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Bessel beams with spatial 
oscillating polarization
Shiyao Fu, Shikun Zhang & Chunqing Gao

Bessel beams are widely used in optical metrology mainly because of their large Rayleigh range (focal 
length). Radial/azimuthal polarization of such beams is of interest in the fields of material processing, 
plasma absorption or communication. In this paper an experimental set-up is presented, which 
generates a Bessel-type vector beam with a spatial polarization, oscillating along the optical axis, when 
propagating in free space. A first holographic axicon (HA) HA1 produces a normal, linearly polarized 
Bessel beam, which by a second HA2 is converted into the spatial oscillating polarized beam. The theory 
is briefly discussed, the set-up and the experimental results are presented in detail.

Beams with a transverse homogeneous polarization, such as linearly, elliptically, or circularly polarized beams, are 
widely used in optics. In contrast to homogeneously polarized beams (circular, linear), vector vortex beams have 
a transversely varying polarization1, which can be described by the higher-order Poincaré​ sphere2,3, are attracting 
more and more attention for their unique characteristics. The two typical examples of vector beams are the radial 
or azimuthal polarization. Usually, these fields are eigen solutions of the vectorial Helmholtz equation and remain 
constant when propagating in free space. The transformation of the polarization states of vector beams requires 
wave plates, which increases the complexity of the set-up. In this paper a new kind of vector beams is presented 
named oscillating polarized (OP) vector beams. When propagating the polarization state is varying periodically 
with an oscillation length zt determined by the two holographic axicons. The theory is briefly discussed, and an 
approach how to realize these beams experimentally is presented for different polarization orders. This simple 
set-up will be of interest for many applications, which require spatial polarization control.

The discovery of vector beams changed the understanding of polarization considerably, and has lead to an 
improvement of optical systems. For instance, higher absorption of a vector beam contributes to their application 
in laser plasma heating4, and radial polarized vector beams have favorable focusing property5. In addition, vector 
beams are also used in fields such as optical communications6–8, particle trapping9,10, surface plasma excitation11, 
image encryption12 and so on. In contrast to homogeneously polarized beams, vector beams have a unique spatial 
polarization structure. The field of such a beam reads:
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In Eq. (1), A(r) is the amplitude distribution, ϕ the azimuthal angle, ϕ0 the initial orientation of the field vector for 
ϕ = 0. l denotes the polarization order of the vector beam, also known as the topological charge of a vortex beam. 
Eq. (1) also represents a linearly polarized beam for l =​ 0 particularly. The state of polarization of a vector beam 
depends on the value of ϕ0. For instance, in the case of l =​ 1, ϕ0 =​ 0 is the radial polarization state and ϕ0 =​ π​/2 is 
the azimuthal polarization state.

Vector beams can be generated by very different methods as inserting mode-selection elements in the laser 
resonator13–15, transformation from optical vortices outside the resonator16–22 and so on. However, the polariza-
tion state of vector beams stays constant along the optical axis and can’t be changed unless a wave plate is inserted 
in the optical path. The methods mentioned above may bring limitations for the application of vector beams. For 
example, in laser manufacturing, radially polarized beams are used for laser cutting23 and azimuthal polarized 
beams for punching24. If a vector beam contains these two polarization states in different propagation distance, 
the cutting and punching can be realized simultaneously. Moreno et al. have introduced an approach to generate 
nondiffracting Bessel beams with varying polarization states when propagating25. Nonetheless, the polarization 
in different positions of the optical axis is homogeneous.
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In this paper, by using axicon holograms realized by spatial light modulators (SLM 1, SLM 2), a new method 
is presented to generate Bessel-type vector beams with spatial oscillating polarization along the z-axis. The state 
of polarization at different positions was measured with a polarizer. The experimental results fit well the theory.

Results
Principles of generating OP vector beams.  Bessel beams, solutions of Helmholtz equation in cylindrical 
coordinates, are widely known as a non-diffraction or self-reconstructing light beam, which can reconstruct its 
electric field after passing through an obstruction26–29. Researches have done a lot in studying Bessel beams, and 
found their existence for atoms30 and electron waves31–33. The amplitude of a Bessel beam reads with Eq. (2):

ϕ ϕ=E r E J k r il( , ) ( )exp( ) (2)l r0

where Jl is the l-th order Bessel function, kr is the radial wavenumber and l is the topological charge26,34,35. The 
term exp(ilϕ) also means that the Bessel beam represents an optical vortex, which carries orbital angular momen-
tum (OAM)36.

As a kind of Bessel-type vector beams37–40, OP vector beams can be generated from Bessel modes. Right and 
left circularly polarized Bessel beams, which have opposite topological charge can be combined and result in a 
Bessel-type vector beam, as shown in Eq. (3)
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In Eq. (3), once an additional phase φ(r) is introduced in the left-circularly polarized component, and meanwhile 
it doesn’t change the phase of the right-circularly polarized state. Then Eq. (3) can be written as:
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The introduction of φ(r) in the left-circularly polarized Bessel beam leads to a change of the initial polariza-
tion. For example, in the case of l =​ 1, the spatial polarization state will be changed from radial to azimuthal, when 
φ(r) varies between 0 and π​. This effect can be used to generate OP vector beams as shown in Fig. 1.

