
polymers

Article

Electromagnetic Wave Absorption Properties of
Structural Conductive ABS Fabricated by Fused
Deposition Modeling

Wenwen Lai , Yan Wang * and Junkun He

School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430074, Hubei, China;
lightwee@163.com (W.L.); mrhejk@163.com (J.H.)
* Correspondence: wangyan@wit.edu.cn; Tel.: +86-159-9426-3868

Received: 6 April 2020; Accepted: 13 May 2020; Published: 27 May 2020
����������
�������

Abstract: To obtain excellent electromagnetic wave (EMW) absorption materials, the design of
microstructures has been considered as an effective method to adjust EMW absorption performance.
Owing to its inherent capability of effectively fabricating materials with complex various structures,
three-dimensional (3D) printing technology has been regarded as a powerful tool to design EMW
absorbers with plentiful microstructures for the adjustment of EMW absorption performance. In this
work, five samples with various microstructures were prepared via fused deposition modeling (FDM).
An analysis method combining theoretical simulation calculations with experimental measurements
was adopted to investigate EMW absorbing properties of all samples. The wood-pile-structural
sample possessed wider effective absorption bandwidth (EAB; reflection loss (RL) < −10 dB, for over
90% microwave absorption) of 5.43 GHz and generated more absorption bands (C-band and
Ku-band) as compared to the honeycomb-structural sample at the same thickness. Designing various
microstructures via FDM proved to be a convenient and feasible method to fabricate absorbers
with tunable EMW absorption properties, which provides a novel path for the preparation of EMW
absorption materials with wider EAB and lower RL.

Keywords: microstructures; honeycomb; wood-pile; FDM; electromagnetic wave absorption

1. Introduction

In recent years, electromagnetic wave (EMW) radiation has drawn deep attention due to its great
damage to wireless communication and the health of human beings. Therefore, the development of
radar absorbing materials (RAMs) with high EMW absorbing performance has become increasingly
urgent in military and civilian applications [1–5]. Although massive research projects on EMW
absorption materials have proceeded, designing optimized EMW absorbers with a lower reflection
loss (RL), a smaller thickness, and a wider effective absorption bandwidth (EAB) remains a serious
challenge [6–8]. Nowadays, plenty of polymeric nanocomposite RAMs have been prepared by adding
one or more types of absorbing agents to the polymer matrix [9–11]. In addition, nanocomposite RAMs
have proven to be an effective material to adjust the EMW absorption performance by designing the
composition and microstructures of the composite [12–14]. Moreover, recent research indicated that
structural EMW absorbers have significantly developed modern stealth materials in their capacity to
regulate the macrostructure of absorbers, which play an important role in adjusting the impedance
match of EMW absorbers [15–17]. Honeycomb and its composite structures have attracted tremendous
attention because of their significant benefits on energy absorption, thermal buckling resistance,
and electromagnetic absorption properties. The height, maximum inner radius, and thickness of the
honeycomb are considered the main factors affecting RAM properties [18–21]. Sandwich structures
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with honeycomb cores have also been widely investigated and applied as engineering structures for
their excellent mechanical and EMW absorption performance [22,23].

Multilayer EMW absorbing materials with a gradient index (GRIN) have also demonstrated
effectiveness in improving the EMW absorption performance. Attributed to a better impedance
matching, the EMW can propagate deeper into the absorber, which considerably reduces the reflection
of EMW on the surface of the material [24–27]. However, most multilayer absorbing materials are only
spliced from as-prepared single-layer materials using some adhesives, such as glue, thereby generating
an absorber with poor mechanical properties. In addition, the structural design of single-layer
absorbing materials prepared by traditional manufacturing systems has also been limited.

Three-dimensional (3D) printing technology has attracted enormous attention as compared to
traditional manufacturing processes due to its inherent capability of printing unique and complex
geometries using computer-aided design [28–32]. In addition, printed polymeric composites have
excellent and more controllable properties due to the plethora of reported research projects on their
printing parameters and methods [33–35]. As such, 3D printing technology is able to provide a more
efficient research scheme to properly design the single-layer absorbing layer structure to allow deeper
EMW propagation inside the materials and for effective dissipation.

In this work, fused deposition modeling (FDM) was employed to fabricate conductive acrylonitrile
butadiene styrene (ABS) samples with various microstructures. The electromagnetic parameters of
conductive ABS were measured. The EMW absorbing performance of all structural conductive ABS
samples was investigated by theoretical simulation calculations and experimental measurements.
In addition, the effects of the microstructures on the EMW absorbing properties of the absorbers
were discussed.

