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Virtually any stressor that alters the cellular homeostatic state may result in an inflammatory response. As a critical component of
innate immunity, inflammasomes play a prominent role in the inflammatory response. The information on inflammasome
biology is rapidly growing, thus creating the need for structuring it into a model that can help visualize and enhance the
understanding of underlying biological processes. Causal biological network (CBN) models provide predictive power for novel
disease mechanisms and treatment outcomes. We assembled the available literature information on inflammasome activation into
the CBN model and scored it with publicly available transcriptomic datasets that address viral infection of the lungs, osteo- and
rheumatoid arthritis, psoriasis, and aging. The scoring inferred pathway activation leading to NLRP3 inflammasome activation in
these diverse conditions, demonstrating that the CBN model provides a platform for interpreting transcriptomic data in the

context of inflammasome activation.

1. Introduction

The optimal functioning of a cell, a tissue, an organ, and,
ultimately, an organism as a whole depends on homeostasis
and damage mitigation. Any deviation of the homeostatic
range leads to a stress response, and when the stress response
is insufficient to restore homeostasis, an inflammatory re-
sponse is engaged [1]. In the recent decade, it has become
increasingly clear that inflammasomes are critical compo-
nents of inflammatory response. Inflammasomes are mul-
timolecular complexes that can assemble upon exposure to
pathogen-associated molecular patterns (PAMP), damage-
associated molecular patterns (DAMP), and diverse envi-
ronmental insults [2]. Depending on the stress sensor
molecule, inflammasomes can be of different types, such as
NLRP1 (NLR family pyrin domain containing 1), NLRP2,
NLRP3, NLRC4 (NLR family CARD domain containing 4 or
IPAF), AIM2 (absent in melanoma 2), IFI16 (interferon-
gamma inducible protein 16), and pyrin inflammasomes [3].

Inflammasome activation has been linked to viral, bacterial,
and fungal infections [4-6] and autoinflammatory and
autoimmune diseases such as gout and rheumatoid arthritis
[7-9], as well as to other diverse conditions such as Alz-
heimer’s disease, atherosclerosis, aging, or obesity [10-14].

Generally, the two-signal mediated inflammasome ac-
tivation model is accepted and discussed in the literature.
During the first signal—the priming signal—inflammasome
component and interleukin gene expressions are increased
downstream of the NFxB (nuclear factor kappa-light-chain-
enhancer of activated B cells) complex [15]. Consequently,
the inflammasome is activated following diverse signals,
which often culminate at second messengers such as reactive
oxygen species (ROS), ATP, or potassium levels [16-18]. The
canonical inflammasome complex assembly results in pro-
caspase 1 cleavage into active caspase 1 (CASP1), which
subsequently cleaves and thus activates the proinflammatory
cytokines interleukin 1B (IL1B) and IL18 [19]. Cytokines
play a crucial role in the innate immune response against
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invading pathogens; however, the inflammatory response
can flare out of control. For example, exacerbated immune
response as a result of NLRP3 inflammasome activation in
pulmonary tissue can lead to acute lung injury and acute
respiratory distress syndrome [20-22], which are common
clinical manifestations of coronavirus disease 2019 (COVID-
19). Indeed, studies show the engagement of the inflam-
masome in COVID-19 leading to uncontrolled inflamma-
tory response and pyroptosis, an inflammatory form of cell
death [23-25].

The complex biological state induced during an in-
flammatory response cannot be explained by analyzing
isolated molecules or endpoints. While the information on
the changes in separate molecular species is valuable, a
holistic view that integrates committed inflammatory
pathways and the interconnections between pathway mol-
ecules can provide enhanced understanding of the impacted
biology. Compilation of the involved pathways in a network
representation is a step toward comprehensive under-
standing of a system response. Such a network approach is a
valuable tool in network medicine, which takes into account
how the regulated molecules interact with each other and
how information flows along the multiple pathways that
constitute a given biological process or pathology [26, 27].
Organizing the established biological data into a network
view can help link apparent unrelated processes and path-
ways, facilitating characterization of known or novel disease
mechanisms and prediction of drug effects and treatment
outcomes.

