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Background & Aims: Wilson’s disease (WD) is an autosomal recessive disorder of copper metabolism caused by loss-of-
function mutations in ATP7B, which encodes a copper-transporting protein. It is characterized by excessive copper deposi-
tion in tissues, predominantly in the liver and brain. We sought to investigate whether gene-corrected patient-specific
induced pluripotent stem cell (iPSC)-derived hepatocytes (iHeps) could serve as an autologous cell source for cellular
transplantation therapy in WD.
Methods: We first compared the in vitro phenotype and cellular function of ATP7B before and after gene correction using
CRISPR/Cas9 and single-stranded oligodeoxynucleotides (ssODNs) in iHeps (derived from patients with WD) which were
homozygous for the ATP7B R778L mutation (ATP7BR778L/R778L). Next, we evaluated the in vivo therapeutic potential of cellular
transplantation of WD gene-corrected iHeps in an immunodeficient WD mouse model (Atp7b-/- / Rag2-/- / Il2rg-/-; ARG).
Results: We successfully created iPSCs with heterozygous gene correction carrying 1 allele of the wild-type ATP7B gene
(ATP7BWT/-) using CRISPR/Cas9 and ssODNs. Compared with ATP7BR778L/R778L iHeps, gene-corrected ATP7BWT/- iHeps restored
in vitro ATP7B subcellular localization, its subcellular trafficking in response to copper overload and its copper exportation
function. Moreover, in vivo cellular transplantation of ATP7BWT/- iHeps into ARG mice via intra-splenic injection significantly
attenuated the hepatic manifestations of WD. Liver function improved and liver fibrosis decreased due to reductions in
hepatic copper accumulation and consequently copper-induced hepatocyte toxicity.
Conclusions: Our findings demonstrate that gene-corrected patient-specific iPSC-derived iHeps can rescue the in vitro and
in vivo disease phenotypes of WD. These proof-of-principle data suggest that iHeps derived from gene-corrected WD iPSCs
have potential use as an autologous ex vivo cell source for in vivo therapy of WD as well as other inherited liver disorders.
Lay summary: Gene correction restored ATP7B function in hepatocytes derived from induced pluripotent stem cells that
originated from a patient with Wilson’s disease. These gene-corrected hepatocytes are potential cell sources for autologous
cell therapy in patients with Wilson’s disease.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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deoxynucleotide (ssODN); gene correction; cell therapy.
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Introduction
Wilson’s disease (WD) is a monogenic autosomal recessive liver
disorder caused by malfunction of ATPase copper transporting
beta (ATP7B). Its incidence is approximately 1 in 30,000 live
births worldwide, and around 1 in 90 healthy people carry an
abnormal copy of the ATP7B gene.1 ATP7B helps deliver copper
into the blood stream for use in tissues and also mediates the
excretion of excess copper into bile to maintain copper homeo-
stasis.2 Homozygous or compound heterozygous mutations in
ATP7B result in defective cellular copper homeostasis and
excessive copper accumulation in the liver, brain and other or-
gans, leading to a variety of clinical manifestations.3 Left
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untreated, patients will develop liver failure and/or neurologic
complications and die prematurely.

Liver transplantation is a potential cure for WD.4 Nonetheless
its application is hampered by a scarcity of donors, immune
rejection of allografts, and the adverse effects of long-term
immunosuppressive therapy. It has been proposed that hepato-
cyte transplantation can serve as a bridging therapy or even an
alternative to liver transplantation for treatment of WD.5 Prior
studies have demonstrated that allogenic hepatocyte trans-
plantation is effective in animal models of WD,6,7 and in patients
with other inherited liver metabolic disorders.8–10 Compared
with liver transplantation, hepatocyte transplantation is more
flexible and the surgery is much less invasive. Moreover, given
the nature of WD, fewer hepatocytes can be effective in
removing excess copper and ameliorating the disease. Never-
theless, immunosuppression is still needed to prevent immune
rejection of the transplanted allogenic hepatocytes from heathy
donors.5

Recent technological advances related to human induced
pluripotent stem cells (iPSCs),11 engineered CRISPR/Cas9
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nuclease-mediated genome editing,12 and pluripotent stem cell-
based hepatic differentiation have enabled the generation of
iPSC-derived hepatocytes (iHeps) from gene-corrected patient-
specific iPSCs, which can subsequently be used for autologous
cell transplantation, thereby eliminating the need for subsequent
immunosuppression. Autologous iHeps derived from gene-
corrected patient-specific iPSCs are a promising cell source for
cell therapy. They have the potential to overcome the limitations
of allogenic human hepatocytes with their limited availability
and risk of immune rejection.