Various additional phase shifts in different propagation distances are generated by a special holographic axi-
con. An axicon is a tapered optical element with circular symmetry. Figure 2 illustrates the generation of Bessel 
beams by an axicon. When a plane wavefront passes an axicon, it will be transformed into a conical wave. In the 
overlap region Bessel-like waves are generated41. The maximum range of the Bessel beams is given by the length 
zmax of this region and reads25:

Figure 1.  Schematic set-up to generate OP beams. The key idea is to introduce different additional phase-
shifts at different positions of the axis. Then the state of polarization is varying with the propagation distance.

Figure 2.  Axicons or axicon-holograms can be used to generate Bessel beams in the overlap region. 
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with λ the wavelength, R the radius of the axicon. If the beam size is smaller than the axicon’s base, R denotes the 
radius of the incident field. β is the refraction angle and d is the radial period of the axicon. If the incident field is 
horizontal linearly polarized, the Bessel beams will have the same polarization. In this experiment the axicon is 
replaced by a holographic axicon (HA) HA1, which can be uploaded on SLM, to generate linearly polarized Bessel 
beams. Now another holographic axicon HA2 with different period D is inserted and produces an additional 
phase shift depending now on the propagation distance z as shown in Fig. 3. Circularly polarized beams with 
different phase delay at different positions z are obtained after propagating through a 45° arranged quarter wave 
plate (QWP). The HA2’s phase distribution φ(r) is given by:

φ π
=r r

D
( ) 2
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with D the period of the HA2. Eq. (5) with Eq. (6) results in
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This is the additional phase shift of the propagating beam, which produces the oscillating states of polarization.  
The distance zt between two equal states of polarization requires φ(zt) =​ 2π​ and delivers:

λ
=z dD

(8)t

The overlap region of the additional phase shift must be smaller than the Bessel beam region which requires 
zmax >​ zt or D <​ R.

Experimental Setup.  The experimental setup for generating OP vector beams is shown in Fig.4. The funda-
mental Gaussian mode with a wavelength of 1550 nm is generated by a laser diode (LD) and coupled into a single 
mode fiber. The Gaussian output beam is collimated (Col.) with a diameter of 3 mm and polarized linearly hori-
zontal by a beam splitter (PBS). Only for this polarization a pure phase modulation by the SLM is possible. The 
beam expander (BE), a concave lens f =​  −​50 mm and a convex lens f =​ 100 mm, enlarge the diameter to 6 mm.

The SLMs’ diffraction efficiency is 80%, nominal resolution 1920 ×​ 1080 pixels, active area 
15.36 mm ×​ 8.64 mm and the pixel pitch 8.0 μ​m (Holoeye, PLUTO-TELCO-013-C). Utilizing the performance 
of the polarization control42 and the phase modulation of SLM, we can use two SLMs to accomplish all the 
calculation process discussed in section 2. For generating Bessel beams, we upload the hologram of an axicon 
(HA1) combined with l-th order spiral phase plate (SPP), which is shown in Fig. 3(b), on SLM1. The generated 

Figure 3.  Two holographic axicons can introduce additional phase shifts along the optical path. (a) Scheme 
of realizing the additional phase in different propagation distance. SLM1 upload the combined hologram in 
(b) and SLM2 upload the combined hologram in (c). (b,c) show the hologram to generate first order OP vector 
beams. (b) The hologram on SLM1 to generate Bessel beams, which corresponds to an axicon (HA1) and a first 
order spiral phase plate (SPP). (c) The hologram on SLM2 to generate the additional phase shift, where HA2 
combined with a second order SPP.
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horizontal linearly polarized Bessel beam is of −​l-th order, because of the reflective SLM 1. The reflection added 
by SLM1 contributes to the opposite topological charge. The half wave plate (HWP) is placed at an angle of 22.5° 
to the horizontal plane in order to rotate the polarization orientation of the Bessel beam at 45°. Thus, the gen-
erated Bessel beam has two linearly polarized components with equal intensity, a horizontal and a vertical one. 
After reflected by SLM2, only the horizontal polarization component will be modulated, due to the polarization 
feature of the SLM 1. The hologram uploaded on SLM2 consists of HA2 and a 2l-th order SPP, which introduces 
an additional phase φ(r) of the horizontal linearly polarized Bessel beam, as shown in Fig. 3(c). The topological 
charge of the horizontal component of the Bessel beam incident on SLM2 can be expressed as −​(−​l +​ 2l) =​ −​l, 
which means it will not be changed. The topological charge of the vertical component will be opposite, for it is 
reflected by SLM2 once and is not modulated. Therefore, the light reflected by SLM2 consists of a horizontal and 
a vertical linearly polarized Bessel beam with opposite topological charges. The horizontal polarized component 
has a phase delay. A 45° quarter-wave plate (QWP) is used to transform the two combined linearly polarized 
Bessel beams into left and right circularly polarized helical beams. Eq. (4) is satisfied and an OP vector beam is 
generated.

