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Abstract
Understanding the network structure of long distance pathways in the brain is a necessary

step towards developing an insight into the brain’s function, organization and evolution.

Dense global subnetworks of these pathways have often been studied, primarily due to

their functional implications. Instead we study sparse local subnetworks of the pathways to

establish the role of a brain area in enabling shortest path communication between its non-

adjacent topological neighbours. We propose a novel metric to measure the topological

communication load on a vertex due to its immediate neighbourhood, and show that in

terms of distribution of this local communication load, a network of Macaque long distance

pathways is substantially different from other real world networks and random graph mod-

els. Macaque network contains the entire range of local subnetworks, from star-like net-

works to clique-like networks, while other networks tend to contain a relatively small range

of subnetworks. Further, sparse local subnetworks in the Macaque network are not only

found across topographical super-areas, e.g., lobes, but also within a super-area, arguing

that there is conservation of even relatively short-distance pathways. To establish the com-

munication role of a vertex we borrow the concept of brokerage from social science, and

present the different types of brokerage roles that brain areas play, highlighting that not only

the thalamus, but also cingulate gyrus and insula often act as “relays” for areas in the neo-

cortex. These and other analysis of communication load and roles of the sparse subnet-

works of the Macaque brain provide new insights into the organisation of its pathways.

Introduction
White matter pathways in the brain mediate information flow and facilitate information inte-
gration and cooperation across functionally differentiated distributed centres of sensation, per-
ception, action, cognition, and emotion. Extensive research on mapping the pathways, and
analyzing the resultant network is presenting a new picture of the primate brain that views cog-
nitive processes to be a result of collective and coordinated phenomena mediated by the path-
ways [1, 2].

The physical pathways can be modeled as a network where each brain area is a vertex and
the presence of a reported long-distance connection is a directed unweighted edge between the
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corresponding vertices, as shown in Fig 1. There has been tremendous interest in topological
analysis of these pathways; previous studies have provided a number of remarkable insights
into the functioning of the brain including distributed and hierarchical structure of cortex [3],
topological organization of the cortex [4], functional small-world characteristics, optimal set
analysis, and multidimensional scaling [5], small-world characteristics [6], nonoptimal compo-
nent placement for wire-length [7], structural and functional motifs [8], hub identification and
classification [9], exponential degree distribution, tightly integrated core subnetwork [2], and
rich club structure [10].

Much of the previous work has studied the densest subnetwork(s) of the brain network, for
example the k-core [2], and the communities [11]. Dense subnetworks optimize path length at
the cost of adding edges. In networks such as the brain’s, these subnetworks have functional
implications—areas that are performing related functions tend to communicate more often,
and hence increase their efficiency by having more connections [12]. For example, the k-core
of the brain network is hypothesized to contain areas that belong to task-positive and task-neg-
ative functional networks [2, 13]. Thus studies of these dense subnetworks provide clues to the
functionality of the brain. Note that in these studies the density of a subnetwork is relative to
that of the network, hence it is a global property of the network.

A natural counterpoint to this theme that has not been explored as much is the study of
sparse and local subnetworks. Sparse, connected, undirected networks of N vertices have order
N edges; they optimize the number of edges at the cost of path length. Local subnetwork of a ver-
tex, “hub”, is the network induced by its neighbouring vertices, “spokes” and itself. These hub-
and-spokes networks are “stars” if they are absolutely sparse (N − 1 edges, and diameter of 2
[14]), or “cliques” if they are absolutely dense (N � (N − 1)/2 edges, and diameter of 1 [15]). In a
star, the hub plays a central role in enabling shortest path communication between the spokes.
As the network becomes denser by adding intra-spokes connectivity, the role of the hub
decreases, such that in a clique the hub has no role in enabling shortest path communication.

In this paper we are interested in the role of a vertex in enabling communication between
non-adjacent neighbouring vertices in an unweighted network, i.e., at most 2-hop connectivity.
Though longer paths exist in the brain [2], they do not seem, either empirically or intuitively,
to play as important a role in purposive neural interaction [16]. While many global communi-
cation models for the cortex, e.g., [17–19] have been proposed, in this work we assume that in a
local neighbourhood, non-adjacent spokes communicate through the hub. Also there may be
multiple hubs for each pair of spokes, but in our local, hub-centric viewpoint, these hubs are
not aware of each other unless they are neighbours. To characterise the communication role of
a vertex we introduce a novel metric, “star value” (SV), that measures how close its local sub-
network is to a star motif. We show that in the neural pathways network of Macaque and C.ele-
gans there exists wide variation in roles—from hubs that are communicating with a large
number of spokes with very few connections among them, to hubs that are communicating
with a small number of interconnected spokes. In contrast, networks such as the Internet,
power-grid, and realizations of Erdos-Renyi, Barabasi-Albert models have a very different dis-
tribution of communication roles.