Furthermore, vast amounts of data generated through
omics technologies, for example, transcriptomics, can be
harnessed in concert with network models to maximize
information acquisition. From the RNA expression values in
transcriptomic datasets, the activity levels of their regulating
factors can be extrapolated and used to score the entities of
network models [28]. Such an approach creates a powerful
explorative tool by combining literature-derived network
models with billions of data points that are publicly avail-
able. This methodology conforms to the 21st century par-
adigm for medical research, which shifts the research from
animal tests to assessments in cells and tissues in the context
of systems biology with the use of in silico tools [29, 30].

To characterize the mechanisms responsible for disease
or toxicant exposure, we have published a series of causal
biological network (CBN) models that capture unstructured
information from scientific literature into scorable graphical
representations. The network models were built using Bi-
ological Expression Language (BEL) [31], which converts
molecular interactions described in natural language to
semantic triples with source, relationship, and target by
using a controlled vocabulary. This allows us to compute the
triples into a graphical representation in which the nodes
represent biological entities and the edges represent the
interactions between the nodes. BEL also captures infor-
mation on the experimental approach, including species,
tissue/cell type, and disease state. The models are hosted in
the CBN database (http://causalbionet.com) [32, 33]. The
newest additions in CBN are a suite of models that describe
mucociliary clearance [34], a zebrafish cardiotoxicity
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network model for ecotoxicology [35], and a suite of models
that represent signaling pathways that contribute to in-
flammatory bowel disease [36]. The website offers tools for
browsing and downloading each network model. Finally, the
network models can be scored using transcriptomic data to
obtain genome-wide coverage of mRNA changes in the
context of a biological process. The scoring principle is
described in Materials and Methods and in several publi-
cations [37-41].

2. Materials and Methods

2.1. Literature Curation. Relevant scientific literature con-
taining mechanistic data on inflammasome activation was
identified as the first step in network building. Research
articles were prioritized over review articles, and results
sections were prioritized over the introduction, discussion,
and conclusion sections in order to capture direct experi-
mental evidence. Wherever applicable, the most granular
sequence of causal events was captured. Scientific text
curation was performed with BEL, which displays biological
findings in a computable form. BEL converts the relation-
ships between biological entities into statements of cause,
relationship, and effect triples using controlled vocabularies
facilitating the subsequent computation of the models. Bi-
ological entities of the cause and target are scripted in a
namespace format of “BEL function (namespace identifier:
“entity definition”),” for example, “p(HGNC:NLRP3).”
Custom namespaces (e.g., PMIBP for a biological process)
were created if the biological entities were not available in
existing namespaces. Table 1 summarizes the BEL termi-
nologies for the namespaces used in this study.

The namespaces were connected with causal or asso-
ciative relationships based on literature evidence. The
publication reference and details of the experimental model
(such as species, organ/tissue/cell types, or cell lines) were
annotated additionally to provide context to the statements.
Contradicting evidence was curated without preferential
treatment, along with experimental model annotations. The
BEL statements for the inflammasome network model were
derived from experiments conducted in human, mouse, and
rat model systems. To avoid duplicate namespaces for the
same gene curated from studies in different species, we
orthologized the network model to single species
nomenclature.

2.2. Network Model Assembly and Scoring. In order to
generate a network view, BEL statements were compiled
into a network assembly model by using OpenBEL
framework 3.0.0 (https://github.com/OpenBEL/openbel-
framework). The Cytoscape web application was used to
visualize and analyze network properties [42]. The model
backbone consists of nodes, which are the biological
entities connected by relationship edges. In addition to
the backbone layer, the network model has a downstream
layer that harbors information about mRNAs regulated
by some of the entities in the model backbone. The
downstream layer is based on a back-reasoning approach,


http://causalbionet.com
https://github.com/OpenBEL/openbel-framework
https://github.com/OpenBEL/openbel-framework

International Journal of Inflammation

TaBLE 1: BEL vocabulary for the namespaces used in the inflammasome CBN model.

