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Nemaline myopathy is a rare disorder affecting the muscle sarcomere. Mutations in

nebulin gene (NEB) are known to be responsible for about 50% of nemaline myopathy

cases. Nebulin is a giant protein which is formed integrally with the sarcomeric thin

filament. This complex gene is under extensive alternative splicing giving rise to multiple

isoforms. In this study, we report a 6-year-old boy presenting with general muscular

weaknesses. Identification of rod-shaped structures in the patient’ biopsy raised doubt

about the presence of a nemaline myopathy. Next-generation sequencing was used to

identify a causative mutation for the patient syndrome. A homozygous deep intronic

substitution was found in the intron 144 of the NEB. The variant was predicted by

in silico tools to create a new donor splice site. Molecular analysis has shown that

the mutation could alter splicing events of the nebulin gene leading to a significant

decrease of isoforms level. This change in the expression level of nebulin could give

rise to functional consequences in the sarcomere. These results are consistent with the

phenotypes observed in the patient. Such a discovery of variants in this gene will allow a

better understanding of the involvement of nebulin in neuromuscular diseases and help

find new treatments for the nemaline myopathy.

Keywords: nemalin myopathy, neuromuscular disorder, alternative splicing, nebulin isoforms, nebulin, NEB

INTRODUCTION

Nemaline myopathies (NM) are a rare form of early-onset myopathy presenting at birth or
early childhood with generalized muscle weaknesses and hypotonia. Incidence of NM in general
population is estimated at one on 50,000 (Orphanet, https://www.orpha.net/consor/cgi-bin/index.
php?lng=FR). Essentially the neck, facial, distal, and proximal muscles, as well as respiratory
muscles are affected (1, 2). The spectrum of clinical phenotypes is wide, ranging from severe,
intermediate, and typical congenital form to mild childhood or juvenile onset form. Presence
of nemaline bodies observed in muscle histopathological biopsy of affected individuals are
characteristics that are sometimes found in NM (3–5). These rod-like structures derive mainly
from sarcomeric Z disc aggregates and thin filament proteins which are made visible by Gömöri
trichrome staining (6). The presence of cap-like structures, disorganized myofibrils, thickened
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Z disks, as well as fiber-type disproportion are other
histopathological characteristic features of NM (7–9). Autosomal
dominant or recessive inheritance observed in ACTA1 (10),
NEB (11, 12), TPM2 (13), TPM3 (14, 15), KBTBD13 (16), CFL-2
(17), KLHL40 (18), KLHL41 (19), LMOD3 (20), MYPN (21),
TNNT1 (22, 23), TNNT3 (24), MYO18B (25), and RYR3 (26)
have been linked to different types of NM. Variations in the genes
encoding the skeletal muscle α-actin (ACTA1, OMIM 102610)
and nebulin (NEB, OMIM 161650) are the most common causes
of this neuromuscular disorder. Usually, mutations in ACTA1
gene are de novo dominant while known NEB variants are
mostly recessive. Although a dominant mutation causing NM
was recently identified in the NEB gene (27). Among the more
than 3,000 of reported NEB variations in ClinVar and Leiden
Muscular Dystrophy databases, only a small proportion (<6%)
are pathogenic or likely pathogenic (https://www.ncbi.nlm.nih.
gov/clinvar/?term=neb%5Bgene%5D, https://databases.lovd.nl/
shared/variants/NEB/unique?search_var_status==’’Marked’’|=
’’Public’’). Pathogenic variations in the NEB gene are mostly
splice site, frameshift, and non-sense mutations. Approximately
50% of all cases of autosomal recessive NM are caused by variants
in the NEB gene (28).

Nebulin was first discovered in 1980 (29). Its critical role in
muscle function became evident when mutations in the gene
were associated with autosomal recessive NM (30, 31). Nebulin
gene encodes for one of the largest vertebrate proteins with
a molecular weight of 600–900 kDa. The protein is mainly
expressed in skeletal muscle but has also been detected in the
brain and heart (32, 33). Nebulin is closely associated with
the actin thin filament and anchors its C-terminal extremity in
the Z disc of the muscle sarcomere. This major muscle protein
has important role in the regulation of actin filament length,
actin myosin interaction, and myofilament calcium sensitivity,
and consequently in the regulation ofmuscle contraction (34, 35).

