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Abstract

RNA sequencing (RNA–seq) provides novel opportunities for transcriptomic studies at nucleotide resolution, including
transcriptomics of viruses or microbes infecting a cell. However, standard approaches for mapping the resulting sequencing
reads generally ignore alternative sources of expression other than the host cell and are little equipped to address the
problems arising from redundancies and gaps among sequenced microbe and virus genomes. We show that screening of
sequencing reads for contaminations and infections can be performed easily using ContextMap, our recently developed
mapping software. Based on mapping–derived statistics, mapping confidence, similarities and misidentifications (e.g. due to
missing genome sequences) of species/strains can be assessed. Performance of our approach is evaluated on three real–life
sequencing data sets and compared to state–of–the–art metagenomics tools. In particular, ContextMap vastly
outperformed GASiC and GRAMMy in terms of runtime. In contrast to MEGAN4, it was capable of providing individual
read mappings to species and resolving non–unique mappings, thus allowing the identification of misalignments caused by
sequence similarities between genomes and missing genome sequences. Our study illustrates the importance and
potentials of routinely mining RNA–seq experiments for infections or contaminations by microbes and viruses. By using
ContextMap, gene expression of infecting agents can be analyzed and novel insights in infection processes and
tumorigenesis can be obtained.
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Introduction

Next generation sequencing (NGS) technologies provide novel

opportunities for transcriptomic analyses beyond simple quantifi-

cation of gene expression. As one of the major challenges in

analyzing RNA–seq data is the identification of the transcriptomic

origin of each sequencing read (mapping), this has inspired the

development of several novel RNA–seq mapping tools, e.g.

TopHat [1] and TopHat2 [2], MapSplice [3], RUM [4], and

RNASEQR [5]. While all of these rely on fast alignment

algorithms such as Bowtie [6], they use different strategies to

identify reads from exon–exon junctions, a problem unique to

RNA–seq data. In general, these approaches choose the alignment

with the minimum number of mismatches for each read and

cannot resolve multiple possible mappings for a read with the same

alignment score. This problem is addressed by our recently

developed ContextMap method [7], which makes use of

information provided by reads mapped to the same genomic

region and likely originating from transcripts of the same gene.

Thus, ContextMap does not aim at finding the mapping with the

minimum number of mismatches, but the most likely mapping in

the context of all other reads, in this way resolving non–unique

mappings with high accuracy. It can be applied both to resolve

non–unique mappings of other mapping tools as well as in

standalone mode (see www.bio.ifi.lmu.de/ContextMap).

Independent of the mapping algorithm used, reads are usually

only mapped against the reference genome (and sometimes

transcriptome) of the species for which samples were collected.

This completely ignores the possibility that reads may originate

from other sources, e.g. unexpected contamination of samples,

such as Mycoplasma species which are often found as contaminants

in cell cultures, as well as viral or microbial infections of patients

from which samples were derived. As RNA–seq protocols cannot

distinguish between RNA from different species, mRNA from the

infecting species will automatically also be sequenced. Indeed, dual

RNA–seq of a pathogen and its host has recently been proposed

for studying expression changes in both species simultaneously [8]

and has already been performed for MCMV infection [9]. While

in this case the infecting species is known and an additional

mapping against the corresponding genome is sufficient, for most

applications contaminations or infections are not known before-

hand.

Such an application would be the diagnostic screening of patient

samples for unknown microbial or viral infections. Here, precise

identification of the infecting agent is essential for medical

treatment. Furthermore, it can provide novel insights into diseases,

in particular tumorigenesis, by connecting them to otherwise

undetected infections. One example that shows this nicely are the

cervical cancer–derived HeLa cells. Human papillomaviruses

(HPV), in particular HPV–16 and –18, have since been recognized

as a predominant cause of cervical cancer [10,11] and HeLa cells

have been shown to express transcripts of the integrated HPV–18

genome [12]. As we show in this study, HPV–18 expression can be

easily detected in RNA–seq data of HeLa cells. While in this case

this only confirms previous knowledge, in other cases novel

connections between viral infections and tumorigenesis can be

detected. For instance, Castellarin et al. [13] used RNA–seq of

PLOS ONE | www.plosone.org 1 September 2013 | Volume 8 | Issue 9 | e73071



tumor and normal tissue samples to link colorectal carcinoma to

Fusobacterium infection.

With standard RNA–seq mapping tools, mapping both against

the host reference genome and all available microbial and viral

genomes is only possible using a sequential approach [14] and

requires additional steps for resolving non–unique read mappings

that often occur due to local or global similarities between

genomes. In contrast, ContextMap can be directly applied to

automatically mine for reads from an arbitrary number of

genomes since it already implements sophisticated strategies for

resolving multiple read alignments. This makes it possible to also

apply ContextMap for metatranscriptomics of species communi-

ties, e.g. the gut microbiome. While a number of such

metatranscriptomics studies have already been performed [15–

18], these generally used BLAST to identify the involved species

and did not even use existing metagenomics methods (e.g.

MEGAN4 [19], GRAMMy [20], or GASiC [21]) for species

identification.

In this study, we show how ContextMap can be easily used to

identify reads from multiple sources in parallel such as viral and

microbial genomes. Furthermore, we present methods based on

mapping–derived statistics to assess confidence of mappings to the

identified species/strains and identify false positive hits due to

similarities between genomes and missing genome sequences.

While some of these methods require information only provided

by the ContextMap algorithm, they can in general also be

extended to post–process output of other mapping approaches.

We illustrate the performance of the proposed methods on three

applications. First, we use RNA–seq data of HeLa cells to

characterize HPV–18 expression in these cells and correlate this to

ongoing cell proliferation. Second, we illustrate the potential

pitfalls of misidentifying species or strains in case of missing

genome sequences based on a re–analysis of the Castellarin et al.

data and show how these pitfalls can be avoided. Finally, for in–

vitro sequencing data of a microbial community, we show how the

involved species/strains can be identified despite the presence of

several very closely related species/strains in the reference set and

compare our results to MEGAN4, GRAMMy and GASiC as well

as a number of other metagenomics tools.

Materials and Methods

Identifying Sequencing Reads from Multiple Sources
using ContextMap

The original implementation of ContextMap presented previ-

ously [7] focused on refining initial mappings provided by other

mapping algorithms. We recently developed a standalone version

that can provide these initial mappings itself (see www.bio.ifi.lmu.

de/ContextMap for details). Here, the central concept of both

ContextMap versions is the so–called read context. This is defined

as a set of reads originating from the same stretch of the genome,

indicating that these reads were derived from the same transcript

or different transcripts of the same gene. These contexts are

defined based on the initial mapping and then extended in a

subsequent re–alignment step, allowing a high degree of ambiguity

both between and within contexts. For this purpose, ContextMap

uses a modified version of Bowtie to identify spliced read

alignments in a combination of forward and backward alignments.