ATPB R778L is the most prevalent variant among Chinese
patients with WD, and those with this variant predominantly
present with liver disease.13 We have previously generated
ATP7BR778L/R778L iPSCs from the fibroblasts of a patient with WD
who was homozygous for the ATP7B R778L mutation.13 In this
report, we sought to evaluate whether correction of the WD
genotype could reverse the disease phenotype in vitro and to
study the potential use of gene-corrected iHeps for autologous
cell therapy in WD using immunocompromised WD mice. Our
results provide proof-of-principle data that gene-corrected WD
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iPSCs can be differentiated into functional iHeps in vitro and
attenuate the disease phenotype in vitro and in vivo.
Material and methods
Cell lines
We used a wild-type (ATP7BWT/WT) male human iPSC line14 and
1 male WD patient-specific iPSC line homozygous for the ATP7B
R778L mutation (ATP7BR778L/R778L),13 which was previously
generated in our laboratories.

Gene correction using CRISPR/Cas9 and single-stranded
oligodeoxynucleotides
Single guide RNAs (sgRNAs) used in this study were designed
with the online CRISPR design tool (http://crispr.mit.edu) and
cloned into the PX459 plasmid (Addgene plasmid # 48139).15

The single-stranded oligodeoxynucleotide (ssODN) template for
correcting ATP7B R778L was designed based on the guidelines
from a previous report.16 0.15 million iPSCs were co-transfected
with 0.5 lg PX459 plasmid and 0.25 lg ssODN, and targeted
single cell-derived clones selected using a restriction fragment
length polymorphism (RFLP) assay and confirmed by Sanger
sequencing. Detailed methodology can be found in the
supplementary methods.

Differentiation of hepatocytes from pluripotent stem cells
Our previously modified 3-step protocol was used for differen-
tiation of iHeps from iPSCs.14 Details can also be found in the
supplementary methods.

Transplantation of hepatocytes into immunodeficient
Wilson’s disease mice
Sixteen-week-old immunodeficient WD mice (Atp7b-/-/ Rag2-/-/
Il2rg-/-, ARG mice) were used for iHep transplantation. One
million iHeps per mouse were transplanted using the method
described previously.14,17

For further details regarding the materials used, please refer
to the CTAT table and supplementary information.
Results
Correction of ATP7B R778L in WD iPSCs using CRISPR/Cas9
and single-stranded oligodeoxynucleotides
Since any extra DNA fragment left in the genome, even in the
intron or 3’ downstream elements, may interrupt target gene
expression (e.g., the loxP site),18 we used ssODNs combined with
CRISPR/Cas9 to correct the mutation in a footprint-free manner.
Two sgRNAs were designed to target the genome adjacent to the
R778L site (Fig. 1A), and the single-strand annealing assay was
performed to assess CRISPR/Cas9 cutting efficiency (Fig. S1A).
sgRNA-2 was used in subsequent experiments since it showed a
relatively higher cutting activity. To avoid second cutting after
the homologous recombination, a C>G silent mutation was
introduced into the PAM domain of the ssODNs (Fig. 1A). This
silent mutation also removed the HaeIII cutting site, useful for
subsequent screening of clones with homologous recombination,
by RFLP assay. Target clones with homologous recombination
were expected to have an �300 bp band resistant to HaeIII
cutting.

