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The spleen plays an important role in the body’s defence against bacterial infections.
Measuring splenic function is of interest in multiple conditions, including sickle cell anaemia
(SCA), where spleen injury occurs early in life. Unfortunately, there is no direct and simple
way of measuring splenic function, and it is rarely assessed in clinical or research settings.
Manual counts of pitted red blood cells (RBCs) observed with differential interference
contrast (DIC) microscopy is a well-validated surrogate biomarker of splenic function. The
method, however, is both user-dependent and laborious. In this study, we propose a new
automated workflow for counting pitted RBCs using deep neural network analysis.
Secondly, we assess the durability of fixed RBCs for pitted RBC counts over time. We
included samples from 48 children with SCA and 10 healthy controls. Cells were fixed in
paraformaldehyde and examined using an oil-immersion objective, and microscopy
images were recorded with a DIC setup. Manual pitted RBC counts were performed
by examining aminimum of 500 RBCs for pits, expressing the proportion of pitted RBCs as
a percentage (%PIT). Automated pitted RBC counts were generated by first segmenting
DIC images using a Zeiss Intellesis deep learning model, recognising and segmenting cells
and pits from background. Subsequently, segmented images were analysed using a small
ImageJ macro language script. Selected samples were stored for 24months, and manual
pitted RBC counts performed at various time points. When comparing manual and
automated pitted RBC counts, we found the two methods to yield comparable results.
Although variability between the measurements increased with higher %PIT, this did not
change the diagnosis of asplenia. Furthermore, we found no significant changes in %PIT
after storing samples for up to 24 months and under varying temperatures and light
exposures. We have shown that automated pitted RBC counts, produced using deep
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neural network analysis, are comparable to manual counts, and that fixed samples can be
stored for long periods of time without affecting the %PIT. Automating pitted RBC counts
makes the method less time consuming and results comparable across laboratories.

Keywords: red blood cell, erythrocyte, sickle cell anaemia, sickle cell disease, splenic function, spleen, PIT count,
deep neural network

INTRODUCTION

Despite the spleen playing a key role in the body’s defence against
bacterial infections, measuring splenic function remains an area
of difficulty. Loss of splenic function is associated with several
severe complications, including life-threatening infections with
encapsulated bacteria (King and Shumacker, 1952; Barrett-
Connor, 1971) and thromboembolic events (Crary and
Buchanan, 2009). Measuring splenic function is of clinical
interest in multiple conditions, including sickle cell anaemia
(SCA) (Brousse et al., 2014). In SCA, spleen damage occurs in
early childhood, leading to loss of function within the first years of
life (Pearson et al., 1969; Pearson et al., 1985; El Hoss et al., 2019).

The 99mTc sulphur-colloid liver-spleen (LS) scan is often
referred to as the “gold standard” for measuring the spleen’s
filtration function. The LS scan assesses phagocytic function of
both the liver and the spleen, producing a semi-quantitative
measurement: the spleen/liver uptake-ratio. However, the vast
majority of colloids are taken up by the liver, limiting the
diagnostic value pertaining to the spleen (Armas, 1985). An
alternative approach is scintigraphy using 99mTc-labelled
autologous red blood cells (RBCs). Because labelled RBCs are
particularly rigid they get trapped in the spleen, allowing for
visualisation of the organ as well as quantitative measurement of
splenic uptake (Ehrlich et al., 1982; Gotthardt et al., 2007). These
methods are expensive and often not available outside specialised
hospital facilities. Furthermore, they require low-dose radiation
exposure making them suboptimal for paediatric populations.

Because of the nature of RBC filtration in the spleen, certain
RBC changes have been found to act as surrogate biomarkers of
splenic filtration. These include nuclear remnants in RBCs, so-
called Howell-Jolly bodies (HJBs), and pitted RBCs observed with
differential interference contrast (DIC) microscopy.
Traditionally, both have been counted manually, HJBs in a
May-Grünwald Giemsa-stained blood smear and pitted RBCs
in an unstained wet preparation of fresh or fixed whole blood.
Results of these splenic biomarkers have previously been
compared to results of LS scans and both HJB and pitted RBC
counts (PIT counts) correlate well with LS scan results (Pearson
et al., 1985; Rogers et al., 2011). However, both methods are user-
dependent and time-consuming.