For each read not only the alignment with the minimum number

of mismatches but any alignment to any context with at most a

maximum number of mismatches is investigated. The unique

mapping for the read to only one context is then determined by

first finding the best mapping for the read in each context and

subsequently finding the best context. For this purpose, a support

score is used, taking into account the number of reads mapping

within and around the region to which the read is aligned. Until

the final step, contexts are treated independently of each other (see

Figure S1).

As we show in this article, the advantage of this approach is that

it allows investigating many alternative sources of reads in parallel,

such as rRNA sequences, which are generally not included in

reference genome assemblies of higher eukaryotes, as well as viral

and microbial genomes. Contexts are then identified separately for

each genome including the optimal context in each genome for

each read. The final step is then used to decide for each read

which of these contexts in any of the genomes considered results in

the best mapping.

The parallel multi–species mapping is implemented by Con-

textMap in the following way (Figure 1 A). First, independent

Bowtie indices are created for different potential read sources.

Separate indices are necessary as Bowtie is limited to 232–1

characters per index. This is relevant as the human genome alone

needs 73% of the maximum index size and all microbial genomes

from the NCBI database taken together require 134% of the

maximum index size. We, thus, generally use one index for rRNA

sequences, one for the host genome, e.g. the human reference

genome, one for virus genomes and two for microbe genomes.

This can be easily adjusted to more indices as soon as the

increasing number of sequenced virus and microbe genomes

makes this necessary. After performing the initial alignment

against all indices, ContextMap is then run without any further

changes to define contexts, the optimal mapping for each read in

each context it may belong to and finally the optimal and unique

mapping for each read to any context.

In contrast to ContextMap, other RNA–seq mapping tools,

which predominantly also use Bowtie, cannot be used for this

application as they do not support the use of multiple indices

required here due to the size and number of reference sequences

and provide no way to distinguish between alternative alignments

for a read to two different but related genomes with the same

number of mismatches. Thus, they can only be applied

sequentially by mapping first all reads e.g. against rRNA

sequences, then the unmapped reads against the host reference

genome, and then one microbe or virus genome one after the

other. However, the latter approach also poses problems as it can

lead to different results depending on the order in which genomes

are mapped to in case of closely related species or strains.

Analysis of Species Hits
The mapping of reads to reference genomes using any

algorithm directly implies a set of species potentially contained

in the sample. Please note that in the following we use the term

species loosely, in particular in the context of misidentification of

species, and it may also refer to a particular strain of a species,

represented by a specific genome sequence in the reference

database. In particular for bacteria, the distinction between strains

and species is not clearly defined and species definition remains a

difficult topic. The standard approach is now to use genome

sequence differences and a cutoff of 95% average nucleotide

identity is often used [22]. However, for species/strains for which

no genome sequence is available, nucleotide identity to sequenced

species/strains cannot be calculated. Thus, it cannot be deter-

mined whether they represent a different species or only a different

strain of a species with known genome sequence.

Independent of which mapping algorithm was used to identify

species potentially contained in a sample, a number of problems

arise that need to be addressed. First, local similarities in the

genome of one species not contained in the sample (species A) to a
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species contained in the sample (species B) may result in reads

erroneously mapped to species A and the reporting of this species

for the sample. Second, gaps in the reference database may lead to

both missing and incorrect hits. If no genome from the species

itself or closely related species is contained in the reference

database, fast mapping algorithms, including ContextMap, which

tolerate only a limited number of sequence differences, will fail to

align the corresponding reads. This type of missing species hits is

only a minor problem as a slower but more permissive BLAST run

applied to unmapped reads may at least detect the infection by

identifying more distant relatives of the infecting pathogen. A

more severe problem are misalignments in case that genome

sequences are only available for closely related species. In this case,

reads are incorrectly aligned to these related species, resulting in

the identification of wrong species. For instance, in the recent

study by Castellarin et al. [13] several Pseudomonas syringae strains,

which are plant pathogens, were likely misidentified in samples of

colorectal carcinoma.

In the following, several statistics derived from read mappings

are described that can be used to address the described problems

and confidently identify the species contained in the sample (see

Figure 1 B). Coverage and divergence of mismatch distributions

can be calculated based on mappings provided by any algorithm.

Calculation of species mapping confidence and distances between

species relies on the support score calculated by ContextMap for

each read mapping, but can be adapted to methods evaluating

only the number of mismatches. All methods are available as part

of the ContextMap software suite available at http://www.bio.ifi.

lmu.de/contextmap.

Read numbers. The standard approach for identifying the

species contained in a sample based on the read mapping is to

choose those species with the highest numbers of mapped reads.

This is an important measure as small read numbers tend to

indicate less likely matches. However, it can be misleading as local

similarities to very small regions of the genome can lead to

artificially high read numbers. As a consequence, we use read

numbers only as one criterion for a hit and combine this with

several other measures.

Coverage. To identify random matches, i.e. cases in which

many reads are mapped to a small genome region only, we

calculate the coverage of the genome by reads:

coverage~
#positions with mapped reads

: ð1Þ

Here, only the start positions of reads are counted. Mapping of

reads to only a small fraction of the genome will result in very

small coverage, suggesting a random hit. However, as coverage is

influenced strongly by sequencing depth, low coverage for a

correct hit may be observed in case of low sequencing depth.

Thus, other measures have to be used in combination with

coverage.

Mismatch distributions. Assuming that the average se-

quencing error is approximately the same for all species in the

sample, an increase in mismatches in aligned reads for a species

indicates that the identified species differs considerably from the

actual species in the sample. To identify such cases, we compare

the distribution of sequencing errors on mapped reads for each

predicted species hit against a reference species for which we are

certain that it is contained in the sample (e.g. the host species). The

difference between the two mismatch distributions is calculated

using the Kullback–Leibler divergence:

DKL(PEQ)~
X

i

log
P(i)

Q(i)

� �
P(i): ð2Þ

Here, P(i) and Q(i) are the fractions of mapped reads with

i mismatches for the species under consideration and the

reference species, respectively. Essentially, this quantifies the

amount of information lost if Q is used to approximate P. As

the Kullback–Leibler divergence is non–symmetric, i.e.

