached 1.7 × 107 copies/mL after 6 weeks
(#182) (Figure 2B), and this HCV propagation level was higher
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FIGURE 2 | Infection of chimeric mouse. (A) Which was amplified once in chimeric mouse with a humanized liver. The chimeric mouse was bled every week and
sacrificed after 6 weeks of infection. (B) HCV RNA amount in two chimeric mouse serum samples (PXB182-1, PXB182-10) was quantitated by qRT-PCR, and their
average values were indicated. Vertical bars indicate the standard deviation (SD).
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in a formamide agarose gel. (B) Detection of HCV proteins in HCV-G4 KM short or HCV-G4 KM long-expressing cells, which was induced by infection with T7 RNA
polymerase encoding vaccinia virus. Representative results of three experiments are shown.

than that obtained with genotype 1a, 1b, 3a, or 6a (104−6

copies/mL after 6 weeks) (Mercer et al., 2001).

Construction of a Full Genome Hepatitis
C Virus -Genotype 4a Clone
After obtaining sufficient quantities of mouse sera containing
the infectious HCV genotype 4a, we started the cloning process.
To obtain the entire 5′UTR region, we performed 5′RACE and
obtained 30 clones (Figure 3A). Three clones contained the full-
length sequence of the 5′UTR, which was 341 bases. Next, we
obtained the 3′UTR using the 3′RACE method and obtained a
177-nucleotide sequence (Figure 3B).

We amplified the HCV genome with high-fidelity DNA
polymerase; the amplification region was divided into four
sections (fragments A, B, C, D and 3′X; Figure 1A) and sub-
cloned into the pSMART vector. As a result of cloning of
the fragment D, we obtained a 71-nucleotide longer stretch
of poly(U) sequence in the 3′UTR in Fragment G than that
of the HCV-G4 KM short clone (Figure 1B). We determined
the entire sequence of this clone and named it HCV-G4 KM
short (9,545 nucleotides, GenBank: AB795432.1, Figure 1A and
Supplementary Figure 1). We also obtained a 71-nucleotide
longer 3′-UTR sequence than that of the HCV-G4 KM short

clone, and the 3′UTR of this clone was 249 nucleotides (HCV-G4
KM long; 9,617 nucleotides; GenBank: AB795432.2, Figure 1B
and Supplementary Figure 2).

Construction of the Infectious
HCV-Genotype 4a Clone
Next we synthesized the RNA from HCV-G4 KM short and HCV-
G4 KM long clones using T7 RNA polymerase and examined
their lengths via formaldehyde agarose gel electrophoresis
(Figure 4A). The expression of viral proteins from the HCV-G4
KM short and HCV-G4 KM long clones was determined by T7
vaccinia virus infection and examined by immunoblotting using
specific antibodies. As a result, all HCV proteins were expressed
with an appropriate size (Figure 4B).

To further define the replication activity of HCV-G4 KM
clones, we constructed NL-inserted chimeric clones (Figure 5A).
After 5–8 days of transfection into Huh-7.5 cells expressing
SEC14L2 (Yamane et al., 2014), we observed replication of the G4
KM long clone, which could be significantly suppressed by the
treatment with DAA. In contrast, the G4 KM short clone failed to
replicate to detectable levels (Figure 5B).

HCV-G4 KM short or HCV-G4 KM long RNA was
synthesized in vitro, and purified RNA was intra-hepatically
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FIGURE 5 | Construction of NL-containing HCV-G4 expression vectors, HCV-G4 KM long-NL and HCV-G4 KM short-NL (A). Poly (U) stretch in 3′UTR of HCV-G4
KM long is indicated as a black box. (B) These clones were used to infect Huh-7.5 cells expressing SEC14L2 and measured after day 5, 6, 7 and 8 (n = 4). Their
replication activity was measured by NL assays. Treatment with DAA (30 µM sofosbuvir) decreased their replication. Significant differences based on the control were
evaluated by statistical analysis (t-test, 2-sided), and a p-value less than 0.05 was considered significant.

injected into chimeric mice (30 µg/mouse; Figure 6A). Mice were
bled every week for 10 weeks and then sacrificed. HCV RNA
could not be detected in any of the sera obtained from chimeric
mice injected with HCV-G4 KM short RNA.

After injection of the HCV-G4 KM long RNA, the level of
HCV RNA in chimeric mouse sera showed a significant increase
after 3 weeks post-infection (wpi; t-test, p < 0.05, 1.59 × 106

copies/mL), reaching 4.84 × 107 copies/mL at 6 wpi and it
was continuously detected until 10 wpi (3.57 × 107 copies/mL,
Figure 6B). HCV RNA was isolated from chimeric mouse sera
and quantitated by RT-PCR at 6 wpi. We also confirmed the same
sequence as that of HCV-G4 KM long by sequencing the isolated
RNA. HCV core protein was only detected in HCV-G4 KM long
infected chimeric mouse liver tissue (Figure 6C). These results
indicated infectivity in naïve chimeric mice. Together, the results
of this study show the replication activity of the HCV-G4 KM
long sequence in vivo.