2. Experimental Setup

2.1. Materials

The conductive ABS pellets were prepared in our laboratory. The basic thermo–mechanical
properties and conductivity of the conductive ABS pellets are presented in Table 1.

Table 1. Basic thermo–mechanical and electrical properties of the conductive acrylonitrile butadiene
styrene (ABS) pellets.

Properties Test Methods Unit Values

Melt index ASTM D1238
(200 ◦C, 5 KG)

g/10
min 6.1± 0.3

Heat deflection temperature ASTM D648 ◦C 90.0 ± 0.3
Tensile strength ASTM D638 kg/cm2 505 ± 5
Impact strength ASTM D256 J/m 162± 2

Conductivity Shown in 2.4.1 S/cm (6.3± 0.8) × 10−3

2.2. Preparation of the Conductive ABS Filaments

The preparation of conductive ABS filaments was carried out in a single-screw extruder (TP-07,
Dongguan Songhu Plastic Machinery Co., Ltd., Dongguan, China). The prepared conductive ABS
pellets were first dried in a vacuum oven at 80 ◦C for 4 h to prevent the generation of bubbles during
the extrusion process. As shown in Figure 1a, the first, second, and third temperature zones of the
single-screw extruder were set to be 180, 215, and 205 ◦C, respectively. The temperature of cooling
water was set to be 60 ◦C. The screw and tractor rotation speeds were 980 and 450 rpm, respectively.
The dried conductive ABS pellets were fed into the feed inlet in batches. By adjusting screw and tractor
rotation speeds, the conductive ABS filaments (diameter of 2.85 mm) were obtained.
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Figure 1. (a) Preparation of the conductive ABS filaments. (b) 3D printing process.

2.3. The 3D Printing Process

The extruded conductive ABS filaments were printed using an FDM 3D printer (Ultimaker 3,
Ultimaker, Utrecht, The Netherlands) under the settings given in Table 2 to obtain the desired print
geometries. The typical printing process is presented in Figure 1b. The prepared monofilament
(diameter of 2.85 mm) was fed into the printer via a pinch roller. The nozzle with a diameter of 0.4 mm
was used to melt the fed filament under a temperature of 260 ◦C. The temperature of the platform
was set at 100 ◦C, and the adhesion sheets were used in the build platform to ensure the excellent
adhesive attraction between printed objects and the platform. A slow print speed of 30 mm/s and a
small layer height of 0.1 mm were set to obtain the more exquisite printed objects. In addition, the infill
density was set at 100% for a better mechanical property. The geometric modeling and corresponding
printed final samples are displayed in Figure 2. For the electromagnetic parameter tests of conductive
ABS, a concentric annular sample with an outer diameter of 7 mm, an inner diameter of 3.04 mm,
and a thickness of 2 mm was printed. To investigate and test the EMW absorbing performance of
the absorbers with various microstructures, samples #1, #2, #3, #4, and #5 with lengths and widths of
180 mm were printed. Among them, samples #1, #2, and #3 had the same structure with honeycomb
pore side length (a) of 6 mm, and a honeycomb hole spacing (t) of 3 mm. However, the three samples
held different thicknesses (h) of 1.5, 2.5, and 3.5 mm, respectively. Sample #4 maintained the same
honeycomb hole spacing of 3 mm as compared to #1, #2, and #3, but with a smaller honeycomb pore
side length of 3 mm and a thickness of 2.5 mm. Sample #5 with a wood-pile structure consisted of
little wooden bars with dimensions of 180 mm × 5 mm × 1.2 mm. A distance of 5 mm was maintained
between the little wooden bars.

Table 2. Settings of 3D printer.

Main Printing Parameters Values

Layer height (mm) 0.1
Infill density (%) 100

Print speed (mm/s) 30
Nozzle temperature (◦C) 260
Nozzle diameter (mm) 0.4

Build platform temperature (◦C) 100
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Figure 2. Geometric modeling and corresponding printed final samples by fused deposition
modeling (FDM).

2.4. Characterization and Testing

2.4.1. Electrical Conductivity Testing

The resistance of conductive ABS filaments was obtained using a high resistance meter (GT-1864,
Dongguan High-speed Rail Detection Instrument Co., Ltd., Dongguan, China), as shown in Figure 3.
The electrical conductivity, σ, was calculated by the following equation:

σ =
1
ρ
=

L
RS

, (1)

where R is the measuring resistance, L is the length of filaments clamped by a high resistance meter, S
is the cross-sectional area of the filaments, and ρ is the resistivity.