DKL(PEQ)=DKL(QEP), we use a symmetric measure based on

DKL, the so–called Jensen–Shannon divergence:

DJS(PEQ)~
1

2
DKL(PEM)z

1

2
DKL(QEM), ð3Þ

where M~ 1
2

(PzQ). The advantage of DJS is that it is symmetric

and has a clear–defined upper bound (~1 if the base 2 logarithm

Figure 1. Mining RNA–seq data for infections and contaminations. (A) Approach for mapping sequencing reads in parallel to multiple
sources of reads using ContextMap. (B) After obtaining unique mappings to the species in the reference set, different questions can be addressed.
Random hits to only a small region of the genome can be identified by investigating coverage. Strong similarities in terms of possible read mappings
between different species in the reference set can be identified by analyzing confidence and species clusterings. Finally, by analyzing mismatch
distributions in terms of the Jensen–Shannon divergence, it can be determined if reads have been mapped to the correct genome or only to a close
relative due to missing genome sequences or local genome similarities.
doi:10.1371/journal.pone.0073071.g001
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is used for calculating DKL [23]). Furthermore, its square–rootffiffiffiffiffiffiffiffi
DJS

p
is a metric [24]. Thus, in the following we will use

ffiffiffiffiffiffiffiffi
DJS

p
to

quantify differences of mismatch distributions between the

identified species and the reference genome. Please note that for

our examples DKL(PEQ) and
ffiffiffiffiffiffiffiffi
DJS

p
(PEQ) were highly correlated.

The Jensen–Shannon divergence provides a quantification of

the divergence between the actual species in the sample and the

identified best hit but suggests no clear cutoff to discard potential

hits. Instead, the choice of the cutoff depends strongly on the

application and the taxonomic level one is interested in. If the

focus is on the genus level only, one may accept higher values offfiffiffiffiffiffiffiffi
DJS

p
than for species identification. If one aims at identifying the

actual strain even lower values of
ffiffiffiffiffiffiffiffi
DJS

p
are acceptable.

As for the other measures proposed in this article, low
ffiffiffiffiffiffiffiffi
DJS

p

should not be considered as the only criterion for a hit as it may

result from random hits to a small region of a genome with few

mismatches. Thus, other measures as coverage and the species

mapping confidence as introduced below should also always be

evaluated. In any case, high
ffiffiffiffiffiffiffiffi
DJS

p
with a shift towards an

increased number of mismatches indicates substantial divergence

of the sequenced genome from the species in the sample,

suggesting misidentification of the infecting species or strain.

Species mapping confidence. To identify mismappings due

to similarities between genome sequences we calculate a score

quantifying the confidence of read mappings to each species. Here,

confidence for an individual read mapping is evaluated in terms of

the support score difference between best and second–best

mapping provided by ContextMap. Please note that the final

output of ContextMap contains only the single best mapping for

each read to any of the provided reference genome sequences.

Only the score of the second–best mapping is recorded for

calculation of mapping confidence. For each species A, we

calculate the following mapping confidence score relative to a set

of other species S (A=[S):

conf (A,S)~
1

DRAD

X
r[RA

s1(r){s2(r)

s1(r)
: ð4Þ

where RA is the set of reads mapped to A, s1(r) the support score

for r in species A, and s2(r) the best support score of r to a species

in S. If a read r cannot be mapped at all to any other species in S,

s2(r)~0. As s1(r)§s2(r), confidence is between 0 and 1 and low

species confidence indicates that many of the assigned reads might

alternatively be mapped to another species in S with only a little

reduction in the score. The confidence score definition can be

easily adapted to other mapping approaches by defining a support

score measure for the corresponding mapping algorithm, e.g.

based on the number of mismatches.

Clustering of genome hits. As ContextMap always assigns

unique mappings to reads, a number of reads may still be mapped

to related genomes for which they might be a better match due to

sequencing errors. This is in particular the case if the genome for

the microbe or virus contained in the sample is not known. In this

case, reads from this microbe or virus may be dispersed over many

relatives depending on local similarities. To identify such reads

that likely originate from the same genome, we perform a

clustering of genome hits using a dissimilarity function that is

based on the relative mapping confidence of two genomes with

regard to each other as defined in equation 4. The mapping

dissimilarity of genome X and Y is defined as

d(X,Y)~
conf(X,fYg)zconf(Y,fXg)

2
ð5Þ

Thus, if many reads mapped to genome X could alternatively

be mapped almost as well to genome Y and vice versa, d is small.

Like the confidence function, d is in the range of 0 and 1.

Furthermore, it is symmetric and can be used with standard

distance–based clustering methods.

Data Sets
RNA–seq of HeLa cells. RNA–seq data of HeLa cells were

taken from the study of Guo et al. [25] who analyzed regulation of

mammalian cells by miRNAs using both RNA–seq and ribosome

profiling (Gene Expression Omnibus accession no. GSE22004). In

this study, Illumina RNA–seq was performed for miRNA

transfected HeLa cells at 12 and 32 h post–transfection. We used

the RNA–seq data of mock and miR–155 transfected cells at 12 h

post–transfection (28,735,355 and 29,595,334 36 bp reads,

respectively).

RNA–seq of human colorectal carcinoma samples. For

the second analysis, we used RNA–seq data for matched pairs of

colorectal carcinoma and adjacent normal tissue samples from the

study of Castellarin et al. [13]. Sequencing reads (75 bp) for 12

pairs of tumor and normal tissue were downloaded from the NCBI

Sequence Read Archive (accession no. SRP007584). Although

Castellarin et al. reported only the analysis of 11 sample pairs, 12

were available for download and no indication was given which of

these were analyzed. Thus, we used all of them.

DNA–seq of in–vitro microbial communities. To com-

pare our approach against standard metagenomics tools, we used

pyrosequencing data of an in–vitro simulated microbial community

[26]. In this study, cultures for 10 species (yeast, Halobacterium sp.

NRC–1, Pediococcus pentosaceous, Lactobacillus brevis, Lactobacillus casei,

Lactococcus lactis subsp. cremoris SK11, Lactococcus lactis subsp. cremoris

IL1403, Myxococcus xanthus DK 1622, Shewanella amazonensis SB2B,

Acidothermus cellulolyticus 11B) were grown, cell pellets from a known

number of cells for each species were mixed and DNA was

extracted and sequenced. Thus, the exact species contained in this

sample were known beforehand. Sequencing reads for pyrose-

quencing data were downloaded from the NCBI Short Read

Archive (accession no. SRA010765.1). To simulate NGS data,

which in contrast to pyrosequencing data is characterized by both

a uniform read length as well as shorter reads, we trimmed reads

to 100 bp and discarded reads shorter than 100 bp, resulting in

484,629 reads.

Reference genomes. Reference genomes for human

(GRCh37) and yeast (sacCer3) were downloaded from the UCSC

genome website (http://genome.ucsc.edu/). Completed microbe

and virus genomes from RefSeq release 52 were downloaded from

the NCBI ftp site (2919 microbial and 4092 viral genomes). For

the analysis of the colorectal carcinoma data, we additionally used

draft genome sequences from the Human Microbiome Project

[27].