In recent years, a number of techniques have been developed
for quantifying HJB-containing RBCs by flow cytometry (Harrod
et al., 2007; El Hoss et al., 2018), although to date such methods
have been limited to a small number of laboratories. Furthermore,
flow cytometry comes with limitations, including the need for
rapid analysis following venesection (Harrod et al., 2007).

Pitted RBCs observed using DIC microscopy were first found
to predict splenic function more than 50 years ago (Kent et al.,

1966; Nathan and Gunn, 1966; Holroyde et al., 1969). Pits are
large vacuoles beneath or attached to the RBC membrane
(Schnitzer et al., 1971). When studied with DIC microscopy
they adopt a 3-dimensional appearance, resembling crater-like
indentations or pits on the cell surface. The vacuoles contain
cellular waste material such as precipitated haemoglobin,
degenerated mitochondria and cell-membrane remnants, and
form as RBCs age (Nathan and Gunn, 1966; Holroyde and
Gardner, 1970). When filtering through a normally
functioning spleen, RBCs are groomed by the spleen,
removing waste such as pits, before being released back into
the circulation. To add confusion, this splenic extraction process
is known as pitting. In cases where the spleen does not function,
pits remain in the circulating RBCs. Thereby, the percentage of
RBCs containing pits (the PIT count or %PIT) increases in
individuals who have undergone splenectomy (Holroyde and
Gardner, 1970; Pearson et al., 1979), or in conditions where
there is a loss of splenic function (Casper et al., 1976). In SCA,
early studies found that a PIT count of ≥3.5% indicated loss of
splenic function (Pearson et al., 1985). More recently, a PIT count
of <1.2% was found to predict normal splenic function and a PIT
count of >4.5% to predict absent splenic function in SCA (Rogers
et al., 2011).

To perform PIT counts, only a small drop of whole blood is
needed, making the method ideal for diagnostics in young
children. Samples can be analysed either fresh or following
fixation, typically using PBS-buffered glutaraldehyde or
paraformaldehyde. Previous studies have assessed the
durability of fixed RBCs for PIT counts, observing no
alterations over periods of up to 3 months (Holroyde et al.,
1969; Pearson et al., 1985), and the technique has been found
to be reproducible (Pearson et al., 1985).

Although manual PIT counts are a well-validated surrogate
marker for splenic function, the method is time-consuming and
user dependent. The development of automated methods would
be useful for standardising measurements and making results
more comparable across laboratories. Furthermore, an
automated approach could allow for larger numbers of cells to
be counted and, thus, add precision to such analyses. In this
study, we propose a new automated workflow for performing PIT
counts and assess the durability of fixed RBCs for PIT counts
over time.

MATERIALS AND METHODS

Samples
Samples from individuals with SCA and normal controls were
included in the study. Individuals with SCA aged 0–16 years were
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recruited from the paediatric haematology clinic at King’s College
Hospital, London. Samples were prepared at King’s College
London by mixing 50 μL of EDTA blood with 2 ml 2% PBS-
buffered paraformaldehyde. Samples were kept at 4°C and
transported to Copenhagen University Hospital for analyses.
Normal control samples were randomly selected among
surplus blood samples collected into EDTA from healthy adult
subjects attending for routine haematology diagnostics at
Copenhagen University Hospital.

Ethical Approval
The National Health Service (NHS) Research Ethics Committee
approved this study (ref: 18/LO/1566). For individuals with SCA,
written informed consent was obtained from all children aged
16 years prior to sample collection. A parent or guardian
provided written informed consent for children under 16 years.

Microscopy
In preparation for microscopy, samples were gently mixed. When
the blood pellet was fully re-suspended, 5 μL of the solution was
applied to a glass slide and examined under a #1.5 coverslip after
settling for a few minutes.

All microscopy was performed at the Core Facility for
Integrated Microscopy, Faculty of Health and Medical
Sciences, University of Copenhagen. Samples were examined
as a wet-preparation using an oil-immersion objective (×100/
1.46) in an inverted Zeiss CellObserver microscope with a DIC
setup (condenser NA = 0.55). DIC images of all samples were
recorded using a Hamamatsu Orca LT camera.