2.4.2. Electromagnetic Parameters Testing

The electromagnetic parameters, complex relative permittivity (εr = ε′ − jε′′ ), and permeability
(µr = µ′ − jµ′′ ) of conductive ABS, which was printed into a concentric annular shape, were measured
by a vector network analyzer (N5224A, Keysight Technologies, Santa Rosa, CA, USA) in the range of
2–18 GHz.
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2.4.3. EMW Absorbing Performance Testing

On the basis of the arch method, the EMW absorbing performances of samples #1, #2, #3, #4,
and #5 were evaluated by measuring the RL in the range 2–18 GHz using a vector network analyzer
(N5224A, Keysight Technologies, Santa Rosa, CA, USA) according to the RAM testing standard of GJB
2038A-2011. All of the test samples were positioned on a metal plate in an anechoic chamber.

3. Results and Discussions

3.1. Theory of EMW Absorption

A series of electromagnetic waves propagated in the forward direction when a beam of unit
amplitude electromagnetic wave was placed perpendicularly on a multilayer absorber. In addition,
reflected waves propagated in the reverse direction were generated in the absorption layer, as shown
in Figure 4.
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According to Kraus’s transmission line impedance conversion equation [36], the wave impedance,
Zi, of the i-th layer can be calculated as follows:

Zi = ηi
Zi−1 + ηitan h(γidi)

ηi + Zi−1tan h(γidi)
, (2)

where Zi−1 is the wave impedance at the interface between the i-th layer and the i-1 layer.
The parametric intrinsic impedance, ηi, is given as

ηi = η0

√
µri

εri
(3)
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η0 =

√
µ0

ε0
=

√
1
1
= 1, (4)

where η0, µ0, and ε0 represent the characteristic impedance, permeability, and permittivity of free
space, respectively.

The complex propagation constant of the i-th layer was calculated by the following equation:

γi =
j2π f

c
√
µriεri, (5)

where c is the velocity of light, f is the frequency of incident electromagnetic waves, and j is an
imaginary unit.

The complex relative permeability, µri, and complex relative permittivity, εri, of the i-th layer were
calculated by the following equations:

µri = µri
′
− jµri

′′ (6)

εri = εri
′
− jεri

′′ . (7)

Z0 of the metal plate on the surface of the first layer was equal to zero; thus, Zi can be obtained
according to Equation (2), 1≤ i ≤ n.

Therefore, the reflection loss, RL, at the interface between air and multilayer absorbing material
can be obtained using the equation as follows:

RL = 20lg
∣∣∣∣∣ Zn − η0

Zn + η0

∣∣∣∣∣. (8)

3.2. Electromagnetic Property Analyses

The complex relative permittivity (εr = ε′ − jε′′ ) and permeability (µr = µ′ − jµ′′ ) both consisted
of the real (ε′ and µ′) and imaginary (ε′ and µ′′ ) parts. Among them, ε′ and µ′ determined the storage
capability of electric and magnetic energy, respectively, while ε′′ and µ′′ determined the deterioration
capability of electric and magnetic energy, respectively [37]. Conventionally, the dielectric loss tangent
(tan δE = ε′′/ε′) and magnetic loss tangent (tan δM = µ′′/µ′) were used to describe electromagnetic
loss capacity [38]. For an ideal absorber, the equation εr = µr in a wide frequency range was regarded
as a necessity, and meanwhile, tan δE and tan δM were also regarded to be immensely large [39].
Obviously, electromagnetic parameters εr and µr of the materials played a substantial role in the EMW
absorbing performance of absorbers.

For non-magnetic materials, the µ′ and µ′′ values of the complex relative permeability were
1 and 0, respectively [40]. As shown in Figure 5c,d, the values of µ′, µ′′ , and tan δM varied in the
range of 0.95–1.05, 0–0.1, and 0–0.12, respectively, indicating the RL values were mainly determined
by the complex relative permittivity εr. The measured frequency dependence of ε′ and ε′′ is shown
in Figure 5a. As shown in Figure 5a, the values of ε′ were in the range of 7.23–19.49 and gradually
decreased with the increase of frequency, indicating a typical frequency dispersion behavior induced by
polarization lag in high frequency [40]. The ε” values also varied inversely with frequency, fluctuating
from 24.21 to 7.44 with the variation of the frequency. It was worth noting that the values of ε′′ were
slightly larger than those of ε′ in the low-frequency region, such that a higher dielectric loss tangent was
generated. As demonstrated in Figure 5b, in the low-frequency range of 2–4 GHz, larger tan δE values
ranging from 1.06 to 1.24 were observed, while in the frequency range of 4–18 GHz, the values of tan δE

fluctuated from 0.8 to 1. Attributed to the superior conductivity of 6.3× 10−3 S/cm, conductive ABS
possessed an overall larger dielectric loss tangent tan δE, presenting enormous capability to dissipate
electromagnetic energy.
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3.3. EMW Absorbing Performance Analyses