Results and Discussion

HPV–18 Expression in HeLa Cells
RNA–seq data of HeLa cells from the study of Guo et al. [25]

were mapped using ContextMap against indices for human, viral

and microbe genomes and human rRNA. For the initial Bowtie

runs a seed of 25 bp was used allowing up to 1 mismatch in the

seed, the same settings used by Guo et al. In total, 5 mismatches

Mining RNA-Seq Data
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were allowed, resulting in 11,040,798 (38.4%) and 10,162,289

(34.3%) mapped reads for the mock and miR–155 transfected

cells, respectively. This is only 0.4 and 1.8 million reads less than

mapped by Guo et al., although they allowed an arbitrary number

of mismatches outside the seed, i.e. up to 12 mismatches. Although

Guo et al. did not perform alignment against viral or microbial

genomes (but also rRNA), only few (*35,000) of the reads

additionally mapped by ContextMap originated from viral or

microbial genomes. Most reads additionally aligned by Context-

Map were discarded by Guo et al. due to non–unique alignments.

Interestingly, *1:94 million reads originated from rRNA, which

illustrates the importance of including rRNA sequences in the

mapping process even though poly–A selection was performed.

Tables S1 and S2 show coverage, mapping confidence andffiffiffiffiffiffiffiffi
DJS

p
compared to the human reference genome for all species

with at least 1,000 mapped reads. Figure S2 illustrates coverage for

all microbial or virus hits. Here, HPV–18 is the only virus or

microbe with a coverage &0:01 (0.34–0.37), high confidence

(*1:0) and small
ffiffiffiffiffiffiffiffi
DJS

p
(v0:05) in both samples. This confirms

previous reports of HPV–18 expression in HeLa cells [12]. In

contrast, no reads were mapped to HPV–16, which is not

expressed in HeLa cells. Figure 2 A shows the distribution of reads

across the HPV–18 genome both in the mock and miR–155

transfected cells. Here, results were highly reproducible between

the two samples with peaks in read heights at the same genomic

locations. The mapping to genes showed that only the E6, E7 and

E1 genes were strongly expressed. In addition, weaker expression

by an order of magnitude was observed for L1 as well as for a

region covering the end of E1 and the start of E2. However, as no

reads were observed for the rest of E2, it is likely not expressed.

The same was true for genes E4, E5 and L2. These observations

are in accordance with recent results showing that the oncogenes

E6 and E7 are essential for continued proliferation in cervical

carcinoma [28]. Both genes are transcriptionally repressed by the

E2 protein and loss of E2 expression leads to upregulation of E6

and E7 [29]. Thus, loss of E2 expression in HeLa cells as well as

high E6 and E7 expression is consistent with their origin from

cervical carcinoma cells and ongoing proliferation.

This shows that our approach is capable of identifying HPV–18

infection in HeLa cells and distinguishing this from spurious

matches to other species. However, as less than 1% of reads in our

samples originated from HPV–18 (22,105 and 18,491, respective-

ly), the question remains which sequencing depth is necessary for

confidently identifying such an infection. To investigate this

question, we randomly sampled reads from the miR–155 data set

with sample sizes between 104 and 107 (see Figure 2 B). For each

sample size, 10 random repetitions were performed and reads

were mapped using ContextMap as described. Here, a sequencing

depth of as low as 500,000 reads (1.7% of all reads) was sufficient

to clearly distinguish the HPV–18 infection from spurious hits to

other species. Although only 303 HPV–18 reads were identified on

average at this sample size, almost all of these reads (90%) were

mapped to distinct genome positions, resulting in a coverage of

*0:034. Although this coverage is small, it is more than an order

of magnitude larger than for any of the other species at this

sequencing depth and increases much faster with increasing

sequencing depth.

To compare the proposed method against alternative approach-

es, we performed megablast alignments for the miR–155 data set

against all microbial and viral genomes as well as human rRNA

sequences and the human mitochondrial genome. Alignments with

an E–value ƒ0:01 were then evaluated using MEGAN4. A

megablast comparison against the complete human genome was

aborted as output files already reached 10GB after mapping only

28% of reads against 30% of the genome, which would have

resulted in an estimated 120GB of output (for an input of only

0.84GB). Since GASiC and GRAMMy could only be run in

reasonable time on the w60–fold smaller in–vitro microbial

community data set by restricting them to the 10 species in

question, we did not evaluate them here. MEGAN4 results are

shown in Figure S3 both with and without the additional

alignment against human rRNA and mitochondrial genome

sequences. In both cases, HPV–18 is clearly detected although

762 fewer reads (4.1%) are assigned than by ContextMap despite

the fact that an arbitrary number of mismatches and gaps are

allowed by BLAST.

However, without additionally BLASTing against human

rRNA and the mitochondrial genome, w11,000 reads each are

assigned to one bacterial (Rickettsia rickettsii str. Hino) and one viral

(Choristoneura occidentalis granulovirus) species. When including human

sequences for mapping, most of these are assigned to the inner

nodes ‘‘cellular organisms’’ and ‘‘root’’, reflecting sequence

similarities between human rRNA and the Rickettsia genome

(lowest common ancestor (LCA) = ‘‘cellular organisms’’) and the

Figure 2. Characterization of HPV–18 infection in HeLa cells. (A) Distribution of reads across the HPV–18 genome for the mock and miR–155
transfected cells. Read numbers are shown in log scale. Expressed genes include E1 as well as E6 and E7, which are required for ongoing proliferation
in cervical carcinoma [28]. L1 also appeared to be weakly expressed, however the expression pattern did not exactly correspond to the annotated
gene coordinates. While the start of the gene was not expressed, L1 expression was extended to a region downstream of the gene. (B) Coverage as a
function of increasing sequencing depth was evaluated by randomly sampling from the miR–155 data set. Coverage is shown as an average of ten
repeated samplings for HPV–18 (black) and other species (gray). Sample size is annotated to the HPV–18 data points.
doi:10.1371/journal.pone.0073071.g002
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human mitochondrial genome and the Choristoneura genome

(LCA = ‘‘root’’), respectively. These results show the importance

of also including the host species into mapping, as otherwise

Rickettsia and Choristoneura would be reported erroneously for this

sample. Here, MEGAN4 provides no direct way for identifying

these hits as suspicious, e.g. by calculating coverage or mismatch

distributions, or for resolving the non–uniquely mapped reads

assigned to inner nodes. In contrast, ContextMap correctly assigns

90% of the Choristoneura BLAST hits to human rRNA and only 5%

to Choristoneura. Furthermore, 88% of the Rickettsia BLAST hits are

correctly identified as originating from human RNA (83% from

mitochondrial RNA) by ContextMap and only 1% are assigned to

Rickettsia. In addition, the few Choristoneura and Rickettsia reads

assigned by ContextMap are clearly flagged as misalignments by

very high values of
ffiffiffiffiffiffiffiffi
DJS

p
(w0:55).