Manual PIT Counts
For manual PIT counts, a minimum of 500 consecutive RBCs per
sample were examined for the presence of one or more pits
(rounded, crater-like depressions on the cell surface). The
proportion of pitted RBCs was expressed as %PIT. Manual
PIT counts were either performed directly in the microscope
eyepieces, or by subsequently counting pitted RBCs on recorded
DIC images.

Developing the Neural Network and
Analysis Macro
All image analyses were performed on DIC images taken of wet-
preparations prepared in the same way as for manual PIT counts.
For all image analyses, DIC images were segmented using Zeiss
Intellesis (Carl Zeiss AG) deep learning model (256 features),
based on the weights used for the VGG19 model (Simonyan,
2015), provided by TensorFlow, and followed by a random forest
classifier. The network performs pixel classification, recognising
and segmenting cells and pits from background (three channels in
total). The neural network setup is illustrated in Figure 1

Network 1: Initially, manual annotation of pits in 99
randomly selected images representing samples from 37
individuals (33 with SCA and 4 normal controls) was
performed by three independent observers. The performance
of the deep neural network was then compared to the manual
pit-annotations and optimised to match the average performance
of the manual annotators (data not shown).

Network 2: After establishing that a network could
successfully be trained to recognise pits and match the average
human performance, a new network was trained to recognise
both RBCs and pits from background. Several hundred images
segmented with Network 2 were reviewed alongside original DIC
images, in order to minimise errors and optimise network
performance.

For analyses of the segmented images showing three channels
(background, cells and pits), we developed a small ImageJ
(Rasband, 1997-2018) macro language script. The script splits
the three channels, fills in any holes in cell images and
separates adjoining cells using a Distance Transform Watershed
from MorphoLibJ (Legland et al., 2016). Using the “Analyse
Particles” function in ImageJ, only cells of appropriate sizes for
RBCs were selected and any cells touching the edge of an image
were discarded. Within the regions of interest (ROIs) of selected
cells, maxima of the segmented pits were counted, and the summed
area of pits was measured. Finally, results were written in Excel-
format, using the “Read andWrite Excel” plugin (Sinadinos, 2020).

FIGURE 1 | Neural network setup. Differential Interference Contrast (DIC) microscopy images (1) were segmented using a Zeiss Intellesis deep learning model
based on the weights used for the VGG19 model (2a) followed by a random forest classifier (2b). The network performs pixel classification and was trained to recognise
and segment red blood cells and pits from background (3), creating three channels in total (blue: background, yellow: cell, red: pit). Subsequently, segmented images
were analysed and filtered in a postprocessing ImageJ macro script (4), producing an automated pitted red blood cell count.

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 8599063

Nardo-Marino et al. Automated PIT Counts

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


In summary, Network 1 was trained to only recognise pits and
used to explore whether a network could recognise pits as reliably
as human annotators. Network 2 (the final network) was trained
to recognise both RBCs and pits, and segmented images were
subsequently analysed and filtered in a postprocessing ImageJ
macro script (Figure 1).

Sample Durability
In order to assess sample durability, three samples were kept
refrigerated at 4°C for up to 24 months after sampling: two
samples from individuals with SCA and one normal control
sample. DIC images were recorded and manual PIT counts
performed at varying time intervals on all three samples.

After 24 months of storage, each sample was divided in four, in
order to further assess durability at varying temperatures. For
each sample, one part remained refrigerated at 4°C, one was
incubated at 37°C, one was stored at room temperature in the
dark and one at room temperature exposed to daylight (not direct
sunlight). After an additional 6 weeks of storage, new DIC images
were obtained, and manual PIT counts were performed.

Statistical Methods
When assessing sample durability, manual PIT counts were
compared using multiple comparison ANOVA. Manual PIT
counts were compared to automated counts with a paired
t-test. Significance level was defined as p < 0.05. Agreement
between manual and automated PIT counts was assessed with
a Bland Altman (BA) plot (Martin Bland and Altman, 1986). For
the overall population, limits of agreement (LOAs) were deemed
acceptable if they were within ±5% of the manual %PIT. For
samples with a manual %PIT of <5%, LOAs were acceptable if
they were within ±1.5%. Statistical analyses were performed in
Stata V16.1 (StataCorp, Timberlake, USA). BA calculations and
plots were created with “R” version 3.6.2 (R Development Core
Team, 2017) using the blandr and ggplot2 packages.