A rotated polarizer is used to check the polarization distribution of the OP vector beam. An infrared CCD 
camera with the spectral range of 900 nm~1700 nm is used for the detection.

As previously mentioned, the pixel pitch of the SLMs is 8.0 μ​m. For this reason, the radial period of the HA1 d 
and the period of the HA2 D should be set as multiples of 8 when designing the hologram shown in Fig. 5. Only 
by this way each liquid crystal of the SLM can be well encoded. The period of the HA1 was 880 μ​m, and the period 
of HA2 was 2184 μ​m. Then the spatial period of the polarization becomes with Eq. (8) zt =​ 1.24 m.

The radius of the incident beam with R =​ 3 mm is smaller than the axicon’s base and Eq. (5) delivers for the 
maximum range zmax =​ 1.70 m. The distance between SLM1 and SLM2 is 0.43 m, the free moving range for the 
CCD camera behind SLM2 is 1.27 m.

Experimental results.  Figure. 5 summarizes the experimental and simulated results of 1st and 2nd order OP 
vector beams. One can see that the experimental pattern fit well with theory. The intensity distribution of the l-th 
order beam is similar to a Bessel beam whose topological charge is ±​l. The patterns are divided into 2l main lobes 
after passing through a polarizer. In the same location, for instance, z =​ z0, the lobes will rotate at an angle of θ/l 
when the polarizer rotates at an angle of θ. The absence of the side lobes in some of the patterns is caused by the 
lower transmittance of the NDF, to make the main lobes more clearly. The unique characteristic of the OP beams 
is the linear rotation of the polarization distribution along the optical axis. When moving the CCD camera along 
the axis over a distance of 0.25zt, the lobes will rotate by an angle of π/(4l), which can be explained by Eq. (7) and 
Eq. (4). Eq. (7) can be written as:

φ π
=z z
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which delivers φ = π/2 if z =​ 0.25zt. It is clear from Eq. (3) that the rotation angle of the patterns behind a polarizer 
is φ/2l. Hence, the rotation angle of π/(4l) is obtained.

In order to verify quantitatively this variation, the rotation angle was measured along the z-axis with a mov-
ing CCD-camera. In the measurement, the polarizer is placed at the angle of 0°. In this case, the rotation angle θ 
should be a linear function of the camera’s position, which can be written as:
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The pattern were measured in steps of Δ​z =​ 0.05 m. After the image processing of each pattern, the corre-
sponding relationship between the rotation angle and CCD’s position is obtained. The measurement was per-
formed for the 1st order and the 2nd order OP vector beams. The results are shown in Fig. 6 and confirm well the 
theoretical considerations.

Discussion
In this paper, we demonstrate experimentally and theoretically a new kind of Bessel beams (OP vector beams) 
with spatial oscillating, only by applying a polarization control phase-plates. In the experiment, two different 

Figure 4.  Experimental setup for generating OP vector beams. LD, laser diode. SMF, single mode fiber. 
Col., collimator. PBS, polarizing beam splitter. BE, beam expander. SLM1 and SLM2, liquid crystal spatial light 
modulators. HWP, half wave plate. QWP, quarter wave plate. NDF, neutral density filter. P, polarizer. CCD, 
infrared CCD camera.
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holograms are uploaded on the two SLMs. The 1st and the 2nd order OP-vector beams were generated in the exper-
iment. In addition, the linear variation of the spatial polarization when propagating is illustrated.

The OP vector beams exist in the Bessel overlap region only, which is also called the nondiffraction zone. It can 
be extended by enlarging the radial period of the axicon (HA1). Another important feature of OP vector beams 
is the spatial variation period, which is related to the radial period of HA1 and HA2, and the wavelength of the 
incident beams. Arbitrary variation periods can be designed by proper choice of the parameters.

Figure 5.  Experimental and simulated results of generating 1st and 2nd order OP vector beams. (a) 
Experimental 1st order OP vector beams. (b) Experimental 2nd order OP vector beams. (c) Simulated 1st order 
OP vector beams. (d) Simulated 2nd order OP vector beams. From left to right, the observed patterns without 
and with polarizer at 0°, 45°, 90°, respectively. From top to bottom, the patterns observed by CCD camera 
at different positions on the optical axis. The green areas show the spatial distribution of the polarization at 
different positions.

Figure 6.  The angle of rotation vs the z-position for 1st and 2nd order OP vector beams behind a 0°- 
polarizer. 
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Methods
Measurement of the rotation angle.  In order to verify the rotation angle of the patterns, the center of 
gravity of each lobe in the optical fields has to be measured. It is given by the first intensity moment43:
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There are two lobes in the case of 1st order OP-vector beams. Therefore, the rotation angle can be calculated by:
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As for the 2nd order OP vector beams, two of the four lobes in the diagonal were analyzed. The rotation angle 
is given by:
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