The Microbiome of Colorectal Carcinoma
In the second analysis, we focused on the RNA–seq data of

colorectal carcinoma and adjacent normal tissue from the study of

Castellarin et al. [13]. This data set was interesting as they

identified a Fusobacterium to be enriched in colorectal carcinoma

cancer. In addition, they reported a number of microbes that are

unlikely to occur in colon tissue, e.g. Pseudomonas fluorescens SBW25,

which was found at high levels in all samples, and two Pseudomonas

syringae strains. P. fluorescens is mostly found in soil and water,

whereas P. syringae are plant pathogens. While in the first case

occurrence in colon samples might still be possible, e.g. due to

contamination, in the latter case it is very unlikely. Although

mapping with ContextMap also identified all three Pseudomonas

species in all tumor and normal tissue samples,
ffiffiffiffiffiffiffiffi
DJS

p
compared to

the human reference genome was larger than 0.2 in all three cases

(Figure S4), in particular for Pseudomonas syringae pv. syringae where

more than half of the reads had at least 3 mismatches

(
ffiffiffiffiffiffiffiffi
DJS

p
~0:458). This indicates that the actual Pseudomonas species

contained in the sample is not yet sequenced, resulting in reads

from these species mapped to a number of related Pseudomonas

species.

Based on these observations, we performed the same analysis for

Fusobacterium. Previously, Castellarin et al. identified Fusobacterium

nucleatum subsp. nucleatum as overrepresented in the RNA–seq data

of the tumor tissues. Subsequent DNA sequencing of a Fusobac-

terium culture isolated from the tumor samples and mapping of

reads against additional Fusobacterium draft genomes from the

Human Microbiome Project (HMP), however identified Fusobac-

terium sp. 3_1_36A2 as a much better match than F. nucleatum. As F.

sp. 3_1_36A2 was extracted from the colon of a patient, this makes

more sense than F. nucleatum, which was isolated from the human

oral cavity and is most commonly found there.

To re–capitulate their analysis, we performed mapping of tumor

samples using ContextMap both with and without the human

microbiome in addition to the RefSeq genomes. Without the

human microbiome index, F. nucleatum was identified in all tumor

samples, in particular in samples from patient 1 (*100,000 reads,

Figure 3). However, the mismatch distribution differed consider-

ably from the mismatch distribution for the human genome

(
ffiffiffiffiffiffiffiffi
DJS

p
~0:203 for patient 1), clearly indicating that F. nucleatum

subsp. nucleatum is not contained in the sample but only a related

species. Indeed, when performing mapping including the human

microbiome, almost all of the reads originally mapped to F.

nucleatum are mapped to contigs of other Fusobacteria species, such

as sp. 3_1_33, sp. 11_3_2, sp. D11, sp. 7_1, and sp. 21_1A, which

were isolated from biopsy tissues from the gastrointestinal tract.

Furthermore, the primer sequences used by Castellarin et al. to

confirm the presence of Fusobacterium are a better match to these

species, with both primers matching with at most 2 mismatches,

whereas for Fusobacterium nucleatum one primer has 3 mismatches.

Among the identified Fusobacteria, F. sp. 3_1_33 has the highest

number of reads for patient 1 (w50,000) and smallest
ffiffiffiffiffiffiffiffi
DJS

p

(0.073). It is also enriched in the tumor sample compared to the

normal tissue, but not as strongly as some other species from the

HMP with fewer mapped reads, in particular some E. coli strains

(Table S3). Although a comparatively small number of reads

(1,372) are still assigned to F. nucleatum even with the inclusion of

the human microbiome, the mismatch distribution still diverges

strongly from the human reference (
ffiffiffiffiffiffiffiffi
DJS

p
~0:253) and is unusual

in that it has a higher number of reads both with zero and with

four mismatches. Together with the observations that
ffiffiffiffiffiffiffiffi
DJS

p
for F.

sp. 3_1_33 is still higher than in the HPV–18 example, a number

of other Fusobacteria are also found with substantial read numbers,

and most of the F. sp. 3_1_33 reads can be aligned almost equally

well to the other gastrointestinal Fusobacteria, this suggests that F. sp.

3_1_33 is also not the actual strain in the sample. However, it

appears to be a much closer relative than F. nucleatum. This also

shows that
ffiffiffiffiffiffiffiffi
DJS

p
should always be analyzed in combination with

read numbers as local similarities may allow the mapping of some

reads to a wrong species with few mismatches.

To compare our results against other approaches, we extracted

all reads for the tumor sample of patient 1 that were not mapped

to human sequences (including rRNA) by ContextMap (404,234

reads) and performed both megablast and novoalign (http://www.

novocraft.com) alignments for these reads against virus and

microbe genomes and the human microbiome. Novoalign was

used by Castellarin et al. to align reads to the bacterial and viral

Figure 3. Comparison of mismatch (mm) distributions for Fusobacteria. Results are shown for species identified by ContextMap with at least
20 reads on the colorectal carcinoma samples for patient 1 using either only the completed microbe genomes as reference set (left) or also the
human microbiome draft genome sequences (right). Distributions are compared against the average mismatch distribution for the human genome.
Number of reads mapped to each genome and

ffiffiffiffiffiffiffiffi
DJS

p
are indicated in parentheses.

doi:10.1371/journal.pone.0073071.g003
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genomes after filtering out all reads that could be aligned to

human rRNA, cDNA or the reference genome using BWA [30], a

fast short read aligner applying a similar strategy as Bowtie. Thus,

we effectively recapitulated their analysis in our study, this time

also including the human microbiome. Again MEGAN4 was

applied to the BLAST output as shown in Figure S5. Almost all

(w99%) of the Fusobacteria reads could be aligned to more than one

Fusobacterium, thus, resulting in an assignment of these reads to

their LCA by MEGAN4. In addition, MEGAN4 allows no further

analysis as to which of the identified Fusobacteria is the most likely

candidate or closest relative of the species or strain contained in

the sample.

Novoalign was applied in two modes: one outputting all

alignments for a read with the same maximum score and one

outputting only unique alignments (Figure 4). To compare against

the ContextMap results and calculate
ffiffiffiffiffiffiffiffi
DJS

p
compared to the

reads mapped to human by ContextMap, we then extracted only

those alignments with at most 5 mismatches and no gaps. Please

note that read numbers were hardly increased for the Fusobacteria if

gaps were allowed. For evaluation of the novoalign mode allowing

multiple alignments, we used only one of the best alignments for

each read for each genome, but allowed multiple alignments with

equal score to different genomes. Here, almost all reads could be

aligned equally well to more than one genome with v1% unique

read alignments per genome. Although *57,000 reads were still

aligned to F. nucleatum, only 44 of these were unique and *98%

were aligned equally well to F. sp. 3_1_33. Again, this illustrates

the problems similarities between sequenced genomes present for

mapping algorithms that are based only on the individual read

alignments. Without taking into account alignments of other reads,

they may only either completely exclude or include non–unique

alignments. In this application, a restriction to unique alignments

would vastly underestimate Fusobacterium expression in the sample,

whereas the inclusion of non–unique mappings would result in the

reporting of essentially all of the identified Fusobacterium species. In

this case, evaluation of
ffiffiffiffiffiffiffiffi
DJS

p
is not meaningful as due to the

multiple mappings the sets of reads assigned to each species and,

consequently, the calculated mismatch distributions are very

similar.