BEL function BEL function expanded Example

a Abundance a(CHEBI:“calcium(2+)”)

act Activity act(p(HGNC:NLRP3))

bp Biological process bp(GOBP:autophagy)

complex Complex complex(GOCC:“NLRP3 inflammasome complex”)
m MicroRNA m(HGNC:MIR146A)

p Protein p(HGNC:NLRP3)

path Pathology path(MESHD:Sepsis)

r RNA r(HGNC:IL1B)

Sec Secretion sec(p(HGNC:IL18))

Namespace identifier Namespace identifier expanded Example

HGNC HUGO gene nomenclature committee p(HGNC:TLR4)

MGI Mouse genome informatics p(MGL:TIr4)

RGD Rat genome database p(RGD:Tlr4)

SARSCOV2 Severe acute respiratory syndrome coronavirus 2 P(SARSCOV2:E)

CHEBI Chemical entities of biological interest a(CHEBI:“nitric oxide”)

SCHEM Selventa legacy chemical names a(SCHEM:“Toxin B, Clostridium difficile”)
GOBP Gene ontology biological process bp(GOBP:“mitochondrial depolarization”)
GOCC Gene ontology cellular components complex(GOCC:“NEF-kappaB complex”)
SCOMP Selventa named complexes complex(SCOMP:“CHRN Complex”)
SFAM Selventa named protein family act(p(SFAM:“TNFRSF Family”))
MESHD Medical subject headings path(MESHD:Inflammation)
PMIBP Custom namespace for biological processes bp(PMIBP:Inflammaging)
PMICOMP Custom namespace for complexes complex(PMICOMP:“pyrin inflammasome complex”)
PMIDIS Custom namespace for diseases path(PMIDIS:“influenza A virus infection”)
PMIPFAM Custom namespace for protein families p(PMIPFAM:“TLR Family”)

where the activity of a backbone node is deduced from its own
downstream transcript abundance [28]. This collective mRNA
signature was obtained from publicly available transcriptomic
datasets. The activity of the nodes in the model backbone is
inferred on the basis of the concordance of transcriptomic
changes in the data (chosen datasets for scoring and analysis)
with the mRNA nodes underneath the backbone nodes. Such
an approach allows one to infer the activity status of the
corresponding backbone node (inferred node: iNode) from
scoring datasets instead of assuming that the mRNA abun-
dance of the backbone node in the dataset corresponds with its
protein activity. The datasets GSE51386, GSE55235, GSE2737,
E-MEXP-839, and GSE11258 from public data repositories
were used for scoring the inflammasome network model. For
model scoring, a threshold-free enrichment method specific for
iNode was applied using the Strength Network Perturbation
Amplitude scoring algorithm [43]. To illustrate graphically how
backbone nodes are inferred on the basis of gene expression
differences in the scoring dataset, the inference values were
imported to the Cytoscape application and assigned to the
model nodes.

3. Results and Discussion

3.1. The Inflammasome Model. In this work, we have built a
CBN model for inflammasome activation. We curated
scientific literature related to inflammasome activation
from 55 research articles and compiled a network model
with 297 nodes and 455 edges, which can be used to score
the pathology of infections, diseases, treatments, and other
conditions. The network model is centered on NLRP3
inflammasome activation, as it is the most studied and best

characterized inflammasome. As inputs, the model con-
tains nodes that represent toxins and various pathogenic
and sterile insults. Toll-like receptors (TLR), sirtuin 1
(SIRT1), Beclin 1 (BECN1), NFxB complex, aryl hydro-
carbon receptor (AHR), Z-DNA binding protein 1 (ZBP1),
and mitogen-activated protein kinase (MAPK) signaling
are some of the upstream regulators of the NLRP3
inflammasome complex. Caspase 1 (CASP1) and the
subsequent cleavage and activation of IL1B and IL18 are
among the downstream targets of the NLRP3 inflamma-
some complex. The inflammasome network model is
available for browsing and download in the CBN database
(http://causalbionet.com/).