This topological definition of communication role of a vertex can be further enriched if
attributes are available for vertices of the network. In our dataset we have six cortical—Tempo-
ral Lobe, Occipital Lobe, Parietal Lobe, Frontal Lobe, Insula, Cingulate Gyrus—and two non-
cortical—Basal Ganglia, Diencephalon—super-areas, and the brain areas are organised in a
hierarchy such that each brain area belongs to a super-area. Each super-area is physically con-
tiguous, distinct and functionally almost distinct from other super-areas; it encapsulates a
notion of topography of the brain. Using its super-area membership as an attribute, we can fur-
ther characterize the communication role of an area. We investigate the difference between the
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Fig 1. Macaque brain long distance network. Each vertex of the network corresponds to a brain region in the hierarchical brain map of Fig S6 of [2] and
each edge encodes the presence of long distance connection between corresponding brain regions. A colorwheel is used for better discrimination amongst
brain regions (vertices). For the leaf brain regions in the two outermost circles, the colorwheel is rotated by 120 and 240 degrees. Edges are drawn in black
using algorithmically bundled splines.

doi:10.1371/journal.pone.0138148.g001

Analysing Local Sparseness in the Macaque Brain Network

PLOS ONE | DOI:10.1371/journal.pone.0138148 October 5, 2015 3 / 22



attribute values of a hub and its spokes and show that, as expected, most large star-like subnet-
works exist across super-areas, and small cliques exist largely within a super-area. However,
there are also star-like subnetworks within a super-area, implying that the brain conserves even
short-distance (intra super-area) pathways.

Focusing on the case where the hub and spokes belong to a super-area, we ask are the super-
areas “closed” for local communication? In other words, for a super-area are all pairs of non-
adjacent spokes being connected by a hub in the super-area? Closure under local communica-
tion would be a desirable property for a super-area. Intriguingly we find that, in the brain no
super-area is closed for communication and the degree of closure is different for different
super-areas. For example, though the cingulate gyrus and the temporal lobe have approxi-
mately the same proportion of non-adjacent spokes, the temporal lobe contains far more hubs
than the cingulate gyrus; thus the temporal lobe has a higher degree of closure than the cingu-
late gyrus. Note that by our convention vertices are spokes if they are connected to each other
through a common hub, and unless otherwise stated we are interested in non-adjacent spokes.

In the substantial social science literature an interesting notion of “brokerage” has been pro-
posed by Gould and Fernandez [20] where a vertex connected to two non-adjacent vertices
brokers a transaction between these vertices. Five types of brokerage are defined using attri-
butes of the vertices. We use this concept to create a brokerage profile for each vertex of the
Macaque network, enumerating the number of times a vertex plays a brokerage type. We visu-
alise the profiles using pie-charts and radial map of [2], and show, among other results, that
not only the thalamic areas but also the insula and the cingulate gyrus areas often acts as medi-
ators, or relays, in the Macaque brain. On the other hand, areas in the pre-frontal cortex and
the hippocampus are mostly coordinating information within their respective super-areas.
Note that our attributes are based only on the topological information and attribute derived
from parcellation into super-areas. Detailed topographical information such as location, and
functional implications may result in a more nuanced picture.

A recent paper [10, 21] studies “rich club” structure among areas with high degree of connec-
tivity. Using network motif analysis they have shown that the rich club areas form star-like con-
figurations. Though we agree with Harriger et.al.’s hypothesis that these configurations represent
maximally centralized communication through a star’s hub vertex, objective of our study, meth-
odology and results are completely different from theirs. In our study a star value is associated
with each vertex due to its local subnetwork, not due to the aggregation of motifs. Topological
properties of network have been used to define roles, for instance in [22], but our work is different
because it is using the concept of brokerage [20] to further study communication role of a hub
vertex. Also note that here hub denotes a vertex, unlike [9] where it denotes a high degree vertex.

Results and Discussion
We begin by plotting normalized frequency distribution of SV, defined in Eq (2), of undirected
real world networks (see Fig 2(a)) and random graph models (see Fig 2(b)). In an email net-
work, there is minimal cost of adding an edge—people can often directly communicate with
each other explaining the unimodal distribution with high frequency of occurrence of cliques
in this network. In the Internet’s autonomous systems (AS) routing network, AS are organized
in a hierarchy based on service profiles, geographical constraints and commercial agreements
[23]. It can be argued that an AS network is constructed such that certain local subnetworks
lower in the hierarchy are “replicated” so as to provide similar services. Thus motifs such as cli-
ques, open triads, quads with an open triad occur often, explaining the bimodal distribution
where local subnetworks with SV� 0, and SV� 0.5 occur with high frequency while other
subnetworks occur with significantly lesser frequency.
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Fig 2. Normalized histogram of star value for undirected (a) Top plot: Real world networks, (b) Bottom plot:
Random graph models along with Macaque network. MS is the null model of the undirected Macaque
network. For random graph and null models results are averaged over 20 realizations (for fixed histogram
bins, counts are average over realisations). The leftmost bin SV� 0 counts clique-like motifs, while the
rightmost bin SV� 1 counts star-like motifs.

doi:10.1371/journal.pone.0138148.g002
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Fig 2(b) shows that random graph models have heavily skewed SV distributions. Erdos-
Renyi (ER) graphs have a preponderance of star-like motifs, which is to be expected given its
low clustering coefficient (Table 1). Watts-Strogatz (WS) graphs constructed by rewiring a lat-
tice have a larger clustering coefficient and thus result in local subnetworks with SV mainly in
the mid to high range. On the other hand Barabasi-Albert (BA) graphs have local subnetworks
with typically low to mid SV and some star-like subnetworks. The remarkable observation is
that each of the random graph models has a preference for local subnetworks indicated by
clear peaks within a small range of SV, i.e., high frequency of occurrence of subnetworks in a
limited range of SV, and a significantly lower frequency for other subnetworks.