Meta–transcriptomics for an in–vitro Simulated Microbial
Community

For the final analysis, we analyzed DNA sequencing data for an

in–vitro simulated microbial community by Morgan et al. [26] and

compared our results against several state–of–the–art metage-

nomics tools, in particular MEGAN4 [19], GRAMMy [20], and

GASiC [21]. This data set was selected as the species contained in

the samples were known. Furthermore, it constituted a challenging

application due to strong similarities of the genomes of the

microbial strains contained in the sample to other sequenced

genomes. One example for this is Halobacterium sp. NRC–1, whose

genome is almost identical to the Halobacterium salinarum R1

genome [31]. They differ only by 4 base changes, 5 single–

nucleotide indels and 3 longer indels between 133 and 10,007 bp

long.

We investigated the performance of ContextMap on this data

set using a reference containing the yeast genome and all microbial

and viral genomes downloaded from NCBI (see methods) and

allowing 5 mismatches. To compare our results against BLAST as

well as MEGAN4 and GRAMMy, which use BLAST alignments

as input, we performed megablast searches against the same

genomes and extracted all alignments with the maximum score for

each read, using only alignments without gaps and at most 5

mismatches. Here, 12% of reads could be aligned equally well to at

least two different RefSeq entries using BLAST. In addition, we

applied GASiC to all genomes from the same genus as any of the

species contained in the sample (122 RefSeq entries, 92 taxa). The

same restriction was applied to GRAMMy as both methods

already took more than 7 CPU hours on this smaller set compared

to *30 min for ContextMap on all microbes and viruses (Table

S4).

Table S5 lists the microbe and virus hits identified by

ContextMap with a coverage w10{5 and at least 20 reads. Here,

ContextMap identified all of the microbial species contained in the

sample, but also several related strains and prophages. As

Myxococcus xanthus had the highest number of mapped reads, we

used it as reference for calculating
ffiffiffiffiffiffiffiffi
DJS

p
. Interestingly, all

microbes that are contained in the sample had a higher mapping

confidence than all other hits despite low numbers of reads for

some of them.

For five species, identification is straightforward based on this

list. A. cellulolyticus, S. amazonensis, L. brevis, and M. xanthus are

characterized by high mapping confidence (w0:98), low
ffiffiffiffiffiffiffiffi
DJS

p

(v0:05) and high number of reads and coverage. For P. pentosaceus

confidence is also high and
ffiffiffiffiffiffiffiffi
DJS

p
still relatively low (0.064), but

coverage is quite small (v10{3). However, as 90% of the reads

map to distinct positions, it is clearly a correct hit and the low

coverage is likely due to low abundance of P. pentosaceus in the

simulated community. In the clustering of species hits, these five

species also form distinct clusters with no similarities to any of the

other species hits (Figure 5).

Figure 4. Number of reads and mismatch distributions for the novoalign mapping on the Fusobacteria. Results are shown for species
identified by aligning with novoalign against viral and microbial genomes and the human microbiome for the patient 1 colorectal carcinoma sample.
Only reads were used that were not mapped to human sequences by ContextMap. Mismatch distributions are compared against the average
mismatch distribution for the human genome derived from the ContextMap mapping. Number of reads mapped to each genome and

ffiffiffiffiffiffiffiffi
DJS

p
are

indicated in parentheses. The left–hand side shows results if multiple read alignments with the same maximum score to different species are allowed.
The right–hand side shows the results for unique alignments only.
doi:10.1371/journal.pone.0073071.g004
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For the remaining hits the situation is less clear–cut. Here,

clustering identified three large groups among these: (1) a

Halobacterium cluster, (2) a Lactococcus cluster, and (3) a Lactobacillus

cluster. In the first case, H. sp. NRC–1 clusters tightly with H.

salinarum R1 and the plasmids also cluster together, reflecting the

small number of sequence differences between these. In all of these

cases,
ffiffiffiffiffiffiffiffi
DJS

p
is relatively small (ƒ0:08), with the only exception

being H. sp. NRC–1 for which all 50 reads have zero mismatches,

i.e. fewer mismatches on average (Figure S6). Additionally,

confidence for NRC–1 (0.37) is much higher than for R1 (0.07).

Thus, although significantly fewer reads are mapped to NRC–1, all

other mapping statistics support the presence of the NRC–1 strain

rather than the R1 strain. However, since both strains are almost

identical,
ffiffiffiffiffiffiffiffi
DJS

p
is still very low for the R1 strain (0.02).

In the second cluster, read numbers, confidence and
ffiffiffiffiffiffiffiffi
DJS

p

clearly indicate the presence of L. lactis subsp. lactis Il1403.

Although
ffiffiffiffiffiffiffiffi
DJS

p
(0.07) is somewhat increased compared to the

microbes identified unambiguously, it is not yet large enough to

question this hit. For all other Lactococcus lactis strains, in particular

cremoris SK11, the number of mismatches is significantly increased,

indicating that these are not contained in the sample. This is

surprising as SK11 was part of the community. The reason for this

is that 99% of the reads potentially mapping to SK11 can be

aligned equally well to other species, in particular to L. lactis subsp.

lactis Il1403. As the latter is more abundant, it ends up with most of

the reads, apart from those with too many mismatches. Finally,

analysis of the last cluster confirms the presence of L. casei ATCC

334 as it is characterized by high coverage and confidence and

sufficiently low
ffiffiffiffiffiffiffiffi
DJS

p
(0.06). The other strains in the cluster, in

particular the BL23 and Zhang L. casei strain, can be clearly

excluded due to high
ffiffiffiffiffiffiffiffi
DJS

p
(w0:31) and low coverage (v5:10{4)

and confidence (ƒ0:15).

In summary, these results show that ContextMap can be used to

correctly identify all species in the community including the strain,

with the exception of cremoris SK11. However, analysis of results for

MEGAN4 (Figure S7), GASiC (Table S6) and GRAMMy (Table

S7) shows that none of these identify cremoris SK11, at least not with

more confidence than for other species/strains not contained in

the community. MEGAN4 assigns almost all of the cremoris SK11

reads to the LCA of the cremoris and lactis subspecies. GASiC

assigns a p–value of 1, i.e. considers it an insignificant hit. Finally,

GRAMMy, which only estimates relative abundances but

performs no read mapping, assigns an abundance of v0:04%,

less than assigned to L. lactis subsp. lactis KF147 (0.17%), which is

not part of the community.