3.2. Network Model Scoring with Transcriptomic Data

3.2.1. Mouse Lung Response to Viral Infection. To demon-
strate how the inflammasome CBN model can be used to
gain mechanistic insights into inflammatory response in
tissues, we scored the network model with gene expression
data from several publicly available datasets hosted in the
Gene Expression Omnibus (GEO) repository. The tran-
scriptomic dataset GSE51386 contains data on mouse lung
response to severe acute respiratory syndrome (SARS)
MA15 virus infection at 10*PFU. The lungs from SARS
MA15-and mock-infected C57BL6 mice were dissected at 4
and 7 days post infection (dpi). The mRNA abundances in
affected and control lung cells were scored against our iNode
collection, and the results of the scoring show whether a
given iNode is inferred to be activated, inhibited, or not
impacted.
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The iNode scoring algorithm inferred upregulation of
NLRP3 and CASP1 at both 4 and 7 dpi, with a greater effect
at a later time point (Figure 1). These nodes, which are an
integral part of the NLRP3 inflammasome complex, receive
the activating input from multiple upstream factors. Par-
ticularly, members of the NFxB pathway, including TLR2,
TLR4, MYD88 (myeloid differentiation primary response
88), and the NFxB complex, were inferred to be upregulated
upon virus infection, consistent with the NLRP3 inflam-
masome priming event. TNF (tumor necrosis factor) and its
receptor were also inferred to be upregulated, although
TRAF2 (TNF receptor-associated factor 2), through which
TNF connects to NFxB in our CBN, was inferred to be
significantly downregulated at both 4 and 7 dpi, which
hinted at other parallel pathways involved in the infection-
elicited inflammation. Furthermore, the AMPK (AMP-ac-
tivated protein kinase) complex, a known inhibitory factor
of NF«xB, was inferred to be downregulated. Similarly, SIRT1,
which blocks NFxkB-DNA binding through deacetylation
[44] and also functions as an inflammasome inhibitor, was
also inferred to be downregulated. Some other inhibitory
factors in the NF«B cascade, such as NFKBIA and MIR155
upstream of MYD88, were inferred to be upregulated;
however, it appeared that positive signals toward NFxB
overcame these inhibitory effects. Two circadian proteins,
CLOCK and ARNTL (aryl hydrocarbon receptor nuclear
translocator like, also known as BMAL1)—which have
opposing effects on NFxB—were both inferred to be
downregulated. NFxB upstream activator IRAK1 (inter-
leukin 1 receptor-associated kinase 1) was also inferred to be
downregulated. This complex regulation of NFxB could be a
fine-tuning mechanism of inflammation control. In this
context, it is important to note that NFxB was shown to also
have inhibitory effects on NLRP3 inflammasome activation
by promoting clearance of damaged mitochondria [45].
DAMPs released during mitochondrial damage, such as
mitochondrial ROS and mitochondrial DNA, are recognized
as triggers for NLRP3 activation [46].

Scoring with a SARS MA15 virus-treated dataset further
showed that NLRP3 inflammasome-activating factors, such
as FFAR?2 (free fatty acid receptor 2), BTK (Bruton’s tyrosine
kinase), IRF1 (interferon regulatory factor 1), and ZBP1I,
were all inferred to be upregulated, although the inflam-
masome inhibitory AHR was also inferred to be upregulated.
Inconsistent with its inflammasome-activating role, the
purinergic receptor P2RX7 was inferred to be significantly
downregulated at both time points after viral infection. The
downstream effector molecules of inflammasome activation,
IL1B and IL18, were inferred as significantly affected after
virus infection. While, as expected, IL1B was inferred to be
upregulated at both time points after viral infection, IL18
activity was inferred to be downregulated. This can be
explained by signals other than NLRP3 inflammasome af-
fecting IL18 activity. BCL2 apoptosis regulator and RHOA
(ras homolog family member A)—inhibitors of NLRP1
activity and the pyrin inflammasome, respectively—were
inferred to be upregulated, suggesting inhibition of both
NLRPI and pyrin inflammasome activities. In addition,
various other factors are involved in IL18 production, such
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as JAK/STAT (Janus kinase/signal transducer and activator
of transcription) or type I interferon signaling [47], and the
alterations in these pathways can be reflected in the negative
score of IL18 in the mouse lung tissues.