RESULTS

Manual PIT Counts
In order to assess any variability in manual counts, PIT counts for
three samples (one normal control and two SCA samples) were
repeated three times directly in the microscope eyepieces and three
times by examining DIC images on a computer screen, all by the
same observer. These three samples were not included in any
network validation. Two samples had a PIT count of <5% (one
normal control and one SCA sample), with manual counts ranging
from 0.4% to 0.8% and 3.9% to 4.6%, respectively. One SCA sample
had a high %PIT, with manual counts ranging from 34.1%
to 38.6%.

Network Validation
When comparing manual pit-annotations to the performance of
Network 1, results were very similar. Figure 2 presents examples
of manual pit annotations by three independent observers,
emphasising differences in the perception and annotation of
pits. The three annotators had identified pits in 45.6, 46.1 and

47.9% of 697 RBCs, respectively. In comparison, Network 1 had
identified pits in 44.2% of the cells.

Figure 3 presents images of two cells with pits, alongside
images segmented with Network 2 and results of the analysis
macro. When comparing images segmented with Network 2 to
original DIC images, several false-positive events were identified.
Examples of such artefacts are illustrated in Figure 4 and
Figure 5. The main issues were:

1) Platelets lying on the edge of a RBC were interpreted by the
network as being part of the RBC, thereby marking the RBC as
having one or more pits (Figure 4A).

2) Platelet-aggregates were interpreted by the network as RBCs
with many pits and were not excluded by size in the
subsequent macro analysis (Figure 4B and Figure 5A).

3) White blood cells weremostly excluded due to size (Figure 4C),
but some smaller cells (presumably lymphocytes) were
interpreted by the network as RBCs with many pits.

4) Very wrinkled cells, observed primarily in SCA samples
(possibly dehydrated or irreversibly sickled cells), in which
it was impossible to distinguish whether there were any true
pits. In a manual count such cells would typically be excluded
by the observer. In the automated analysis, however, these
cells were not excluded and were interpreted by the network as
having multiple pits (Figure 4D).

By excluding cells with low solidity (calculated as the area
divided by the convex area, showing the object’s irregularity of its
boundary), we managed to minimise the number of false positive
events caused by platelets (both as aggregates and in relation to
RBCs). When filtering by solidity, some normal and sickle cells
were inevitably excluded, although not in large numbers.
Figure 4E illustrates how a sickle cell, despite its irregular
shape, does not get excluded based on solidity. Figure 5B
illustrates a normal cell that is excluded due to low solidity
(cell number 1), as the small piece of debris attached to the
left side of the cell is recognised as being part of the cell.

For normal control samples, the mean difference between
manual and automated counts before excluding cells with low
solidity was 1.7% (range: 0.6% to 3.3%). After excluding cells with
low solidity, the mean difference was 1.0% (0.5% to 1.8%). For the
total 58 samples, the mean difference between manual and
automated counts before excluding cells with low solidity was
2.0% (−5.9% to 8.7%). After excluding cells with low solidity, the
mean difference was 0.6% (−6.7% to 6.3%).

Some false-negative events were also observed,most ofwhichwere
caused by out of focus images. Figure 6 illustrates how the network
failed to identify pits in some, but not all, out of focus images.

Comparing Automated and Manual Counts
Automated PIT counts performed using Network 2 were
compared to manual PIT counts in samples from 58
individuals: 48 individuals with SCA and 10 normal controls.
When analysing results from all 58 samples, we found no
significant difference in mean %PIT between manual and
automated counts (mean ± standard deviation (SD), manual:
30.4% ± 18.4; automated: 31.0% ± 18.8, p = 0.1).
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FIGURE 2 | Manual pit-annotations. Differential Interference Contrast (DIC) microscopy images of pitted red blood cells, alongside manual annotations by three
independent observers. Dark grey areas indicate annotations made by a single observer (1), light grey indicates consensus between two observers (2), and white
indicates consensus between all three observers (3). Scale bars = 5 μm.
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A BA-plot comparing automated and manual counts in all 58
samples is presented in Figure 7A. The plot suggests that the two
measurements are in agreement, although with some random
relative error: as the %PIT increases, so does the variability of the
measurements. The mean difference between measurements
(bias) was 0.57% (95% confidence interval (CI): −0.16% to
1.30%). The upper LOA was 6.00% (95% CI: 4.75% to 7.26%)
and lower LOA −4.86% (95% CI: −6.11% to −3.61%). Four
measurements (6.9%) fell outside the LOAs, all were SCA
samples with a %PIT of >20%.