In contrast neural pathway networks have local subnetworks in a wide range of SV. Their
frequency peaks at SV� 0.7, but their frequency at other values of SV is not insignificant, espe-
cially in comparison with AS, and random graph models. Moreover, the distribution for the
MS null model (Materials and Method) of the undirected Macaque network has a substantially
different frequency distribution compared to that of the Macaque network with a higher peak
at SV� 0.8 and less clique-like motifs, though again it has no star-like motifs. The statistical
measures, kurtosis and skewness, of the histograms in Fig 2 reported in Table 2 support our
claim that the Macaque network’s star value distribution is different in that it is only-slightly
right skewed and relatively flat as compared to that of the real world networks and random
graph models. We have also plotted the degree distribution for the real world networks in Fig 3
(a) for completeness sake.

Fig 3(b) compares the SV distribution for directed and undirected Macaque networks using
Eq (4) for directed SV. As expected from the definition of directed SV (see Methods and Mate-
rials for a discussion) there are a substantially higher number of clique like subnetworks, and
slightly higher number of stars in the directed network. In Table 3 the ten hubs with the highest
star value for the directed and the undirected Macaque network are listed. The hubs match well

Table 1. Topological properties of the networks.Results for random graph models are averaged over 20 realizations. For the directed (undirected) net-
work the largest strong (weak) connected component is used.

Network No. of
vertices

No. of
Edges

Diameter Characteristic Path
Length

Average Clustering
Coefficient

Average Star
Value

Macaque Directed 351 6602 6 2.62 0.330 0.386

Macaque Undirected 351 10194 5 2.25 0.423 0.519

Celegans Undirected 277 3836 6 2.62 0.277 0.633

AS Undirected 6474 25144 9 3.70 0.252 0.240

Email-En Undirected 33696 361622 11 4.02 0.491 0.181

Citation Directed 7464 116252 35 9.01 0.184 0.117

Email-Eu Directed 34203 151132 10 3.94 0.229 0.074

Watts-
Strogatz

Undirected 351 10194 3 2.03 0.150 0.723

Barabasi-
Albert

Undirected 351 10194 2 1.91 0.559 0.418

Erdos-Renyi Undirected 351 10194 3 2.01 0.083 0.884

doi:10.1371/journal.pone.0138148.t001

Table 2. Skewness and Kurtosis of histogram, Fig 2. Note that same histogram bins are being used for real-world and random networks.

AS Email-En Macaque C.elegans MS Barabasi-Albert Watts-Strogatz Erdos-Renyi

Skewness 2.457 3.110 0.368 1.07 2.582 2.543 2.293 3.020

Kurtosis 6.038 9.762 -1.514 0.142 7.009 6.647 4.953 9.270

doi:10.1371/journal.pone.0138148.t002
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Fig 3. (a) Top plot: Normalized histogram of degree for undirected networks. (b) Bottom plot: Normalized
histogram of star value for directed and undirected Macaque networks. We have not plotted the results for
Citation or Email-EU because they are similar to undirected real-world networks’ results and we wanted to
highlight the comparison between directed and undirected networks.

doi:10.1371/journal.pone.0138148.g003
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with the important vertices listed in [2] and occur mostly in the pre-frontal cortex and the pari-
etal lobe. Interestingly for the directed network the area SI#2 “substantia innominata” in the
basal ganglia is a hub. This area has the order of twenty sources and twenty targets areas, few of
which are directionally connected. Hence its directed subnetwork is star-like. On the other
hand if directionality is ignored then the number of connections between the adjacent areas
goes up substantially, hence in the undirected case the subnetwork is not star-like; this points
to the importance of directionality in network analysis [24]

Given the above results that show that local subnetworks of the Macaque brain have a dis-
tinctive distribution in the topology space, we next analyze how they are distributed in the

Table 3. Top-10 hubs with star-like motifs.

Undirected 6#1 46 Insula FD#1 13 PIT IPL 32 PG#1 Opt

Directed 46 24 SI#2 13 PIT 7#1 Insula 6D LIP PS

doi:10.1371/journal.pone.0138148.t003

Fig 4. Disparity plots for undirected Macaque network and its null models. (a) Top plot: Black empty squares plot disparity against SV for all local
subnetworks of the Macaque network. The mean SV of these subnetworks for each disparity value is plotted using the blue curve with filled circles. (b) Middle
plot: the blue curve with crosses plots the mean degree of the hub of the subnetworks with the same disparity value. Mean values in the top and middle plot
are plotted for different null models using the color legend shown in the bottom plot. (c) Bottom plot: Normalized histogram of local subnetworks for each
disparity value, for each network. For ISO, MS, B-MS null models results are averaged over 20 realizations.

doi:10.1371/journal.pone.0138148.g004
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attribute space. In this study attribute of an area is the super-area—lobes, diencephalon or
basal ganglia—that it is a sub-area of, as identified by the hierarchical map of [2]. Thus the
attribute codifies the notion of parcellation as captured by [2]. These results are on undirected
Macaque network, unless otherwise stated.