Taken together, our results are consistent with the innate
immune response mounted after viral infection. The scoring
results that were not in agreement with the established roles
of the factors can offer new insights into the regulatory
mechanisms of inflammasome biology during viral infec-
tion. It would be important to score more viral infection
datasets to be able to extract the regulatory traits of factors
that were performed inconsistent with their conventional
roles in inflammation, such as IRAKI, NF«B, AHR, and
P2RX7. Such regulatory traits will provide valuable infor-
mation for elucidating the specific contribution of these
factors during infection-provoked inflammation.

3.2.2. Inflammasome Activation during Osteoarthritis and
Rheumatoid Arthritis. Next, we chose GEO dataset
GSE55235, where the transcriptomic data were derived from
human synovial tissues from osteoarthritis (OA) and
rheumatoid arthritis (RA) patients and healthy controls. RA
is an autoimmune joint disease characterized by chronic
synovitis that progresses to the destruction of cartilage and
bone. The NLRP3 inflammasome contributes to RA path-
ogenesis and severity [48, 49]. OA is a joint disease where
cartilage is damaged because of wearing away during aging
[50]. Although commonly regarded as a wear-and-tear
disease, there is evidence for an inflammatory component in
OA [51, 52]. Indeed, our scoring results suggest that
inflammasome components such as NLRP3, PYCARD (PYD
and CARD domain containing), and CASP1 are activated in
both diseases (Figure 2). NLRC4, an IPAF inflammasome
component and stress sensor, was inferred to be significantly
downregulated in the synovial tissues of OA patients. In-
terestingly, several inflammasome-activating factors—such
as BTK, the NFxB complex, and beta-catenin (CTNNB1)—
as well as ROS, calcium cations, and ATP levels were inferred
to be downregulated. Our network model has captured paths
downstream of NF«xB and CTNNBI that also lead to
inflammasome inhibition. Even though it is an inflamma-
some priming factor, NF«B restricts inflammasome acti-
vation through sequestosome 1 (SQSTM1, also known as
p62), which promotes the clearance of damaged mito-
chondria [45]. While some studies suggest CTNNBI to be an
upstream promoting factor for the inflammasome [53, 54],
CTNNBL1 can also lead to inflammasome inactivation
through inhibition of XBP1 (X-box binding protein 1),
which, in turn, is an NLRP3 activator [55]. Interestingly,
XBP1 was also inferred to be downregulated in both OA and
RA samples. This downregulation of inflammasome-pro-
moting factors suggests that other pathways are involved in
inflammasome activation and such a counterbalance might
be an effective measure for preventing excessive and un-
controlled inflammatory response. It is interesting to note
that IL1B levels were also inferred to be downregulated in
OA samples, and the IL18 score did not reach a significant
value in any disease sample.
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FIGURE 1: Part of the inflammasome network model scored with transcriptomic data from GSE51386. The bar graph above each node, which
was scored, shows the inferred fold change in mouse lung samples at (1) 4 and (2) 7 days post infection (dpi) relative to uninfected lung
samples at the same time point. The directionalities are shown as yellow or blue bars for inferred upregulation or downregulation, re-
spectively. The black outline refers to nodes that were significantly impacted in both samples at both 4 and 7 dpi, the blue outline refers to
nodes that were significantly impacted only at 4 dpi, and the purple outline refers to nodes that were significantly impacted only at 7 dpi.

Consistent with the captured biology, all scored entities
in the inflammasome-activating IFNAR1/IRF1/ZBP1 axis
were inferred to be upregulated in both disease samples.
Conversely, inhibitory factors of the NLRP3 inflammasome,
such as the AMPK complex, SIRT1, and AHR, were inferred
to be downregulated; the pyrin inflammasome inhibitor
RHOA was also inferred to be downregulated.