In humans,NEB is located on chromosome 2 (36) and consists
of 183 exons, of which 42 are alternatively spliced, giving rise
to the broad isoform diversity of nebulin. Exons 63–66, 82–
105, 143–144, and 166–177 are alternative spliced exons, and
exon 143 and 144 have not been detected in the same transcript
(37, 38). The structure of the NEB protein is composed of simple
motif repeats, of a central super repeat regions SR1 to SR22
made up of seven simple repeats each, and of a serine-rich
SH3 domain in C-terminal (39). The repeat modules contain
the essential conserved binding motifs for actin. Nebulin has
multiple binding partners, for instance N-terminal region of NEB
has been shown to bind tropomodulin. The central super repeat
region is thought to interact with tropomyosin and KLHL40, and
the SH3 domain located at the C-terminal interacts with a large
number of proteins (Figure 1).

This large variety of transcripts makes nebulin one of the most
complex genes involved in neuromuscular disorders because
a mutation can selectively affect certain isoforms (30, 37).
Since NEB gene is extensively spliced, frameshift mutations,
for example, are likely to abolish expression of some nebulin
isoforms, leaving others untouched, making functional effects
difficult to predict. In fact, no human patient withNEBmutations
causing total absence of the protein have been reported (40). To

date, it seems that there is no mutation hotspot since mutations
are distributed throughout the gene, although a deletion of the
entire exon 55 was found to be a common founder mutation in
an Ashkenazi Jewish population (41, 42).

Until now, there is no known effective treatment for
nemaline myopathy. Tyrosine supplement has been proposed,
but beneficial effects were not supported by subsequent studies
in animal models and humans (43, 44). Supplementation with
other amino acids was tested in zebrafish without clear positive
effects (45). Relying on genetic analysis is sound to diagnose
and better understand NM. Rapid advances in the field of
next-generation sequencing allow the rapid discovery of new
mutations responsible for this myopathy. In this study, we
present a novel variant in the NEB gene of a young boy with
nemaline myopathy.

MATERIALS AND METHODS

Recruitment of Families and Ethic
Statement
Families affected with a rare disease are recruited in an
interdisciplinary research program designated “Programme de
Recherche et Innovation Sur les Maladies rarES” (PRISMES)
at the CHU de Québec-Laval University (CHU de Québec-
UL) Research Center. PRISMES essentially aims to recruit
pediatric patients and their affected/unaffected family members
as a trio or more with the aim of investigating the genetic
causes responsible for their diseases. Recruited patients are
affected with rare neuromuscular, neurodegenerative, metabolic,
or polymalformative syndrome, which remained undiagnosed at
the molecular level. For this study, the affected boy was meeting
our PRISMES project selection criteria along with his unaffected
sister and his two unaffected parents. All samples from affected
individuals and their families were obtained after approval by the
“Comité d’éthique de la recherche (CER),” and all participants
provided written informed consent prior to their enrolment.
Research ethical board approval of the study design was obtained
from the CER du CHUQ-UL.

Biological Sample Collection
Ten milliliters of blood samples was drawn for all recruited
individuals in the family. Half was used for genomic
DNA extraction, and the other half was used for cellular
immortalization. A quadricep skeletal muscle biopsy was
surgically obtained during the clinical investigation at the CHU
de Quebec. Histopathologic assessment was performed on
sections of the muscle tissue. The remaining sample was frozen
in liquid nitrogen and conserved at −80◦C for subsequent
analyses. Normal skeletal quadricep muscles pooled from four
healthy individuals age 24, 30 78, and 87 were used as control.