Figure 7B presents a BA-plot for the samples with a %PIT of
<5%, all of which were normal controls. For these 10 samples, the
bias was 0.99% (95% CI: 0.64% to 1.34%). The upper LOA was
1.95% (95% CI: 1.33% to 2.57%) and lower LOA was 0.03% (95%
CI: −0.57% to 0.65%), with no samples falling outside the LOAs.
There were signs of some systematic error, with all automated PIT
counts being higher than manual counts.

Number of Pits Per Cell and Pit Size
Additional data generated by Network 2 included the number of
pits per pitted cell and the average pit size expressed as a
percentage of the total area (100%) of the affected RBC.

The average number of pits per pitted cell ranged from 1.1 to
2.1, with lower numbers in normal controls (mean ± SD: 1.19 ±
0.13) compared to individuals with SCA (1.56 ± 0.22). There was
a very strong positive correlation between %PIT and the average
number of pits per pitted cell (r = 0.85, p < 0.001). Similarly, the

maximum number of pits found in one cell ranged from 2 to 12,
with lower numbers in normal controls (3.2 ± 0.9) compared to
individuals with SCA (8.0 ± 2.1). There was a strong positive
correlation between %PIT and the maximum number of pits
found in one cell (r = 0.79, p < 0.001). Finally, average pit size
ranged from 0.21 to 0.76% of the affected cell, with lower
numbers in normal controls (0.31% ± 0.07) compared to
individuals with SCA (0.57% ± 0.12). There was a strong
positive correlation between %PIT and average pit size (r =
0.84, p < 0.001).

In samples from the 48 individuals with SCA, we found that
the average number of pits per pitted cell (r = 0.36, p = 0.01) and
average pit size (r = 0.34, p = 0.02), as well as %PIT (r = 0.37, p =
0.01), all correlated with age.

Sample Storage
Manual PIT counts were performed on DIC images taken at
1 week, 6 weeks, 5 months, 1 year and 2 years from sampling.
Between counts, %PIT for the two SCA samples ranged from 33%
to 35.1% and 20.4% to 21.9%, respectively. %PIT for the control
sample ranged from 0.6% to 1.2%. Results showed that %PIT did
not change significantly over this period (p = 0.6).

Subsequently, manual PIT counts were performed on DIC
images taken after an additional 6 weeks of storage under varying
conditions: refrigerated at 4°C, incubated at 37°C, at room
temperature in the dark and at room temperature in daylight.
%PIT for the two SCA samples ranged from 31.9% to 34.8% and

FIGURE 3 | Pitted red blood cells. Differential Interference Contrast (DIC) microscopy images of pitted red blood cells (A and B), alongside segmented images and
results from subsequent macro analysis (from left to right). Segmented images display three channels, blue: background, yellow: cell, red: pit. White arrows indicate the
position of pits. Cell numbers only refer to the numbering of cells reported by the macro. Scale bars = 5 μm.
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FIGURE 4 | Artefacts. From left to right: DIC microscopy images, alongside segmented images displaying three channels (blue: background, yellow: cell, red: pit),
and results from subsequent macro analysis. Scale bars = 5 μm. (A) Single platelet and RBC. The RBC has no pits but due to the adjoining platelet, the neural network
identifies the cell as pitted. This cell was not excluded from the macro analysis due to normal solidity and size. (B) Two adjoining platelets identified by the neural network
as one RBC with multiple pits. This “cell” was ultimately excluded from the macro analysis due to low solidity. (C) WBC identified by the neural network as a RBC
with multiple pits. This cell was ultimately excluded from the macro analysis due to size (no yellow outline). (D) Wrinkled RBC from SCA sample identified by the neural
network as having multiple pits and subsequently divided into two cells by the analysis macro. Cell no. 2 was ultimately excluded from the analysis due to low solidity. (E)
RBC from SCA sample. Despite the irregular shape, this cell was not excluded from the analysis as its solidity was normal.DIC: differential interference contrast, RBC: red
blood cell, SCA: sickle cell anaemia, WBC: white blood cell.
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21.9% to 23.2%, respectively. %PIT for the control sample ranged
from 0.4% to 0.6%. Results showed that %PIT did not differ
significantly between storage conditions (p = 0.7).