According to the transmission-line theory and Equations (2)–(8), RL of single-layer absorbers
could be simplified as

Z1 = η0

√
µr1

εr1
tan h

(
j2π f d1

c
√
µr1εr1

)
(9)

RL = 20lg
∣∣∣∣∣ Z1 − η0

Z1 + η0

∣∣∣∣∣. (10)

Based on the complex relative permittivity and permeability depicted in Figure 5, the RL of
single-layer samples was calculated by Equations (9) and (10). As a result, Figure 6a,b shows the
frequency dependence of the RL of single-layer samples when the thickness increased from 0.5 to 4 mm
in the frequency range of 2–18 GHz. It can be clearly seen that the single-layer conductive ABS samples
presented only a minimum RL of −10.05 dB at a corresponding thickness of 1.5 mm, indicating more
than 90% EMW absorption. Other than that, all of the samples with other thicknesses showed an EAB
of 0. Obviously, single-layer conductive ABS samples without consideration of the microstructures
design exhibited difficulty in meeting the demands for use as RAMs.

Figure 6c shows the experimental curves of RL versus frequency of samples #1, #2, and #3, which
were printed with the same honeycomb structure systems but hold different thicknesses of 1.5, 2.5,
and 3.5 mm, respectively. As can be seen in Figure 6c and Table 3, sample #1 with a thickness of 1.5 mm
presented the best EAB value of 4.97 GHz among the three samples, covering most of the Ku-band
(12–18 GHz). Sample #2 with a thickness of 2.5 mm showed the lowest minimum RL (RL-min) of
−23.37 dB, had an EAB value of 3.86 GHz, and covered almost the whole X-band (8–12 GHz). With the
largest thickness of 3.5 mm, sample #3 showed the highest RL-min of −16.94 dB and narrowest EAB of
2.13 GHz, indicating the weaker EMW absorbing performance as compared to samples #1 and #2.
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samples when the thickness increases from 0.5 to 4 mm and (b) represents the corresponding 2D RL
plots. (c) Experimental RL plots of samples #1, #2, and #3. (d) The λ/4 resonance model and the relation
between absorber thickness and the corresponding frequencies at the RL absorption peaks.

Table 3. Measured EMW absorbing properties of samples #1, #2, #3, #4, and #5.

Samples #1 #2 #3 #4 #5

Apparent density (g/cm3) 0.49 0.53 0.51 0.56 0.57
EAB (RL < −10 dB) (GHz) 4.97 3.86 2.13 4.52 5.43

RL-min (dB) −18.46 −23.37 −16.94 −28.13 −22.15

In addition, it can be clearly seen in Figure 6c that the RL absorption peaks shifted to lower
frequencies with increasing thickness. The phenomenon can be verified by the quarter-wavelength
(λ/4) attenuation model [41]. For λ/4 cancellation, the relationship between the thickness of absorber,
dm, and the corresponding frequency at the RL absorption peak, fm, is given by the following equation:

dm =
nc

4 fm
√∣∣∣µrεr

∣∣∣ (n = 1, 3, 5, . . .), (11)

where µr is the complex relative permeability, εr is the complex relative permittivity, and c is the
velocity of light in the free space. As a result, Figure 6d presents the frequency dependence of the
calculated λ/4 thickness and the corresponding fit of samples #1, #2, and #3. dm of samples #1, #2, and
#3 clearly exhibited good fit with the λ/4 attenuation model.

What must be acknowledged is the design of the honeycomb structure considerably improved
the EMW absorbing performance. A hypothetical microscopic mechanism of the electromagnetic
wave energy dissipation of the honeycomb-structural specimens may explain this result, as shown
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in Figure 7. First, the hexagonal hole structure in the system increased the internal interfaces of the
material, thus allowing the electromagnetic waves entering the system to provoke numerous reflection
effects at these interfaces, thereby resulting in their gradual dissipation. Second, the EMW energy
was further dissipated by the induced currents, which originated from the closed loop formed by
the conductive fillers distributed along the hexagonal hole wall. In addition, many microcapacitor
structures were formed between the conductive fillers and the insulated ABS substrate, which also
attenuated a part of the EMW energy due to the hysteresis effect aroused from the interaction of the
microcapacitors and incident electromagnetic waves [42]. At present, further experimental evidence is
required to support the hypothetical microscopic mechanism.
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Figure 7. A hypothetical microscopic mechanism of the honeycomb-structural conductive ABS samples
on electromagnetic wave (EMW) energy dissipation.