While many upstream signaling molecules had similar
inferred activities for both OA and RA, the TNFRSF (TNF
receptor superfamily), TLR2, TLR4, TNF, STATI, and BCL2
had opposite inferred scores, hinting at molecular mecha-
nistic differences between the two diseases. All these entities
were inferred to be upregulated in the synovial tissues of RA
patients (the TNF, TLR4, and BCL2 scores did not reach

statistically significant values for RA) and downregulated in
OA patients’ synovial tissues (the TLR2 and STATI scores
did not reach statistically significant values for OA). Con-
sistent with this finding, anti-TNF treatment has been re-
ported to show beneficial outcomes in RA patients when
compared with OA patients [56, 57].

3.2.3. Inflammasome Network Model Scoring in Psoriasis.
Psoriasis is a complex immune-mediated skin disease, which
can also manifest as joint inflammation [58]. Psoriatic pa-
tients have a higher risk of comorbidities such as cardio-
vascular disease, inflammatory bowel disease, and
nonalcoholic fatty liver disease [59-61]. There is a close link
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FIGURE 2: Part of the inflammasome network model scored with transcriptomic data from GSE55235. The bar graph above each node, which
was scored, shows the inferred fold change in the synovial tissues of (1) osteoarthritis (OA) and (2) rheumatoid arthritis (RA) patients
relative to healthy subjects. The directionalities are shown as yellow or blue bars for inferred upregulation or downregulation, respectively.
The black outline refers to nodes that were significantly impacted in both diseases, the blue outline refers to nodes that were significantly
impacted only in OA, and the purple outline refers to nodes that were significantly impacted only in RA.
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between this multifaceted disease and inflammasome acti-
vation; for example, an unbiased sequencing approach
revealed inflammasome signaling as the highest differen-
tially expressed pathway in psoriasis patients, whereby
inflammasome activation was correlated with disease se-
verity [62].

We have scored the inflammasome CBN model with
transcriptomic dataset GSE2737, derived from biopsy samples
of affected and unaffected skin areas from psoriatic patients
compared with skin samples from healthy control subjects.
Evidently, the affected active disease skin areas had a higher
number of significantly scored inflammasome-related nodes
(Figure 3). Active CASP1 and IL1B were among the nodes
enriched in the affected skin samples. NLRP3 activity, however,
was not significantly inferred to be regulated in the active
disease and was inferred to be downregulated in the unaffected
skin areas. Nevertheless, a recent study in psoriatic patients
found high expression levels of inflammasome sensors NLRP3,
NLRP1, and AIM2 in peripheral blood cells as well as higher
plasma levels of IL1B and IL18 [63]. A number of positive
regulators of the inflammasome pathway—such as TLR2,
TLR4, MYD88, the NFxB complex, FFAR2, calcium cations,
BTK, and the TNF/TNFRSF—were inferred to be significantly
upregulated in psoriatic skin samples relative to healthy skin
samples. TNF, also inferred to be upregulated, is a recognized
hallmark of psoriasis [64], and anti-TNF therapy is an approved
treatment for moderate-to-severe plaque psoriasis, where it
helps normalize CASP1 activity and plasma ILIB and IL18
levels and reduce skin and joint lesions [63, 65, 66].

AMPK and SIRT1, both being factors that limit
inflammasome activation, were inferred to be down-
regulated in psoriatic patient skin samples, concordant with
downstream inflammasome activation. Next, the anti-
apoptotic protein BCL2 was inferred to be upregulated in
affected skin biopsy samples. A study from lizuka et al.
suggests premature keratinocyte death in psoriasis [67], and
our scoring result in this case could be a part of a com-
pensatory mechanism. Inconsistent with their inflamma-
some-activating roles, IRAK1, RIPK1 (receptor-interacting
serine/threonine kinase 1), and FOXO3 (forkhead box O3)
were inferred to be downregulated. This could be explained
as a countervailing attempt of the affected tissue to halt
excessive inflammation. The inferred upregulation of the
inflammasome-inhibiting AHR can be explained in a similar
fashion.