We first measure disparity (Methods and Material) in attribute space of each local subnet-
work, and compare it against the disparity of null models of the network. As expected the
mean SV is correlated with disparity, Fig 4(a). This implies that cliques occur largely within a
super-area, while star-like subnetworks occur mostly across super-areas. However, note the
overlap between the actual SV values (the squares) in the Macaque network at different dispar-
ity values; a star-like motif not only connects different super-areas, it also connects areas within
a super-area, suggesting that even short edges (within a super-area) were added in the Macaque
network if and only if needed—in the plot, even for low disparity, we expect (and we observe)
more clique-like subnetworks, as wire length cost is minimal. But there are also star-like sub-
networks, which is surprising because it implies that even relatively small distance pathways
are added only if necessary. Fig 4(b) shows that the mean degree of hubs of local subnetworks
is correlated with the disparity of the subnetworks. That is in the Macaque brain, on average,
larger local subnetworks occur across super-areas. Fig 4(c) shows that the disparity histogram
follows a bell shaped curve, that is the counts at mid disparity values are high, suggesting that
most local subnetworks are connecting different super-areas. Comparing these results with
those of null models, we can see that the Macaque network and its B-MS model have very simi-
lar results in Fig 4(b) and 4(c), while its ISO and MS model have substantially different results,
suggesting that the intra super-area connections matter, further reinforcing organized com-
plexity [2]. Though the SV frequency distribution of the ISO model and the Macaque network
are identical, the higher mean SV for the Macaque network in Fig 4(a) implies that the attribute
space, in our case the parcellation into super-area, matters. The B-MS model, which further
preserves the attribute space, also has a consistently higher mean SV than the Macaque net-
work, i.e. Macaque has more clique-like motifs than B-MS for the same number of edges. This
suggests functional integration—the Macaque brain is optimizing functional constraints as and
when needed.

The above results show that very few local subnetworks are contained within a super-area,
that is there is substantial communication between super-areas. But the converse question is of
equal interest: can a super-area take care of all or most of its local communication? To answer
this question we define a workload closure coefficient (WCC) (Materials and Method) for a
super-area. Fig 5 shows that none of the super-areas can take care of their own communication
workload by themselves. The occipital lobe has the highest WCC and it can take care of only
about 80% of the available workload. In the figure we also plot the density and the clustering
coefficient (CC) of each intra super-area subnetwork. While density influences the number of
available pair of spokes, clustering coefficient is a measure of the number of spokes that directly
communicate with each other; together these measures influence the available workload—the
pairs of open triads. Note that, excepting the diencephalon, density is pretty uniform in the
brain. Though CC does increase, it does not increase monotonically with WCC. Thus although
the temporal lobe has more open triads than say the cingulate gyrus, the former takes care of a
larger share of its workload. This suggests that connectivity is organized within the super-area
in a manner that is not captured by traditional measures like CC and density. It should also be
noted that neocortical areas have a higher WCC in general, and that insula, which has a lower
WCC than CC, has few open triads that are being served mostly by areas outside insula.

We now look at Gould and Fernandez’s brokerage types (Materials and Method). A super-
area would be workload closed if there were no “consultants” for that super-area. The above
result shows that every super-area in the Macaque brain has a consultant area in another
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super-area. We now investigate this and other brokerage types in more detail. A hub in a net-
work can be a different type of broker for different pairs of spokes. Counting the number of
times a hub is a particular type of broker we draw a pie-chart for the hub, with the size of a slice
of pie being proportional to the count of a type. We replace the vertex icons in the Macaque
network visualization of Fig 1 (originally from [2]) with icons of these pie-charts.

In Fig 6, unnormalized raw counts are used for the pie-charts while in Fig 7 the size of icons
is additionally rescaled using the star value of the vertex—larger star value implies larger icons.
Most thalamic areas play the role of consultant or liaison due to the lack of intra thalamic con-
nections. However note from Fig 5 that the density of all other intra super-area subnetworks is
approximately the same. Hence the preponderance of consultant and liaison roles in insula and
cingulate gyrus, and to a lesser extent in the parietal lobe, suggests that these super-areas often
play a role in mediating, and transforming, information between other super-areas. In basal
ganglia, which has a near clear segregation of representative, gatekeeper and coordinator roles,
areas that are laid out closer to the occipital lobe often play the coordinator role, those closer to
thalamus the gatekeeper role, and those in the middle play the representative role, Fig 6. Note
that the layout of this figure has been ordered by using a concept of wire length minimisation
—areas that are connected tended to lie close together in the figure [2].

In the occipital lobe, most areas seem to play all roles in varying degrees. The lack of coordi-
nators, despite the large WCC, is because its CC is very high—there are not many open triads
in the occipital lobe. Frontal and temporal lobes are the two super-areas that have more than a
fair share of coordinators consistent with the observation that their WCC is reasonably high.