To further investigate and compare the effect of diverse microstructure absorbers on the EMW
absorbing performance, sample #4 with different cellular systems and sample #5 with a wood-pile
structure were printed.

Sample #4 was printed with a denser honeycomb pore structure for a smaller hole side length
of 3 mm as compared to #2. Figure 8a shows the experimental RL curves of samples #2 and #4 with
the same thickness of 2.5 mm. The results are presented in Table 3. It can be clearly seen that when
the honeycomb pore side length decreased from 6 to 3 mm, the RL-min decreased from −23.37 to
−28.13 dB, and the EAB was broadened from 3.86 to 4.52 GHz. Definitely, sample #4 possessed better
EMW absorbing performance. Interestingly, the EAB of both samples #2 and #4 covered almost the
whole X-band (8–12 GHz). In general, enhancing the promotion of EMWs propagation into the material
and reducing the reflection on the surface can improve the EMW absorption performance. Therefore,
the improved absorbing performance of sample #4 may be attributed to its denser pore structure,
which brought a larger number of internal interfaces, significantly reducing the reflection of EMWs on
the material surface.

Figure 8b shows the experimental RL curves of sample #3 with a honeycomb structure and sample
#5 with a wood-pile structure at the same thickness of 3.5 mm. Samples #3 and #5 exhibited different
EMW absorbing performances ascribed to completely different microstructures, as shown in Figure 8b
and Table 3. For sample #5, its RL-min value of −22.15 dB was lower than that of sample #3 at −16.94 dB.
More importantly, the EAB of sample #5 covered 5.43 GHz, which was much wider than that of sample
#3 at 2.13 GHz. In addition, the EAB of wood-pile-structural sample #5 mainly focused on the C-band
(4–8 GHz) and Ku-band, whereas that of honeycomb-structural sample #3 only covered part of the
C-band. The design of the wood-pile microstructure not only enhanced the EAB and RL-min of the
absorber but also generated more absorption bands, exerting a significant influence on the EMW
absorbing performance of the absorbers.
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Figure 8. (a) Comparison of the experimental RL spectrums of samples #2 and #4 at the same thickness
of 2.5 mm. (b) Comparison of the experimental RL spectrums of samples #3 and #5 at the same thickness
of 3.5 mm.

4. Conclusions

Single-layer conductive ABS absorbers with various microstructures were designed and fabricated
via FDM in this work. The methods of theoretical simulation calculation and experimental measurement
were adopted to investigate the effects of different microstructures on EMW absorbing properties of
the samples.

The printed samples with a honeycomb structure system presented significantly improved EMW
absorbing properties as compared to the single-layer conductive ABS samples that did not consider the
microstructures. It presented the widest EAB (RL < −10 dB, for over 90% microwave absorption) of
4.97 GHz at a corresponding thickness of 1.5 mm and a honeycomb hole side length of 6 mm, covering
most of the Ku-band (12–18 GHz).

A hypothetical microscopic mechanism of electromagnetic wave energy dissipation of the
honeycomb-structural specimens may be helpful in explaining the improved EMW absorbing properties.
First, the hexagonal hole structure in the system increased the internal interfaces of the material, thereby
allowing electromagnetic waves entering the system to provoke numerous reflection effects at these
interfaces, resulting in their gradual dissipation. Second, the EMW energy was further dissipated by
the induced currents that originated from the closed loop formed by the conductive fillers distributed
along the hexagonal hole wall. In addition, many microcapacitor structures were formed between
the conductive fillers and the insulated ABS substrate, which also attenuated a part of the EMW
energy due to the hysteresis effect aroused from the interaction of the microcapacitors and incident
electromagnetic waves.

A wood-pile-structural absorber with a thickness of 3.5 mm was also successfully printed and,
interestingly, presented an optimal EMW absorption performance. Not only was its EAB improved
to 5.43 GHz, but it also showed the capability of generating more absorption bands. This work
demonstrated that the design of microstructures exerted a significant influence on the EMW absorbing
performance of absorbers. In addition, the 3D printing technique exhibited a remarkably convenient
and effective method to fabricate an absorber with tunable EMW absorption properties, which provides
great potential to further investigate RAMs with wider EAB and lower RL-min.
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