DISCUSSION

By training a deep neural network to recognise and segment RBCs
and pits in DIC microscopy images, we developed a novel
automated workflow for counting pitted RBCs. Our findings
suggest that automated PIT counts can potentially replace
labour-intensive manual counts.

Prior to comparing manual and automated PIT counts, we had
repeated manual PIT counts for three selected samples with
varying %PIT: one was a normal control sample with a
manual PIT count of <1%, one was a SCA sample with a
relatively low PIT count of <5%, and one was a SCA sample
with a high PIT count of >30%. These repeated counts revealed
there to be variability between %PIT for the same sample, even
when counted by one observer. For the two samples with a %PIT
of <5% the variability was low, whereas the sample with a high %
PIT had greater variability. Based on these findings, we decided to
accept greater differences between manual and automated PIT
counts in samples with high %PIT, compared to samples with
low %PIT.

When comparing manual PIT counts to automated counts
generated by the neural network we found no significant
differences in samples from children with SCA or normal
controls. When further evaluating agreement between manual and
automated PIT counts in a BA-plot, we found the mean difference
between measurements (the bias) to be low, suggesting that the two
methods yielded comparable results. The positive bias indicated that
automated counts were on average slightly higher than manual
counts. There was some random relative error, with increased
variability at higher %PIT, a trend similar to what we had
identified when repeating manual counts, but there was no
evidence of systematic error. Although the upper LOA of 6% was
higher than we had aimed for, we did not find this to significantly
affect results. All four samples that fell outside the LOAs, as well as the
three samples that werewithin the LOAs but had a variability over the
aim of ±5%, had manual PIT counts of >20%. In samples with PIT
counts of this magnitude, this variability does not change the
diagnosis of functional asplenia.

In contrast, such variability in samples with low %PIT may
affect the final diagnosis. In samples with a %PIT of <5%, which
included all normal controls, the mean difference between
measurements was 0.99%. The BA plot for these samples
indicated some systematic error, as all automated PIT counts
were higher than manual counts. Furthermore, the upper LOA of
1.8% was higher than our aim of ±1.5%, although just one sample

FIGURE 5 | Platelets and adjoining red blood cells. From left to right: DIC microscopy images, alongside segmented images displaying three channels (blue:
background, yellow: cell, red: pit), and results from subsequent macro analysis. Scale bars = 5 μm. (A) Large platelet-aggregate identified by the neural network as
adjoining RBCs with multiple pits. Subsequently divided into multiple “cells” in the macro analysis. All three “cells” were ultimately excluded from the analysis due to low
solidity. (B) Three adjoining RBCs with no pits correctly identified by the neural network and subsequently divided correctly in the macro analysis. Cell no. 1 was
ultimately excluded from the analysis due to low solidity. DIC, differential interference contrast; RBC, red blood cell.
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had a variability above 1.5%. Previous studies that compared manual
PIT counts to 99mTc sulphur-colloid LS-scan results (Pearson et al.,
1985; Rogers et al., 2011), have proposed PIT counts under 3.5 and
1.2%, respectively, to be indicative of normal splenic function in SCA.
Despite our automated PIT counts being higher in samples with low
%PIT, results for all normal controls remained <3.5% and thus, when
following this cut-off value, did not generate a false diagnosis of
functional asplenia. Furthermore, all normal control samples had
lower %PIT than all SCA samples, regardless of the method. It is
possible that normal ranges need to be re-evaluated for automated
counts, preferably by comparing these to scintigraphy using 99mTc-
labelled autologous RBCs.

The %PIT generated for 99 DIC images by Network 1
(identifying only pits), was very similar to those counted by the
three manual annotators. However, when reviewing images
segmented with Network 2 (identifying both pits and RBCs), we
identified a high number of false-positive events leading to increased
%PIT, particularly in normal control samples. In the assessment of
Network 1, only pits in a small number of cells were countedwhereas
large numbers of cells and pits were analysed with Network 2.
Furthermore, Network 1 and the manual annotators assessed the
exact same cells, whereas Network 2 was compared to manual
counts of only a proportion of the cells counted by the network.