Fig 5. Workload Closure Coefficient plot. For each super-area “Density” is the number of connections
within the super-area divided by the possible number of connections, “CC” is the clustering coefficient for the
intra super-area subnetwork, and “WCC” is workload closure coefficient:- the number of closed pair of spokes
divided by the total number of pair of spokes in a sub-area. The plot has been drawn such that WCC is sorted
in ascending order, and the remaining two measures are sorted in the same order.

doi:10.1371/journal.pone.0138148.g005
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Fig 6. Vertices are laid out using the hierarchical map and radial layout of Fig 1. The pie-chart for each vertex is based on unnormalized counts of its
brokerage type. In the pie-chart red color is for coordinator, blue for gatekeeper, green for representative, yellow for consultant and cyan for liaison. The black
splines are the intra-lobe connectivity. The blackened vertices are those that have either no connectivity or have been assigned no roles by UCINET.

doi:10.1371/journal.pone.0138148.g006

Analysing Local Sparseness in the Macaque Brain Network

PLOS ONE | DOI:10.1371/journal.pone.0138148 October 5, 2015 11 / 22



Fig 7. Vertices are laid out using the hierarchical map and radial layout of Fig 1. The pie-chart for each vertex is based on unnormalized counts of its
brokerage type. In the pie-chart red color is for coordinator, blue for gatekeeper, green for representative, yellow for consultant and cyan for liaison. Size of
each vertex is proportionate to its star value. The black splines are the intra-lobe connectivity. The blackened vertices are those that have either no
connectivity or have been assigned no roles by UCINET.

doi:10.1371/journal.pone.0138148.g007
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While in the temporal lobe coordinators are mostly in the hippocampus, in the frontal lobe
they are in the prefrontal cortex. The diversity of roles in the occipital lobe also lends support
to the indeterminacy of a unique visual hierarchy [25] argument. Fig 7 shows that star value
and brokerage types are not correlated and that there is no apparent preference for a star value
in a super-area.

Table 4 lists the top-10 areas for each brokerage type, while Tables 5–9 list the top area for a
particular brokerage type for each pair of super-area. These areas have the highest unnorma-
lized counts for their particular role. A “–” indicates that either that the role is not possible or is
not reported. The top-10 areas are consistent with the important areas listed in [2]. The repre-
sentative areas in the occipital lobe are the ones higher in the visual hierarchy [3], and consul-
tant, liaison brokerage for occipital lobe is performed by areas in the parietal lobe. Similar
observations can be made regarding other super-areas. This work is the first complete enumer-
ation of the brokerage type for areas in a primate brain that we are aware of.

In conclusion, this paper explores local neighbourhoods of vertices in the Macaque brain
network and by measuring how sparse they are, it categorizes the neighbourhoods in terms of

Table 4. Top 10 areas for each brokerage role.Unnormalized brokerage values are used.

Coordinator TF AITv 46 32 TH 12o ENT PIT AITd TE

Representative 46 32 12o F7 13 12l TF 46v 9 13a

GateKeeper 46 TF TE TH 13a PIT TG 32 36 9

Consultant 24 46 MD 13 13a 24c LIP 32 F7 M1

Liason 24 46 LIP 13 MD 32 PGm 13a 9 PM#3

doi:10.1371/journal.pone.0138148.t004

Table 5. Best Coordinator Area.

DiE BG OC#2 TL#2 Pl#6 FL#2 CgG#2 Insula

DiE Ret - - - - - - -

BG - L#2 - - - - - -

OC#2 - - V2 - - - - -

TL#2 - - - TF - - - -

Pl#6 - - - - 7b - - -

FL#2 - - - - - 46 - -

CgG#2 - - - - - - 23c -

Insula - - - - - - - Ig#1

doi:10.1371/journal.pone.0138148.t005

Table 6. Best Gatekeeper Area.

DiE BG OC#2 TL#2 Pl#6 FL#2 CgG#2 Insula

DiE - L#2 V2 PIT PGm 32 24 Iai

BG Pul#1 - V1 TF S2 13 24 Ig#1

OC#2 Pul#1 Cd_g - TF LIP 46 24c -

TL#2 Ret L#2 V2 - 7b 46 24 Idg

Pl#6 Ret Cd_g V2 TF - 46 23c Ig#1

FL#2 Ret Ldi V4 ENT S2 - 24 Iai

CgG#2 Ret Lv - ENT 7b 46 - Iai

Insula Ret Lv - TH S2 46 24 -

doi:10.1371/journal.pone.0138148.t006
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workload on the hub. We have shown that the local neighbourhoods in the Macaque brain net-
work are fairly diverse compared to both other real world networks (including those we have
studied but not reported here), and random graph models. This result raises questions about
how the brain network evolved? Clearly not through the replication model of AS, nor the ran-
dom model of ER, and likely not even due to the scale-free evolution of BA graphs. Our find-
ings support recently proposed models for brain functional network that tradeoff competing
factors [26]. There are no stars in the Macaque brain or in its MS null model. However, the fre-
quency distribution is right skewed indicating a preference for higher star values. All of this
implies that the brain is not just optimizing for wire-length [27], it is also optimizing for hop
delay and functionality [7]. This is further reinforced by Fig 4 which shows that though star-
like structures exist across super-areas, typically across 4 super-areas, they also occur within a

Table 7. Best Representative Area.

DiE BG OC#2 TL#2 Pl#6 FL#2 CgG#2 Insula

DiE - - LGN MD MD MD MD MD

BG Abpc - Bla L#2 ABmg Abpc L#2 L#2

OC#2 V4 V2 - V4 V6 PO#4 V3 -

TL#2 TG TF TF - TF TE TH TE

Pl#6 PECg PECg LIP LIP - 7b 7b 7b

FL#2 46 13a 46 46 46 - 46 13a

CgG#2 24 24 - 24 23c 24 - 24

Insula Ia#2 Iai - Iai Idg Iai Iai -

doi:10.1371/journal.pone.0138148.t007

Table 8. Best Consultant Area.