Opverall, the inflammasome network model scoring with
transcriptomic data from the skin samples of psoriatic pa-
tients was largely consistent with the curated literature
findings. This holistic view of the network of pathways helps
identify the routes that are highly involved in inflammasome
activation and distinguish the ones that are not involved or
are antagonizing to inflammatory response, thus informing
potential drug treatment efforts.

3.2.4. Inflammasome Network Model Scoring in Aging Mouse
Liver. In recent years, the inflammasome has emerged as an
important factor implicated in metabolic and age-related
diseases [68]. AMPK, a central molecule in energy meta-
bolism that is also involved in processes of aging, and SIRTI,

a key factor implicated in aging, are among the upstream
modulators of NLRP3 inflammasome activation. Of note,
the activities of both these proteins were inferred to be
downregulated in our network model scoring with tran-
scriptomic data from SARS MAL5 virus-infected mouse
lungs and synovial tissues of arthritis patients. A very recent
study on chronic viral infections suggests a common sig-
nature of immune dysfunction in viral infections and aging-
related inflammation [69].

With an aim to determine inflammasome CBN model
perturbations during a lifespan, we analyzed the
E-MEXP-839 dataset from the ArrayExpress database.
This dataset compares the mouse liver transcriptomic
profiles of adult 16-, 96- and 130-week-old wild-type
(WT) C57Bl/6] mice with those of 8-week-old WT mice.
Mice at the age of 16 weeks are generally not affected by
senescence, whereas mice over 24 months of age are
considered very old and show apparent histological le-
sions associated with aging [70]. Accordingly, we iden-
tified only six iNodes that were significantly impacted at
all three ages; moreover, all iNodes that were inferred to
be significantly regulated at two time points out of the
three showed significant scores for the latter, that is, 96-
and 130-week time points, with the exception of the
TNFRSF family iNode, which was inferred to be down- or
upregulated in the liver of 16- and 130-week-old WT
mice, respectively. In Figure 4, we show a subnetwork of
the inflammasome activation CBN model, including
iNodes, that reached a statistically significant score in the
mouse liver in at least two life stages. Some nodes that
were inferred to be regulated at only one time
point—such as ARNTL, the NFxB complex, and
ROS—were included because of their bridging position in
pathways leading to inflammasome activity modulation.
Analysis of the last two time points showed clear inferred
upregulation of proinflammatory entities such as
IFNARI, IRF1, ZBP1, TLR2, TLR4, MYD88, TNF, and
the MAPK p38 family, inflammasome constituents
NLRP3 and CASPI, and the inflammasome product,
active IL1B. However, some proinflammatory factors
were inferred to be downregulated, such as the NFxB
complex (significant score only in 130-week-old mice)
and XBP1. Conversely, we observed inferred
downregulation of anti-inflammatory, antiaging
molecules, such as SIRT1 and SODI1 (superoxide
dismutase 1). The inferred scores of AMPK did not reach
statistical significance at any time point. Concomitant
with the decrease in SODI activity, ROS levels increased
with age, creating an aging-accelerating milieu due to
accumulated damage [71]. Furthermore, from our CBN
scoring data, we could conclude that liver cell death rate
increased with age, as the activity of the antiapoptotic
protein BCL2 was inferred to be downregulated at later
life stages of the mice. Additionally, the activity of ZBP1,
which is involved in PANoptosis, was inferred to be
increased in 96- and 130-week-old WT mice. PANoptosis
refers to collective activation of pyroptosis, apoptosis,
and necroptosis, which can result, for example, from
ZBP1 pathogen sensing [72-74].
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This perturbation of multiple inflammatory pathways in
old animals supports the crucial role of inflammation in
aging processes. Our network model scoring methodology
can potentially offer new targets for intervention for healthy
and slow aging approaches.