We have a well-established workflow for ssODN-mediated
genome editing (Fig. S1B). First, ssODNs and plasmids encoding
sgRNA-2 and Cas9 were co-transfected into ATP7BR778L/R778L
JHEP Reports 2022
iPSCs by electroporation, then target cells were enriched by
puromycin treatment. Using an RFLP assay, a small proportion of
cells with homologous recombination of ssODNs was observed
(Fig. S1C). To further screen out target cells, single cell-derived
colonies were isolated and screened for using an RFLP assay.
Positive colonies were maintained for subsequent Sanger
sequencing (Fig. S1D). A targeted corrected clone (ATP7BWT/-

iPSC) with heterozygous knock-in of ssODNs – 1 corrected allele
and the other non-corrected allele with indels (Fig. 1B and
Fig. S1E) – was selected for further analysis. Given that WD
carriers with 1 allele of wild-type ATP7B remain healthy,
achieving a heterozygous correction should be sufficient to
restore ATP7B functions.

We observed that pluripotency markers (OCT4, NANOG,
SSEA-4 and TRA-1-60) were highly expressed in ATP7BWT/- iPSCs
as well as the parent ATP7BR778L/R778L iPSCs (Fig. S2A), indicating
that ATP7BWT/- iPSCs maintained their pluripotent characteristics
after genome editing. In addition, karyotype analysis revealed
that ATP7BWT/- iPSCs maintained a normal 46, XY karyotype, the
same as their parent line (Fig. S2B). To further confirm their
differentiation capacity, embryoid body (EB)-mediated in vitro
differentiation was performed. Both ATP7BR778L/R778L and
ATP7BWT/- iPSCs formed EBs during suspension culturing in EB
medium (Fig. S2C) and underwent spontaneous differentiation
into cells positive for alpha-fetoprotein (AFP: endoderm marker),
smooth muscle actin (mesoderm marker) and microtubule-
associated protein 2 (ectoderm marker) (Fig. S2D). Therefore,
ATP7BWT/- iPSCs, as well as the parent ATP7BR778L/R778L iPSCs,
maintained the potential for differentiation into all 3 germ
layers.

Potential off-target effects of CRISPR/Cas9 are a safety
concern. To determine the possible off-target events introduced
by CRISPR/Cas9 cleavage in the genome of engineered iPSCs, the
top 10 potential off-target loci selected by the sgRNA Design
server15 and the COSMID server19 were analyzed. Off-target
events were evaluated by Sanger sequencing of the selected re-
gions amplified by high-fidelity PCR that monitors potential
small indels generated from non-homologous end joining of
CRISPR/Cas9 cleavages. Our results showed that none of the
candidate regions had detectable indels from non-homologous
end joining in ATP7BWT/- iPSCs (Table S1).