DiE BG OC#2 TL#2 Pl#6 FL#2 CgG#2 Insula

DiE 24 - - - - - - -

BG - 36r - - - - - -

OC#2 - - LIP - - - - -

TL#2 - - - 46 - - - -

Pl#6 - - - - VPL - - -

FL#2 - - - - - MD - -

CgG#2 - - - - - - 46 -

Insula - - - - - - - SI#2

doi:10.1371/journal.pone.0138148.t008

Table 9. Best Liason Area.

DiE BG OC#2 TL#2 Pl#6 FL#2 CgG#2 Insula

DiE - 32 LIP 46 M1 24 46 24

BG 13 - TF 13 24 MD 13 MD

OC#2 MT PIT - LIP VPL LIP 8A LIP

TL#2 24 13a LIP - 46 MD 46 13a

Pl#6 M1-FL 46 PIT 46 - 23c 46 F5

FL#2 24 24 LIP 24 24 - 36 24

CgG#2 46 46 46 46 46 MD - 7b

Insula 13 36 LIP 46 46 24 46 -

doi:10.1371/journal.pone.0138148.t009
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super-area. Shifting focus from local neighbourhoods to pairs of non-adjacent spokes, in order
to study communication role in more depth, we introduced the measure of workload closure;
we can intuitively argue that there is a relationship between density, CC and WCC. Density
counts the number of spokes, CC the number of closed triads, the WCC is a function of the
number of open triads served within the super-area, see Fig 8 for an example. The plot of Fig 5
suggests that the relationship is determined by the arrangement of edges in the super-area and
needs further investigation. A super-area is considered to be workload closed if it has no con-
sultants such as the occipital lobe where WCC is high, which is not surprising given that CC is
high—there are very few open triads to generate workload. In general, study of brokerage roles
of brain areas in the long distance pathway concepts is novel, and though it can be argued that
a brain area does more than just brokerage, our analysis enumerates the nature of brokerage
interactions in the brain. As stated earlier this analysis is predicated on both the network data
and the attribute data, the hierarchical divisions into super-areas and further into areas. Also
its possible to generate topological hierarchical divisions of the network using community
detection algorithms, e.g., [28], but in this work we are interested in the topographical informa-
tion as codified by the mapping data in CoCoMac. As higher resolution mapping data becomes
available a more nuanced analysis of communication roles can be done.

Materials and Methods

Data Sets
We study the long range network of the Macaque brain as derived by Modha and Singh [2].
The network is based on anatomical tracing studies of the Macaque brain compiled by the
online database CoCoMac [29]. Given the resolution of anatomical tracing experiments, the
database typically furnishes data at a macroscale of cortical areas or, more generally, brain
regions. It covers 383 cortical and sub-cortical brain areas and codes the presence of 6602
directed projections between these areas. The brain areas are arranged in a hierarchical brain
map, which is consistent with a recursive parcellation of the brain [2]. 351 of the 383 areas
have connectivity; the remaining areas are container or super-areas that hold the hierarchy

Fig 8. In (a) there are very few open triads generating a low workload among the vertices. Regardless of whether the spokes and their hubs have the same
attribute or not, the workload closure (WCC) will be high because of the low workload. In (b) there are more open triads, but all are being served by hubs
having the same attribute as their spokes. Hence though the workload is high, the WCC is also high. Note that in this paper attribute, is the membership of a
super-area.

doi:10.1371/journal.pone.0138148.g008
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together. We differentiate a super-area from a brain area in that a super-area is sub-divided
into brain areas and it does not report any projections. The hierarchical map divides the brain
(Br) into basal ganglia (BG), diencephalon (DiE), and cortex (Cx). Cortex is divided into 6
lobes, temporal (TL#2), occipital (OC#2), parietal (Pl#6), frontal (FL#2), cingulate gyrus
(CgG#2) and insula (Ins). These super-areas are further sub-divided into other super-areas and
brain areas. By ignoring the directionality of projections we also create an undirected network
that has 10194 undirected edges. In this paper, we compare the Macaque network against the
following real-world networks and random graph models. The basic statistics of the networks
are shown in Table 1.

AS The graph of routers comprising the Internet can be organized into sub-graphs called
Autonomous Systems (AS). Each AS exchanges traffic flows with some neighbours (peers).
We can construct a communication network of who-talks-to-whom from the BGP (Border
Gateway Protocol) logs. The data is an instance of Autonomous Systems graph from Janu-
ary 02, 2000 from University of Oregon Route Views Project—Online data and reports [30].
A vertex represents an AS and an undirected edge between vertex i and vertex j represents
exchange of traffic between the two corresponding AS.

Email-En Enron email communication network covers all the email communication in a data-
set of around half million emails. This data was originally made public and posted to the
web by the Federal Energy Regulatory Commission during its investigation. A vertex repre-
sents an email address and an undirected edge between vertex i and j represents exchange of
atleast one email between the two corresponding addresses [31, 32].

Email-EU A large European research institution email communication network covers the
email communication in a period of 18 months starting October 2003 [30]. A vertex repre-
sents an email address and a directed edge between vertex i and j represents exchange of at
least one email message from i to j.