Apart from cremoris SK11, GASiC fails to identify H. sp. NRC–1

and P. pentosaceus but otherwise predicts only microbes contained in

the community. Thus, GASiC is the most restrictive of the

analyzed approaches. MEGAN4 does not really resolve multiple

mappings but assigns reads with multiple mappings to the LCA of

Figure 5. Hierarchical clustering (average linkage) of microbes and viruses. Results are shown for hits with a coverage w10{5 and at least
20 mapped reads as determined by ContextMap. Microbes actually contained in the sample are indicated in red and by an asterisk and the three
clusters discussed in the text are marked by rectangles. In addition, number of reads, confidence and

ffiffiffiffiffiffiffiffi
DJS

p
are indicated next to the microbe names.

doi:10.1371/journal.pone.0073071.g005

Mining RNA-Seq Data

PLOS ONE | www.plosone.org 8 September 2013 | Volume 8 | Issue 9 | e73071



these microbes. Based on the number of reads assigned uniquely to

any of the children of such an LCA, the correct microbes can then

be predicted. In this example, the predictions would be correct

with the exception of SK11 and H. salinarum, where the NRC–1

strain cannot be properly distinguished. Nevertheless, even when

combining read numbers for the microbes and the LCA,

ContextMap generally identifies 2.5–6.5% more reads per

microbe (including plasmids). Furthermore, assignments to inner

nodes of the phylogenetic tree by MEGAN4 do not allow

calculation of mismatch distributions as corresponding genome

sequences are not known. Even for the leaves of the taxonomic

tree, additional statistics of alignment quality or coverage are not

directly accessible and can only be obtained by extracting the

assigned reads and performing this analysis using additional

scripts.

GRAMMy correctly identifies 7 of the 9 microbes with an

estimated abundance of w1%, but also assigns a very low

abundance to P. pentosaceus (0.4%). Remarkably, the relative

frequency estimated by GRAMMy and the coverage calculated by

ContextMap are highly correlated (correlation coefficient 0.995),

in particular for microbes with high coverage (Figure 6). This

indicates that coverage as determined by ContextMap provides a

reliable estimation of the relative frequencies identified by

GRAMMy. As ContextMap is much faster than GRAMMy, it

can thus be used to replace GRAMMy for applications where

GRAMMy is too inefficient.

We also evaluated a number of other metagenomics tools for

binning/classifying sequencing reads or identifying relative abun-

dance of species. This includes alignment–based approaches (MG–

RAST [32], MetaPhyler [33], SOrt–ITEMS [34], MARTA [35],

MLTreeMap [36]), composition–based approaches (PhyloPhytiaS

[37], ClaMS [38], Phymm [39]) and a hybrid approach

(PhymmBL [39]). Here, comparison of the results was difficult as

several approaches only perform classification at the genus–

(MetaPhyler) or species–level (MG–RAST, PhyloPythiaS,

MARTA), but do not identify individual strains. Thus, we could

not evaluate their performance in distinguishing the Halobacterium

and Lactococcus lactis strains. Furthermore, only MG–RAST,

MetaPhyler, Phymm and PhymmBL were developed for NGS

reads as short as 100 bp, while the other tools require longer reads.

Thus, the meaningfulness of the comparison against these other

approaches is limited. Results for all tools are shown and discussed

in Tables S8 (MG–RAST), S9 (MetaPhyler), S10 (SOrt–ITEMS),

S11 (MARTA), S12 (MLTreeMap), S13 (PhyloPhytiaS), S14

(ClaMS) and S15 (Phymm and PhymmBL). In summary, although

the correct species or at least genera were usually identified,

performance at the level of the individual strains was usually poor

as often wrong strains were ranked higher than strains contained

in the community. A particular poor performance was observed

for the composition–based approaches PhyloPhytiaS and ClaMS,

which likely suffered from the short sequencing read length.

The analysis of runtime and memory requirements on this data

set (Table S4) showed that ContextMap was both faster than

almost all other approaches (apart from MetaPhyler) and required

less or a comparable amount of memory (with the exception of

MLTreeMap and GRAMMy if memory requirements of the

BLAST run to provide the input for GRAMMy are not counted).

The comparison for the other two data sets was less informative as

Figure 6. Comparison of abundance calculated by GRAMMy and coverage determined by ContextMap on the microbial community
data set. Results are shown for all taxa identified by GRAMMy with a relative abundance of at least 0.1%. The green line indicates a linear fit to the
data.
doi:10.1371/journal.pone.0073071.g006
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ContextMap was either applied on more reads as in the case of the

colorectal carcinoma data set or more reference sequences as in

the case of the HeLa cell RNA–seq data. In the first case,

ContextMap took *0:02 sec per read on the complete 5,343,842

read set for patient 1, whereas BLAST took *0:19 sec per read on

the smaller 404,234 read set without human reads and novoalign

only *0:006 sec per read. Thus, ContextMap was much faster

than BLAST but slower than novoalign. In contrast, ContextMap

required much less memory with *10G for the complete 5 million

read set compared to the *15G required by novoalign for only

400 k reads and w27G required by BLAST. This large memory

requirement (and also runtime) of BLAST for this relatively small

data set was rather remarkable, in particular in comparison to the

similar–sized microbe data set and the much larger HeLa data set,

which both only required *2:5G. The reason for this is the much

larger number of possible hits per read found by BLAST in the

colorectal carcinoma data set (*400 hits per read) as compared to

the microbe (*8 hits per read) and HeLa data set (~00:2 hits per

read). It should be noted that in the latter case we did not perform

simultaneous mapping with BLAST against the complete human

genome as the estimated output size was too large. Thus, these

results suggest that a complete run of BLAST on the same

references as used for the ContextMap run would have resulted in

substantially increased runtime and memory requirements com-

pared to ContextMap.

Conclusions

In contrast to microarray experiments, RNA–seq is not limited

to previously defined probes but allows quantification of all

transcripts in the cell, including also transcripts expressed by viral

or microbial pathogens. However, current mapping approaches

generally ignore the possibility of multiple origins of reads and are

not designed to resolve resulting non–unique mappings. Thus,

RNA–seq experiments are not routinely mined for the presence of

contaminations or infections. Previous studies explicitly focusing

on metatranscriptomics generally used only BLAST despite the

availability of a number of metagenomics tools for identifying the

species in the sample. As some of these tools were published only

very recently, this might explain why they have not yet permeated

the metatranscriptomics/2genomics community.