In conclusion, genome editing using CRISPR/Cas9 and ssODNs
neither altered the pluripotent properties nor gave rise to any
obvious off-target events in our modified iPSCs.
In vitro differentiation of hepatocytes from pluripotent stem
cells
We previously established a 3-step hepatic differentiation pro-
tocol based on several former studies.14,20 iPSCs were induced to
definitive endoderm cells (day 3), hepatoblasts (day 10) and
hepatocytes (day 17) in a stepwise manner (Fig. S3A). After 17
days of differentiation, iHeps from ATP7BWT/WT iPSCs,
ATP7BR778L/R778L iPSCs and ATP7BWT/- iPSCs highly expressed
hepatocyte markers including albumin (ALB), AAT (alpha 1
antitrypsin), HNF4A (hepatocyte nuclear 4 alpha), and ASGR1
(asialoglycoprotein receptor 1) (Fig. 1C). These iHeps could syn-
thesize and secrete substantial human ALB into the supernatant
(Fig. 1D), and also possessed other essential hepatic functions
such as glycogen and lipid storage (Fig. S3B). To conclude, iHeps
derived from ATP7BWT/WT iPSCs, ATP7BR778L/R778L iPSCs and
ATP7BWT/- iPSCs had essential features of functional hepatocytes.
3vol. 4 j 100389
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Correction of ATP7B R778L restores ATP7B subcellular
localization and its trafficking in response to copper overload
Next, differentiated iHeps were used as the cell model to deter-
mine whether correction of the genotype could rescue the dis-
ease phenotype. At relatively low copper levels, ATP7B protein
resides on the membrane of the trans-Golgi network (TGN),
where it delivers copper to copper-dependent proteins such as
ceruloplasmin.2 We used immunofluorescence analysis to reveal
the relative intracellular location of ATP7B protein in the TGN.
Under normal culture conditions (baseline), the distribution of
ATP7B protein was highly co-localized with P230 (a marker of
the TGN membrane) in ATP7BWT/WT iHeps (Fig. 2A & B). In
ATP7BR778L/R778L iHeps, ATP7B and P230 were extensively mis-
co-localized, indicating that most of the ATP7B mutant protein
has failed to reach the TGN – its functional site (Fig. 2A & B).
Notably, in the ATP7BWT/- iHeps, ATP7B and P230 were again
highly co-localized, indicating that the subcellular localization of
ATP7B was restored after gene correction (Fig. 2A & B). In
response to intracellular copper elevation, ATP7B traffics from
the TGN membrane towards the post-Golgi compartments
where it sequesters excess copper and promotes copper
JHEP Reports 2022
excretion.21 ATP7B trafficking is essential for intercellular copper
regulation.21 To further explore the trafficking of ATP7B protein
in response to copper overload, iHeps were exposed to CuCl2 for
2 hours. As expected, in both ATP7BWT/WT iHeps and ATP7BWT/-

iHeps, the ATP7B protein travelled away from the TGN (Fig. 2A)
and the co-localization rate significantly decreased relative to
normal culture conditions (Fig. 2B).

Our results thus demonstrate that correction of the ATP7B
R778L mutation, even in a heterozygous manner, restores ATP7B
protein localization on the TGN and ATP7B trafficking.

ATP7B correction rescues copper exportation capability in
WD iHeps
To further determine whether the copper exportation function
was recovered following gene correction, an MRE-driven lucif-
erase reporter assay was performed (Fig. 2C left panel). iHeps
transfected with MRE-driven luciferase were treated with
different doses of CuCl2 for 24 hours, and the relative intracel-
lular copper level was measured by reading the induced lumi-
nescence signals. Interestingly, ATP7BR778L/R778L iHeps showed
significantly increased luminescence signals after copper
4vol. 4 j 100389
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treatment in comparison with ATP7BWT/WT iHeps or ATP7BWT/

R778L iHeps (Fig. 2C right panel), indicating a much higher
intracellular copper level in ATP7BR778L/R778L iHeps than in
ATP7BWT/WT and ATP7BWT/- iHeps. These results confirmed that
ATP7BR778L/R778L iHeps were less capable of exporting excess
copper from the cell, and that the copper exporting deficiency
could be rescued after gene correction in ATP7BWT/- iHeps.

Transplantation of corrected iHeps alleviated liver injury and
liver fibrosis in WD mice
To determine whether gene-corrected iHeps possess the capacity
to rescue the disease phenotype in vivo, iHeps were transplanted
into the liver of immunocompromised WD mice (Atp7b-/- /
Rag2-/- / Il2rg-/-, ARG) via intra-splenic injection. Intra-splenic
injection of Matrigel was also performed as a sham-operation
group. At 8 weeks post engraftment, animals were sacrificed,
then plasma and tissue samples were collected for further as-
sessments (Fig. 3A). The engrafted iHeps were visualized by
immunofluorescence staining for human specific marker – hu-
man ALB. As shown in Fig. 3B and Fig. S6A, positive cells were
detected in the liver of mice transplanted with ATP7BR778L/R778L

and ATP7BWT/- iHeps, indicating that iHeps could integrate into
the mouse liver and survive in vivo for at least 8 weeks. The
engraftment rates of ATP7BR778L/R778L iHeps and ATP7BWT/- iHeps
were similar at around 5% (Fig. 3C).