Library Preparation and Whole Exome
Sequencing
DNAwas extracted from 2ml blood volume using QIAampDNA
Blood kit (Qiagen, Valencia, CA) according to the manufacturer’s
instructions. Libraries have been prepared from 3 µg of high-
quality genomic DNA using SureSelect XT human All exon
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FIGURE 1 | Structure of the nebulin protein and binding partners. Nebulin gene consists of multiple repeat modules (M) that contain actin-binding domain. The S21

super repeat encodes the mutually alternatively spliced exons 143 and 144 and contains the binding site for KLHL40. The C-terminal is anchored in the Z-disk region

of the sarcomere and contains a conserved serine-rich homology domain (SH3). This terminal region binds many muscle proteins. Binding partners are written in blue.

Adapted from Yuen and Ottenheijm (39), http://creativecommons.org/licenses/by/4.0/.

V6+UTR kit (Agilent Technologies, Santa Clara, CA). DNA was
fragmented on a Covaris instrument (Covaris,Woburn,MA) and
adaptor tagged to an average size of∼275–300 pb. Libraries were
then subjected to exome capture. Three libraries with a unique
index were pooled together in equimolar ratio and sequenced
at a mean coverage of 100 × on an Illumina HiSeq2500 for
paired-end 125 pb sequencing at both sites.

Bioinformatics Analyses and Variant
Filtering
Raw data were demultiplexed using Illumina’s proprietary
bcl2fastq to get to an open format. Then raw reads were trimmed
using Trimmomatic (46) and mapped to human reference
genome (hg19) using BWA (47). Duplicated reads were flagged
using Picard MarkDuplicates and base score recalibration was
performed using GATK BaseRecalibrator. Variant call was first
performed on individual samples using Genome Analysis Toolkit
(GATK) HaplotypeCaller before performing multisample joint
aggregation and reannotation using GATK GenotypeGVCFs.
Variants were functionally annotated based on data from
SiFT (48), CADD (49), avsnp, Kaviar, ExAC, esp6500siv,
1000genomes, and PolyPhen 2 (50) using Annovar (51). Variant
rarity was assessed with databases of variant frequencies in
different populations from gnomAD, ExAC, and 1000Genomes.

The availability of exome data from family individuals allowed
identification of potential deleterious variants based on recessive,
de novo, and compound heterozygote transmission modes.
Additionally, a custom-automated bioinformatics pipeline
built using GATK best practices and the Snakemake workflow,
DNA-SEQ-GATK variant calling, was used to validate the
previous bioinformatics analyses. For variant annotation,
Ensembl Variant Effect Predictor (VEP) was used (52), and
the results were visualized and filtered using the open-source
SEQR platform.

Cloning of Nebulin Fragments
To detect fragments spanning the mutation region, oligoprimer
pairs specific for exons 142, 143, 144, and 145 of the nebulin
gene were designed using GeneTool 2.0 software (Biotools Inc.,
CA) (Table 1). Nebulin fragments were amplified by PCR with
cDNA synthesized from the patient quadricep muscle total RNA
extract. Total RNA from normal skeletal muscle was used as
control. The different PCR products were extracted on agarose
gel, purified and cloned in blunt II-TOPO vector according
to Invitrogen procedure (LifeTechnologies, Carlsbad, CA).
Cloned plasmids were then transformed in TOP10-competent
cells and amplified in LB-kanamycin culture media. Extracted
DNA fragments were sequenced and analyzed using SnapGene
viewer software.
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TABLE 1 | Primer sequences and gene description.

Gene

symbol

Description GenBank Size

(pb)