In this study, we showed how different sources of reads can be

easily investigated in parallel using ContextMap without limita-

tions to the number of potential sources investigated. This allows

unbiased screening of RNA–seq data for transcripts of any species

with a sequenced genome. ContextMap is particularly suited to

this task as it tolerates a large degree of ambiguous mappings at

intermediate steps, allowing multiple mappings to different species

during these steps. These multiple mappings are then resolved in

the final step using a support score calculated based on other reads

aligned to the same region. From this support score, a confidence

value can be calculated for each individual read mapping and the

confidence of mappings for identified species and similarity of two

species in terms of possible read mappings can be evaluated. This

is of particular importance when mining RNA–seq data for the

presence of related species. As previously published mapping

methods generally cannot resolve multiple mappings and no

scoring of alignments apart from mismatch counting is performed,

the number of reads they cannot uniquely assign to a species is

substantial. For instance, in the case of the microbial community,

w54% of L. lactis subsp. lactis Il1403 reads can be aligned equally

well to other L. lactis subspecies and thus cannot be resolved by

mapping tools relying only on alignment quality.

Our approach was evaluated first on previously published

RNA–seq data sets for HeLa cells, where it allowed the

identification and characterization of HPV–18 expression leading

to ongoing proliferation in this cervical carcinoma–derived cell

line. Here, we showed that relatively small sequencing depth can

already be sufficient for reliable detection of pathogen infections,

e.g. for diagnostic purposes. A comparison against BLAST

combined with MEGAN4 showed the importance of aligning

reads against both host and pathogen species, as local sequence

similarities of microbial or viral genome sequences to human

sequences, in particular rRNA and mitochondrial DNA, would

otherwise lead to wrong microbial or viral hits. While ContextMap

correctly resolved most of the resulting non–unique hits,

MEGAN4 effectively only flagged them as non–unique hits by

assigning them to internal nodes close or equal to the root of the

phylogenetic tree.

A second problem arising in the context of both metatran-

scriptomics and metagenomics are missing genome sequences for

the species/strains in the sample, which may result in misalign-

ments of reads to related species or strains. To identify such cases,

we proposed to analyze differences of mismatch distributions

compared to a reference species known to be in the sample, e.g.

the host species. This can be automatically evaluated using the

Jensen–Shannon divergence and the usefulness of this approach

was illustrated on the colorectal carcinoma data from the

Castellarin et al. study. Here we showed that divergence of the

mismatch distributions on the RNA–seq data suggested that F.

nucleatum was not the Fusobacterium species in the tumor sample.

Instead, a different Fusobacterium sequenced for the human

microbiome project was identified as a more likely candidate.

Again, application of MEGAN4 to BLAST results only indicated

the presence of Fusobacteria in the sample, but could provide no

further resolution as to which of the sequenced Fusobacteria is most

likely present in the sample or most closely related to the species in

the sample. We also compared our approach against the strategy

used by Castellarin et al. by applying novoalign both to complete

virus and microbe genomes and the human microbiome. Again,

this approach suffered from the high similarity between Fusobac-

teria, resulting almost exclusively in non–unique hits.

Finally, we applied ContextMap to metagenomics of the in–vitro

simulated microbial community to compare it against state–of–

the–art metagenomics tools. Here, ContextMap vastly outper-

formed both GASiC and GRAMMy in terms of runtime, while

also providing more helpful results. GASiC missed 3 of 9 microbial

species in the community and furthermore allowed multiple

alignments of reads to different species. In contrast, GRAMMy

only determines relative abundances and does not perform any

mapping of reads. Thus, it does not allow the analysis of gene

expression or mismatch distributions. The latter also applies to

MEGAN4, which performs no real resolution of ambiguous

alignments and only assigns reads with multiple alignments to the

lowest common ancestor of the corresponding species. Thus,

neither GRAMMy nor MEGAN4 offer the same possibilities for

gene expression analysis of microbes and viruses and identification

of missing genome sequences as ContextMap, while GASiC is

both much too slow and too restrictive for this application. Finally,

comparison against several other metagenomics tools showed that

all of these had problems in identifying the correct microbial

strains contained in the sample.

Although analysis of coverage, confidence and Jensen–Shannon

divergence provided by ContextMap requires some user interac-

tion, in particular for picking thresholds, the same applies to

GRAMMy, which also provides no natural cut–off on the

predicted frequencies. In contrast, both GASiC and MEGAN4
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basically do not allow any user interaction to fine–tune results.

Despite the fact that GASiC calculates p–values, these are in most

cases either 0 or 1 (at least in our application), allowing no tuning

of thresholds to trade off sensitivity and specificity. Moreover,

MEGAN4 provides no interface to resolve ambiguous mappings of

reads assigned to an LCA or evaluate alignment quality, coverage

or the other useful measures proposed here to improve the results.

Finally, none of the other metagenomics tools provides any clear

cutoff to determine the actual species in the sample, but only allow

ranking of the possible hits, generally in terms of read numbers or

estimated abundances. In any case, defining fixed thresholds for

any application is likely not meaningful, as appropriate thresholds

will strongly depend on the particular research question. For

instance, if knowing the particular strain is of importance, e.g. in a

diagnostic application where pathogenic or antibiotic–resistant

strains have to be correctly identified, much lower values of

Jensen–Shannon divergence would be allowed. In contrast, if only

the genus or species is relevant, one might even merge species or

strains into one group if they are clustered together based on the

mapping similarity measure we proposed.

On alternative approach that was not evaluated in this study is

PathSeq [40], a software explicitly focused on identifying microbes

from sequencing data of human tissues. We did not evaluate this

software as it could only be run using Amazon Web Services, thus

requiring payment for using the web services and making it not

available for free. However, the pipeline basically consists of a

mapping of reads against human sequences first and then a mapping

of unaligned reads against microbial and viral sequences using

BLAST, which is similar to the BLAST approach we evaluated in

this study. Thus, we expect PathSeq to encounter the same problems,

i.e. high numbers of non–unique hits due to similarities between

microbial and viral species, no proper resolution of non–unique hits

and misidentifications in case of missing genome sequences.

Finally, it should be noted that the metrics we proposed here for

evaluating potential species hits are not limited to ContextMap but

can be easily extended to other mapping tools or meta–

transcriptomic pipelines to further post–process their output. For

coverage and divergence of mismatch distributions, this is relatively

straightforward but requires a strategy to address non–unique

mappings. As shown for the novoalign results on the colorectal

carcinoma data, mismatch distributions are not meaningful if high

numbers of non–unique alignments are allowed. For calculation of

confidence and species clusterings, a support score has to be defined

to quantify the quality of an individual read alignment. Here, even

simple alignment scores may be used, although the resolution of

any approach based only on the individual read alignments is

necessarily much lower than a more sophisticated approach taking

also into account alignments of other reads as used by ContextMap.

Thus, the methods proposed in this article will also be helpful for

researchers preferring to keep to their already established pipelines

and only post–process their results.
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