Citation This is the Arxiv HEP-TH (high energy physics theory) citation network from [30]. A
vertex represents a paper and a directed edge from vertex i to vertex j represents that paper i
has cited paper j. The data covers papers in the period from January 1993 to April 2003 (124
months).

C.elegans The neural network of Caenorhabditis elegans [33]. This dataset has 277 neurons
and each edge represents a directed synaptic projection between two neurons [7]. We are
using the undirected version of this network.

Erdos-Renyi ER [34] model generates undirected random graphs of n vertices with each edge
occurring independently with probability p. This is realized using the igraph package [35].

Barabasi-Albert BA [36] model generates undirected random graphs using a preferential
attachment mechanism such that their degree distribution of the vertices asymptotically fol-
low a power law. This is realized using the igraph package [35].

Watts-StrogatzWS [37] model generates undirected graphs with small world properties, that
is graphs that have short average path lengths, and high clustering coefficient. This is real-
ized using the igraph package [35].

Null Models
Null models used in this work are: (i) networks that are isomorphic to the original network,
(ISO), (ii) randomized networks that preserve the degree of each vertex by using Maslov and
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Sneppen switching algorithm [38] (MS), and (iii) randomized networks that preserve the
degree of each vertex, and the sparsity of the inter and intra super-area subnetworks (B-MS).

The degree distribution of the ISO network is the same as that of the original network but the
degree sequence and attribute values are changed because the vertices are permuted. On the
other hand in the MS model the degree distribution, degree sequence, and the attribute value of
vertices are maintained, but the number of edges in the inter and intra super-area subnetworks
changes. B-MS model extends this model by using Maslov and Sneppen algorithm on each
inter, and intra super-area subnetwork independently, such that the number of edges in these
subnetworks are maintained along with the degree sequence. Hence B-MS model is most similar
to the original network in that it not only preserves the attribute space and the degree sequence
but also preserves the sparsity of edges in the inter and intra super-area subnetworks.

Star Value
An undirected star network of n vertices has n − 1 edges that connect a central vertex, the hub,
to the remaining n − 1 vertices, the spokes. A subnetwork defined by a vertex (hub), and its adja-
cent vertices (spokes) in an undirected network is a star iff the adjacent vertices have no edges
between them. Study of such subnetworks is important because the hub plays a central role in
providing the shortest path connectivity between the spokes. A star subnetwork can be general-
ized by allowing connectivity between the spokes, and in turn reducing the role of the hub. As
the spokes get more interconnected the role of the hub decreases, and finally in a clique the hub
has no role in connecting the spokes. In this paper we propose a novel measure called “star
value” (SV) which measures the role of a vertex in communication among its adjacent vertices.

Given an undirected network with no weights on its edges G = (V, E), let vk be a vertex in G
that has a set Ck of adjacent vertices, withmk edges between the adjacent vertices. The commu-
nication workload on vk is,

LðvkÞ ¼
k Ck k ðk Ck k �1Þ

2
�mk: ð1Þ

where k � k represents the cardinality of a set. For kCkk spokes there are kCkkðkCkk�1Þ
2

pairs that are

communicating through the hub. From this the contribution of the pairs that are communicat-
ing directly with each other, which ismk, is subtracted to arrive at the workload of the hub. The
assumptions here are that communication is along the shortest hop paths and though there
maybe multiple parallel short paths available, the hub-centric viewpoint is that the communi-
cation is happening due to the hub. The assumptions can be modified if the mode of communi-
cation such as broadcast, point-point, or any other additional information is available. The star
value SV(vk) is the normalized workload such that for a clique it is zero and for a star it tends to
one as jjCkjj grows,

SV ðvkÞ ¼
2 � LðvkÞ
jjCkjj2

¼ 1� 2 � mkþ k Ck k
k Ckk2

: ð2Þ

For an undirected network the star value is a measure of the density of a local network. It is
related to clustering coefficient [37] and its variants local efficiency [39], and broker measure
[40]. Below we list what we believe are the main differences between the clustering coefficient
(CC) and SV.

• CC is useful in a social network analysis measuring the “friend of a friend” effect, but it
ignores the “friends who are not friends of friends” effect. Due to the plurality of the latter
effect, the size of local subnetwork matters.
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• CC is a measure of the inter-spoke communication in a neighbourhood, while SV is a mea-
sure of the inter-spoke and the hub-spoke communication in a neighbourhood. Again the
size of the neighbourhood matters.

• CC is zero for all stars. It does not distinguish between a small and a large star. Thus larger
stars would mean that there are more friends that are not friends of each other and there is
more communication through the hub.

• CC is one and SV is zero for all cliques. Here size does not matter because the hub is no dif-
ferent from any of its spokes in terms of connectivity.