Next, we evaluated the therapeutic effect of engrafted iHeps
in ARG mice. The Atp7b+/- / Rag2-/- / Il2rg-/- mice were used as
healthy controls (ARG control), as they were WD-free (Atp7b+/-)
and had an identical genetic background to ARG mice. Plasma
alanine transaminase level was first measured to generally assess
JHEP Reports 2022
the severity of liver injury and revealed a significant reduction in
the ATP7BWT/- iHeps group compared with the sham-operation
group (Matrigel) and ATP7BR778L/R778L iHeps group, indicating
that liver injury was alleviated after ATP7BWT/- iHeps trans-
plantation (Fig. 4A). Apart from ARG control mice, all ARG WD
mice had large areas of liver fibrosis, as determined by Picrosirius
red staining (Fig. 4B & Fig. S6B). Although there was no signifi-
cant difference between the ATP7BR778L/R778L iHeps and sham-
operation group, the ATP7BWT/- iHeps group had significantly
reduced liver fibrosis (Fig. 4C). Consistent with the severity of
liver injury, mice in the Matrigel and ATP7BR778L/R778L iHep
groups showed significantly increased macrophage infiltration
compared with ARG control mice (Fig. S7A & B). Although we
could not ignore the possibility that these macrophages were
contributing to copper clearance, considering that macrophages
were present in the 3 experimental groups and less enriched in
the less affected transplanted group, we could conclude that the
major effects came from the transplanted gene-corrected iHeps.

Transplantation of gene-corrected iHeps reduced hepatic
copper accumulation and copper-induced hepatotoxicity
Since excessive hepatic copper accumulation is the primary
cause of WD,2 it is important to determine whether engraftment
of iHeps to restore ATP7B function can remove excessive copper
from the liver. Rhodanine staining for copper in liver sections
revealed that a reduced number of cells with copper deposition
was observed in mice engrafted with ATP7BWT/- iHeps compared
with the sham-operation and WD groups (Fig. S5A,B). To further
quantify the hepatic copper content, a whole right lobe from
each mouse liver was collected and copper content measured by
5vol. 4 j 100389
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Fig. 4. Transplantation of ATP7BWT/R778L iHeps attenuates liver injury and reduces hepatic copper content in Wilson’s disease mice. (A) Plasma ALT level in
ARG control mice (Atp7b+/- / Rag2-/- / Il2rg-/-) or ARG mice (Atp7b-/- / Rag2-/- / Il2rg-/-) engrafted with the indicated iHeps at 8 weeks post transplantation. (n = 3 in
ARG control mice group or ARG mice transplanted with ATP7BWT/R778L iHeps group, n = 5 in ARG mice transplanted with Matrigel or ATP7BR778L/R778L iHeps
groups; n represents animal number). (B) Representative liver sections with Picrosirius red staining show the status of liver fibrosis in each group of animals.
Scale bar represents 100 lm. (C) Percentage of fibrotic areas calculated according to Picrosirius red staining. (n = 3 in ARG control mice group or ARG mice
transplanted with ATP7BWT/R778L iHeps group, n = 5 in ARG mice transplanted with Matrigel or ATP7BR778L/R778L iHeps groups, and n represents animal number; 5
different liver sections and 3 random fields (100x magnification) per section were calculated for each animal). (D) Hepatic copper content of the indicated mouse
livers, measured by inductively coupled plasma mass spectrometry. (n = 3 in ARG mice transplanted with Matrigel or ATP7BWT/R778L iHeps groups, n = 5 in ARG
control mice or ARG mice transplanted with ATP7BWT/R778L iHep group, and n represents animal number). (E) Representative images of nuclei staining with DAPI
show hepatocyte nucleic structures of liver sections in the indicated mouse group, and cells with nuclear inclusions are indicated with red arrows. Scale bar
represents 25 lm. (F) Percentage of cells with nuclear inclusions in each mouse group calculated according to DAPI staining. (n = 3 in ARG control mice group or
ARG mice transplanted with ATP7BWT/R778L iHeps group, n = 5 in ARG mice transplanted with Matrigel or ATP7BR778L/R778L iHeps groups, and n represents animal
number; 2 different sections and 10 random fields (200x magnification) from each section were calculated for each animal). P values were obtained using one-
way ANOVA adjusted with Dunnett’s multiple comparison; error bars indicate SEM. ALT, alanine aminotransferase; iHep(s), iPSC-derived hepatocyte(s); iPSC,
induced pluripotent stem cell; WT, wild-type.