A second aim of the study was to evaluate the durability of
RBCs fixed in paraformaldehyde. We found no significant
changes in %PIT after storing samples for up to 24 months
and under varying temperatures and light exposures. These
results agree with those from older studies, that found no
alterations in PIT counts or RBC morphology in samples

stored for up to 3 months at 4 and 20°C (Holroyde et al.,
1969; Pearson et al., 1985). Establishing that %PIT is not
affected significantly over time or in samples stored at room
temperature, makes the method well suited for batch analyses in
clinical trial settings. Furthermore, this may be useful in settings
where transport to a facility with DIC equipment is necessary.

Our automated analysis produced a range of parameters that, to
the best of our knowledge, have not previously been studied in detail.
These include the number of pits per pitted cell (maximum and
average) and average pit size. All parameters were found to correlate
positively with %PIT. This accords with observations by Holroyde
and Gardner in 1970 (Holroyde and Gardner, 1970), who found that
pits in normal erythrocytes were usually small and single, with no one
cell having >5 pits. In contrast, pits in cells from splenectomised
individuals were larger and found in greater numbers, with up to 20
per one cell. Our studies suggest that as splenic function decreases,
both the average size and number of pits per cell tends to increase,
and it is possible that these parametersmay be clinically useful. Future
studies examining these in more detail are needed to establish
whether they have any clinical predictive value.

Because there is no simple and direct measurement, splenic
function is rarely assessed in clinical or research settings. In SCA,
splenic function tests are an important tool for clinical trial
settings. In milder sickle cell genotypes where hyposplenia
may not affect all children, implementing splenic function
measurements such as automated PIT counts in routine
clinical follow-up could be an important tool for monitoring
the risk of infection. Accessible splenic function tests may also
prove useful in other conditions that involve loss of splenic

FIGURE 6 | Out of focus images. From left to right: Out of-focus DIC microscopy images of pitted RBCs, alongside segmented images displaying three channels
(blue: background, yellow: cell, red: pit), and results from subsequent macro analysis. (A) RBC with a single pit correctly identified by the neural network despite the
image being slightly out of focus. (B)RBCwithmultiple pits that are not identified by the neural network because the image is too out of focus.DIC, differential interference
contrast; RBC, red blood cell.
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function, such as thalassaemia, membranopathies and coeliac
disease.

In summary, we have shown that automated PIT counts,
produced using deep neural network analysis, are broadly
comparable to manual counts. Automating PIT counts makes
the method less time consuming and results comparable across
laboratories. Furthermore, this workflow allows for larger
numbers of RBCs to be studied, adding value to the analysis.
Although the need for specialised microscopy equipment
continues to limit widespread use, we believe that automated
PIT counts can earn a place alongside HJB flow cytometry, being
particularly useful in clinical trial settings where batch analyses
are preferable, and in settings where samples cannot be analysed
locally. We are currently working towards a streamlined
workflow that will allow us to handle larger amounts of data

and limit the number of steps and programs involved in the
analysis. Once the workflow has been optimised, it is our
intention to make all algorithms publicly available.
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PIT counts. Averages lie between 0.85% and 56.7%. Differences lie between −6.7% and 6.3%. Mean difference between measurements (bias) = 0.57% (95% CI:
−0.16% to 1.30%, blue area). The points center around the bias, surrounding it more tightly on the left and spreading out to larger variability on the right. Upper limit of
agreement = 6.00% (95% CI: 4.75% to 7.26%, green area). Lower limit of agreement = −4.86% (95% CI: −6.11% to −3.61%, red area). (B) Bland Altman plot of
automated andmanual PIT counts in 10 normal control samples [blue data points in (A)]. Averages lie between 0.85% and 1.9%. Differences lie between 0.3% and 1.8%.
Mean difference between measurements (bias) = 0.99% (95% CI: 0.64% to 1.34%, blue area). All points are above the bias, suggesting some systematic error with
higher values in automated compared to manual counts. Upper limit of agreement = 1.95% (95% CI: 1.33% to 2.57%, green area). Lower limit of agreement = 0.03%
(95% CI: −0.57% to 0.65%, red area).
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