It is for directed graphs, however, that the concepts of SV and CC are fairly distinct. SV cap-
tures the communication load on a hub and hence actually enumerates the set of afferent and
efferent connections on the hub—we are not aware of any other similar measure. In a directed
network let there be a hub vk with a set Sk of vertices that have directed edges ESk,vk, a set Tk of
vertices that have directed edges Evk,Tk, and a set Ck of vertices that have directed edges ECk,vk

and Evk,Ck as shown in Fig 9. Vertices in the source set ~Sk ¼ Sk [ Ck are communicating with

vertices in target set ~Tk ¼ Tk [ Ck through the hub vk. Also let the number of directed edges
from source set to target set bemk. Then the communication workload for vk is,

LðvkÞ ¼k Sk k � ðk Tk k þ k Ck kÞþ k Ck k � ðk Tk k þ k Ck k �1

2
Þ �mk ð3Þ

Fig 9. The local subnetwork of hub vertex vk modeled as a tripartiate graph—Sk + Ck vertices in the
first partition, vk vertex in the second partition, and Tk + Ck vertices in the third partition. The intra-
spokes edges are directed from the vertices in the first partition to the vertices in the third partition, shown by
dotted arrows.

doi:10.1371/journal.pone.0138148.g009
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Star value is the normalized workload such that it is between 0 and 1,

SV ðvkÞ ¼
LðvkÞ

ðk Sk � ðk Tk k þ k Ckk þ2Þ k2þ k Tk k � ðk Ck k þ1Þ þ kCkk2
2
Þ ð4Þ

It is easy to see that this definition is consistent with the undirected case given above; in an
undirected network Tk = Sk = ;, and Ck represents the set of adjacent vertices. The subnetwork
in Fig 9 is a “clique” if all vertices in the first partition are directionally connected to all vertices
in the third partition; intra partition vertices need not be connected. Hence directed cliques
could have upto one fourth the number of edges in an undirected clique with the same number
of vertices. On the other hand directed stars can be denser than undirected stars; the only
requirement is that there should be no directed connections from vertices in the first partition
to vertices in the third partition; other edges if they exist are not counted.

Attribute
For the purpose of attaching an attribute to a brain area we identify a set of 8 super-areas: BG,
DiE, TL#2, OC#2, Pl#6, FL#2, CgG#2 and Ins. For each brain area we identify from this set the
super-area it belongs to, and assign a unique integer between one and eight as an attribute
value to the corresponding vertex. For example all areas in BG are assigned attribute value 1,
those in TL#2 are assigned attribute value 3, and so on.

Disparity
Disparity for a local subnetwork is a measure of the heterogeneity of the hub and spokes in
terms of their attribute values. It is defined as the cardinality of the set difference of the attri-
bute values of the spokes and the attribute value of hub. A disparity of zero implies homogene-
ity as the hub and spokes all belong to the same super-area. If attribute values are in the range
[1. . .K], the maximum disparity is K − 1 and implies that the subnetwork has vertices from all
the different super-areas.

Workload Closure Coefficient
A pair of spokes are “workload closed” if they and atleast one of their hubs have identical attri-
bute values. A group of vertices having identical attribute values is workload closed if for all
pairs of spokes in the group, one of their hubs is also in the group. A closed group has the inter-
esting property that all intra-group communication can be served by vertices in the group. We
define workload closure coefficient (WCC) of a group as the proportion of number of pairs of
spoke in the group that are closed, to the total number of pairs of spokes in the group. All the
pair of spokes in a group, and the subset pair of spokes that have a hub in the group are enu-
merated to calculate the coefficient. Note that for this paper group is the set of areas in a super-
area.

Brokerage
To define brokerage for directed networks, lets use the convention that the source vertex s is
directionally connected to the broker b, who is directionally connected to the target vertex t.
Let A(v) denote the attribute value of a vertex v. Here we are assuming real-valued attributes.
All vertices having the same attribute belong to the same group. The five types of brokerage are
named using terminology from social roles [20].
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Coordinator b is a broker such that A(s) = A(b) = A(t), that is all three vertices belong to the
same group.

Gatekeeper b is a broker and A(s) 6¼ A(b) and A(b) = A(t), that is the source vertex belongs to a
different group.

Representative b is a broker and A(s) = A(b) and A(t) 6¼ A(b), that is the destination vertex
belongs to a different group.

Consultant b is a broker such that A(s) = A(t), but A(b) 6¼ A(s), that is the broker belongs to
one group, and the source and target vertices belong to another group.

Liaison b is a broker and A(a) 6¼ A(b) 6¼ A(c), that is each vertex belongs to a different group.

We used UCINET [40] for finding the brokerage types for each vertex. We selected the
“unweighted” option for our analysis. The unnormalized brokerage value simply counts the
number of times a given vertex is in a brokering position, regardless of how many other vertices
are serving the same function with the same pair of spokes. On the other hand a relative bro-
kerage value is the unnormalized value divided by the expected value of each brokerage mea-
sure given the number of groups and the size of each group. The expected value is based on the
assumption that the network can be modeled as an Erdos-Renyi graph. As this is not true for
the Macaque network, we use only the unnormarlized counts in the current work. Note that in
this work for the discussion of brokerage, role is used interchangeably with brokerage type.

Kurtosis and Skewness
In probability theory and statistics, kurtosis is a measure of the “peakedness” of the probability
distribution of a real-valued random variable, while skewness is a measure of the asymmetry of
the probability distribution of a real-valued random variable. Positive kurtosis indicates a rela-
tively peaked distribution. Negative kurtosis indicates a relatively flat distribution. Positive
skewness indicates a distribution with an asymmetric tail extending toward more positive val-
ues. Negative skewness indicates a distribution with an asymmetric tail extending toward more
negative values. The definitions we are using here are described in [41].
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