Research article
ICP-MS. Mice engrafted with ATP7BWT/- iHeps showed signifi-
cantly reduced liver copper content compared with the sham-
operation group (Fig. 4D). Mice engrafted with WD iHeps also
showed a decreasing trend but were not significantly different to
the sham-operation group. These data suggest that trans-
plantation of gene-corrected iHeps facilitated copper removal
and reduced hepatic copper accumulation. Transplantation of
JHEP Reports 2022
WD iHeps also tended to decrease hepatic copper levels, possibly
due to the residual function of the R778L mutant protein.

Nuclear inclusion is considered one of the most frequent ul-
trastructural changes in hepatocytes of patients with WD,2,22 and
the formation of nuclear inclusions is correlated with copper-
induced oxidative stress that causes hepatocyte toxicity.23 As
shown in Fig. 4E, no obvious nuclear inclusions were found in
6vol. 4 j 100389



any liver section from the ARG control mice, indicating that
nuclear inclusions are not normally generated in the healthy
liver. As expected, many nuclear inclusions were observed in
ARG mice following a sham-operation or ATP7BR778L/R778L iHep
transplantation. On the contrary, ARG mice transplanted with
ATP7BWT/- iHeps had significantly fewer nuclear inclusions
(Fig. 4F). This indicates that transplantation of ATP7BWT/- iHeps
decreased copper-induced hepatocyte toxicity in the ARG mouse
liver.

Taken together, gene-corrected ATP7BWT/- iHeps restored
ATP7B functions In vitro and in vivo. Transplantation of ATP7B
competent ATP7BWT/- iHeps decreased copper accumulation in
WD mouse livers and alleviated copper-induced hepatocyte
toxicity and liver fibrosis.
Discussion
In this study, we corrected the ATP7B R778L mutant in WD iPSCs
with CRISPR/Cas9 and ssODNs in a footprint-free manner, and
hence restored the subcellular location of ATP7B and its function
in copper regulation. To the best of our knowledge, this is the
first report of a corrected endogenous ATP7B mutation in iPSCs
derived from patients with WD. We further demonstrated that
transplantation of gene-corrected iHeps alleviated liver injury
and hepatic copper accumulation in a mouse model of WD dis-
ease. In this respect, our footprint-free gene-corrected iHeps
hold great potential for the development of autologous cell
therapies for WD as well as other inherited liver diseases.

Previous studies have shown that overexpression of R778L
mutant protein in several human cell lines24–26 leads to mis-
folding of the ATP7B protein, and consequent failure to localize
to its functional site – the Golgi apparatus. In line with previous
findings, our results demonstrated that ATP7BR778L/R778L iHeps,
with the same genetic background as the patient with WD, had
extensively mis-colocalized ATP7B protein and a significantly
decreased ability to export copper (Fig. 2). Our results demon-
strated that patient-specific iHeps recapitulated the disease
phenotype and could serve as a reliable cell model for studying
disease mechanisms and testing novel therapies for WD.

The CRISPR/Cas9 system is a powerful technique for genome
editing. In combination with homologous recombination tem-
plates, patient-specific iPSC lines can be genetically modi-
fied.27–30 ssODN is one of the widely used homologous
recombination templates and has been shown to genetically
modify the target gene efficiently in a scar-free manner. In our
study, we corrected the ATP7B R778L mutant with CRISPR/Cas9
and ssODNs. Since there were no selection markers employed in
ssODNs, the targeting rate was relatively low (around 1%), while
the benefits of not using selective markers are significant. There
is no need to remove the selection markers, saving time and
effort in subsequent experiments. More importantly, it is a
“footprint-free” genetic modification as it avoids introducing
foreign DNA fragments into the host genome. Given that inte-
gration of foreign DNA sequences has the risk of disturbing some
functional elements and adversely affecting the phenotype of the
cells, the “footprint-free” gene editing approach makes the gene-
corrected cells potentially safer for clinical use.