DISCUSSION

The results of this study show the significance of the 3′UTR
region in HCV-G4 infection. The HCV-G4 KM long clone has a

TABLE 2 | Comparison of 3′UTR of G4-KM long with that of other HCV
infectious clones.

Clone Nucleotide position Length (nt) Poly(U)

G4-KM long 9,369–9,617 249 9,400–9,481

ED43 9,368–9,579 212 9,401–9,446

JFH-1 9,414–9,650 236 9,482–9,539

3′UTR that is 71-nucleotides longer than that of the HCV-G4 KM
short clone. The HCV-G4 KM long clone can replicate in vitro
and in vivo, but the HCV-G4 KM short clone could not. Thus,
this study highlighted the importance of the 3′UTR for HCV
genotype 4a viral infectivity.

The reason why HCV-G4 KM short was abundantly cloned
or its characteristics as a viral clone are still unclear at present.
It might be due to the higher cloning efficiency of HCV-
G4 KM short than HCV-G4 KM long. A previous study
reported that deletion of the poly(U/UC) region in the 3′UTR
decreases the suppressive effect of NS5A on translation of the
full-length HCV genomic RNA (Hoffman et al., 2015). This
suggests that translation of HCV-G4 KM short could be more
pronounced than HCV-G4 KM long. When compared nucleotide

Frontiers in Microbiology | www.frontiersin.org 6 November 2021 | Volume 12 | Article 764816

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-764816 November 20, 2021 Time: 13:33 # 7

Takagi et al. HCV-4a Clone With Long 3′UTR

BA RNA inoculation
HCV-G4 KM short RNA (30 ��g/mouse)
HCV-G4 KM long RNA (30 �g/mouse)

0 1 2 3 4 weeks

Blood sampling (11 �L each) sacrifice

Chimeric mice 
with humanized liver (#101-105)

5 6 7 8 9 10

C

D
A

PI
A

nt
i-C

or
e

Mock HCV-G4 KM long HCV-G4 KM short

H
C

V-
R

N
A

(c
op

ie
s/

m
L)

0 7 14 21 28 35 42 49 56 63 70
100

101

102

103

104

105

106

107

108

days

G4 KM long
G4 KM short

0

FIGURE 6 | HCV-G4 KM short or HCV-G4 KM long infection in humanized chimeric mouse. (A) Purified HCV-G4 KM short or HCV-G4 KM long RNA (30 µg/mouse)
was intrahepatically injected into humanized livers of chimeric mice (male, 20-weeks-old), which were bled every week until 10 weeks. (B) HCV RNA average
amounts (copies/mL) in chimeric mouse sera (n = 2) were monitored in triplicate samples by qRT-PCR. Vertical bars indicate the SD. (C) Staining of mock-infected
(PXB288-032), HCV-G4KM long-infected (PXB201) or HCV-G4 KM short infected (G4KMN1-101) chimeric mouse liver tissue (×200) with anti-core antibody (RR8).
Representative data of triplicate samples are shown.

sequence of G4-KM short and long, there were two silent
mutations (No. 8939 G to A, No. 9080 G to A (Supplementary
Figure 3A) in the coding region, which did not cause amino
acid changes. In addition, the 3′UTR ply(U/C) stretch is 71
nucleotides shorter in HCV-G4 KM short than the long clone
(Supplementary Figure 3B).

The entire nucleotide homology of HCV-G4 KM long with
that of an in vitro and in vivo infectious HCV JFH-1 clone (9,678
nucleotide, GenBank AB047639.1) was 62% (Wakita et al., 2005).
The 5′UTR of the JFH-1 clone was 341 nucleotides, and the
3′UTR was 236 nucleotides (Table 2). The 5′UTR of HCV-G4
KM long was 341 nucleotides, and the length of the 3′UTR was
249 nucleotides.

The HCV-G4 KM long clone showed 80–90% nucleotide
homology with previously reported HCV genotype 4 clones.
For example, in vivo infectious HCV genotype 4a clone, HCV
ED43 strain (Genbank GU814266.1, 9,579 nucleotides), shows
91% homology with that of HCV-G4 KM long (Gottwein et al.,
2010). The length of the 5′UTR is 340 nucleotides and that of
3′UTR is 212 nucleotides in HCV ED43 (Table 2). The HCV
ED43 strain does not show infectivity in HuH-7 cells; however, it
did shows infectivity in chimpanzees (Gottwein et al., 2010). The
HCV-G4 KM long nucleotide sequence showed 85% homology
with the QC352 strain (9,431 nucleotides) (Lu et al., 2015), 81%
homology with QC147 (9,426 nucleotides), 80% homology with
QC361 (9,426 nucleotides), 80% homology with HCV subtype
4f strain IFBT88 (9,304 nucleotides) or IFBT84 (Hmaied et al.,

2007), and 80% homology with the CYHCV048 strain (9,174
nucleotides) (Demetriou and Kostrikis, 2011). However, none of
these clones contained a longer 3′UTR sequence than that of the
HCV-G4 KM long clone.

CONCLUSION

The HCV-G4 KM long clone is an infectious clone in vitro
and in vivo. The infectious HCV genotype 4a clone and
chimeric clones with NL established in this study should help to
characterize the biological features and clarify the molecular basis
of the pathogenesis of HCV genotype 4a.
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