3.2.5. Inflammasome Response to Potassium Treatment.
In all previous examples here, inflammasome compo-
nents were inferred to be activated, as expected. We next
asked if the network model would react to a stimulus that
is supposed to block inflammasome activity. Many
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stimuli converge on potassium efllux, which is an es-
sential mechanism of inflammasome activation [75, 76].
We chose a dataset of potassium treatment in murine
hippocampal neurons (GSE11258), where inflammasome
activity was expected to be blocked. Many studies confirm
the presence and activity of the NLRP3 inflammasome in
the hippocampus [77-79]. Indeed, treatment with 50 mM
KClI for 1, 3, or 6 h causes a time-dependent decrease in
the inferred activities of inflammasome components such
as NLRP3 and PYCARD (significant scores at 3 and 6 h of
potassium treatment) (Figure 5). The CASP1 score did
not reach statistical significance. A snapshot of the
inflammasome network model shown in Figure 5 in-
cludes several infectious agents and chemicals that trigger
potassium efflux and consequently activate the inflam-
masome. Some of them also contribute to inflammasome
activation independent of potassium concentration, for
example, through NFxB-induced NLRP3 gene tran-
scription during the inflammasome priming step. Pre-
sumably, higher intracellular potassium levels can block
the inflammasome-triggering potential of these stressors.
An example of this blockage is shown in a study by Suzuki
and colleagues, where an increase in extracellular po-
tassium concentration inhibited inflammasome-depen-
dent IL1B production triggered by lipopolysaccharide
and ATP treatment [80]. Both ATP (significant scores at 1
and 3h of potassium treatment) and Ca** (significant
scores at 3 and 6 h of potassium treatment)—which are
upstream negative regulators of potassium levels in our
network model—were inferred to be upregulated, likely
to counteract the burden of KCl salt exposure. Through
the purinergic receptor ATP-gated channel P2RX7, ATP
can act as a potassium efflux agent, enabling the influx of
calcium and sodium cations to change the membrane
potential, which, in turn, facilitates potassium efflux
through KCNK6 (potassium two pore domain channel
subfamily K member 6, also known as TWIK2) [80, 81].

4. Conclusion

We have presented here a CBN model that describes
inflammasome activation on the basis of causal molecular
relationships extracted from pertinent research articles. We
also scored the inflammasome model with transcriptomic
data derived from a viral infection of the lungs, osteo- and
rheumatoid arthritis, psoriasis, and aging. In all these diverse
conditions, the pathways leading to NLRP3 inflammasome
activation were significantly impacted, implying inflam-
masome involvement. More interestingly, some upstream
modulating paths were differently affected in individual
datasets, providing insights on disease- or condition-specific
inflammasome regulation. It is important to emphasize that
the results presented in this report are from a small number
of studies, and the network scoring needs to be repeated with
several other datasets to support our findings. Regardless,
the approach is very powerful for generating new hypotheses
that, once experimentally verified, could lead to the dis-
covery of new and more efficient therapeutics against
conditions that engage inflammasomes, such as viral in-
fections and inflammatory and metabolic diseases. We are
continuing these efforts by expanding the suite with network
models for other relevant components of innate and
adaptive immune biology, including neutrophils, macro-
phages, dendritic cells, natural killer cells, and B cells.
Currently, of the 120 potentially inferable nodes (protein
and protein family activities, complexes, and microRNAs as
well as some chemicals) in the inflammasome CBN model,
only 55 are iNodes; that is, only 55 nodes have the down-
stream transcript layer populated with data from public
datasets. As a consequence, more than half of the inflam-
masome network model backbone nodes were left out of the
model scoring and discussion in this study. Future work will
complement the current results and might lead to new
exciting conclusions, especially toward explaining the causal
inconsistencies in the affected pathway scores. The results
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shown here are just a glimpse of what model scoring can
offer, and the true value will be in the analysis of noninvasive
human samples (e.g., blood) for evaluating the systemic
component in different disease stages and toxic exposures
and upon drug treatment or postvaccination responses.
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