After gene correction with CRISPR/Cas9 and ssODNs, the
subcellular location and copper regulatory function of the ATP7B
protein were restored in the gene-corrected ATP7BWT/- iHeps.
Since ATP7BWT/- iPSCs were a heterozygous line knocked-in with
ssODNs, this indicates that correction of one allele of ATP7B was
JHEP Reports 2022
sufficient to restore the protein function to a wild-type level.
Since obtaining a heterozygous knock-in iPSC line is easier than
that of homozygous knock-in, our study shows evidence of an
efficient approach to functionally recover ATP7B by correcting
only one allele of ATP7B and provides insight for future gene and
cell therapies.

In line with our in vitro findings, our animal experiments
showed that transplantation of ATP7BWT/WT iHeps and gene-
corrected ATP7BWT/- iHeps alleviated hepatic fibrosis and
reduced hepatic copper accumulation in mouse models of WD,
showing that these iPSC-derived iHeps offer promising thera-
peutic potential for cell replacement therapy in WD. The iHep
engraftment efficiency, �5% in our WDmouse model, is not high,
but comparable with previous studies from other groups14,31,32

(ranging from 2%–17%). In the setting of WD, other studies
have also shown that disease correction can be achieved even
with modest numbers of healthy transplanted wild-type hepa-
tocytes.33 The reason for this is that a limited number of func-
tional hepatocytes is sufficient to clear excess copper from blood,
which reinforces the potential therapeutic interest of trans-
planted gene-corrected iPSC-derived iHeps for treating WD.
Hence, although the overall engraftment efficiency was not high,
the small proportion of engrafted cells helped slow the pro-
gression of liver pathology induced by progressive copper
accumulation.

Increasing the in vivo repopulation efficiency is a challenge
for stem cell-derived hepatocytes. The iHep engraftment effi-
ciency, in this study as well as many other similar
studies,14,32,34,35 was much lower than that achieved by
engrafting primary human hepatocytes.36,37 The low engraft-
ment rate of iHeps is likely attributed to their relative imma-
turity. The 3-stage hepatic differentiation protocol14 employed
in this study is based on a classic method used in several
studies,38–40 but these iHeps derived from iPSCs were relatively
immature, as indicated by continuous expression of fetal liver
markers and low expression of some adult liver markers.39,41

Similarly, we observed a high expression of AFP, a fetal liver
marker, in all groups of iHeps after 17 days of differentiation
(Fig. S4), indicating that the iHeps we obtained remained the
property of fetal livers and were not functionally competent.
Nonetheless our results showed that a small number of trans-
planted cells was still beneficial in alleviating the disordered
liver copper metabolism. This implies that in the future we
might be able to cure WD if a relatively high repopulation ef-
ficiency of functional iHeps can be achieved.

Other than hepatic manifestations, neurological impairment
is also commonly seen in WD disease pathogenesis. In this study,
we focused only on hepatic presentation because the neurolog-
ical impairments are more difficult to study due to the rarity of
neurological symptoms in WD animal models.42–44 Interestingly,
it has been reported that transplantation of liver cells in WD
mouse livers led to reduced copper levels in the liver and
extrahepatic tissues, but not in the brain.43 This implies that liver
cell transplantation may not be capable of clearing copper inside
the brain, or that the transplanted cells require more time to
clear accumulated copper before a reversal in brain copper levels
is evident. Therefore, for patients with mainly neurological
impairment, the therapeutic effects of iHep therapy may be
limited.

In conclusion, our study provides proof-of-principle that
correction of the genotype of WD iHeps can reverse the locali-
zation and function of the ATP7B protein, and these gene-
7vol. 4 j 100389
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corrected iHeps showed promising therapeutic effects in a
mouse model of WD. This technique offers a potential unlimited
JHEP Reports 2022
cell source for autologous cell replacement therapy for WD as
well as other monogenic hepatic disorders.
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