Primer sequence 5′
→ 3′

S/AS

NEB exons

146–148

Homo sapiens nebulin (NEB)

exons 146–148

NM_001271208 236 AATACAACAAGGCCAAACCCAGAG/GTGGGCTTTGTTGGCTTCGTA

NEB exons

142–145

Homo sapiens nebulin (NEB)

exons 142–145

NM_001271208 248–353 TGTTGCCGACTCTCCGATCA/CTTTTGTAGTACGCAGGTGTTCT

NEB exons

143–145

Homo sapiens nebulin (NEB)

exons 143–145

NM_001271208 164–269 GCGGAAAGATAAATACCACCTG/CTTTTGTAGTACGCAGGTGTTCT

NEB exons

144–145

Homo sapiens nebulin (NEB)

exons 144–145

NM_001271208 189 GAAAATATAAATCTAGTGCCAAG/CTTTTGTAGTACGCAGGTGTTCT

FIGURE 2 | Pedigree of the patient’s family. The proband (black square), his sister, father, and mother were recruited in the project. Due to the consanguinity,

autosomal recessive type of inheritance was suspected. Pedigree symbols. Circle, female; square, male; black filled, affected; unfilled, non-affected.

Qantitative Real-Time PCR
Muscle biopsy was homogenized in Qiazol buffer (Qiagen, CA),
and total RNA was extracted using the miRNeasy microkit
(Qiagen, CA) following the manufacturer’s instructions. First-
strand cDNA synthesis was accomplished using 4 µg of RNA
in a reaction containing Superscript IV, RnaseH-RT, oligo-
dT18 (Invitrogen Life Technologies, Burlington, ON), random
hexamers, dNTPs, and buffers. Oligoprimer pairs specific
for exons 142 and 145 of the nebulin gene were designed
using GeneTool 2.0 software (Biotools Inc., CA) (Table 1).
Quadruplicate cDNA corresponding to 20 ng of total patient
or control RNA was used to perform fluorescent-based real-
time PCR quantification using the LightCycler 480 (Roche
Diagnostics, Mannheim, DE). PCR reactions were as follows:
45 cycles, denaturation at 98◦C for 10 s, annealing at 55◦C
for 10 s, elongation at 72◦C for 20 s, and then 74◦C for 5 s.
A melting curve was performed to assess non-specific signal.
Relative quantity was calculated using second derivative method
and by applying the delta Ct method. Normalization was
performed using the reference gene shown to be gene having
stable expression levels from embryonic life through adulthood
in various tissues: beta-2-microglobulin (B2M), hypoxanthine
phosphoribosyltransferase 1 (HPRT1), and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH). Quantitative real-time

PCR measurements were performed by the CHU de Québec
Research Center (CHUL) Gene Expression Platform and were
compliant with MIQE guidelines.

RESULTS

Patient
The proband was a 6-year-old boy who had muscle weaknesses.
The first-year development showed a delay of gross motor
functions; he walked at 15 months with support. At the age of
6, he was not able to run, jump, and walk on heels and had
difficulties climbing the stairs. Clinical exam showed generalized
muscle atrophy. He has thin prolonged myopathic face, mild
bilateral ptosis, and high palate. Mild hyper-lordosis was
present, and proximal and distal muscle weaknesses were noted.
EMG/NCV registered proximal and distal myopathic features,
and muscle creatine kinase level was within the reference range.
He denied any swallowing problem neither orthopedic issues.
Cardiac evaluation was normal. Parents were from Algeria and
were closely related (Figure 2). Extensive genetic investigation
including congenital myopathy gene panels, neuromuscular
disease gene panels, and clinical exome were unsuccessful.
Due to the negative results of the clinical genetic analysis,
we proceeded with muscle biopsy, which showed presence of
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FIGURE 3 | Muscle biopsy of the patient. (A) Gömöri trichrome staining of a

quadricep muscle biopsy section shows mild anisomorphism fibers. More than

90% of the fibers have red stain inclusions typical of nemaline rods. Scale bar

= 50µm. (B) Electron microscopy image shows cytoplasmic rod-shaped

nemaline bodies. No intranuclear rods were observed. Magnification, ×3,200;

scale bar = 2 µm.

rod-shaped nemaline bodies that are indicative of nemaline
myopathy (Figure 3). History of consanguinity prompted us to
proceed with CGH-SNP array to identify homozygous blocks
within the patient’s genome. There were six large homozygous
blocks, including well-known nemaline myopathy genes NEB:
1p13.3-q25.3; 2q11.2-q31.1; 5p13.2-q14.1; 11p14.2-p13; 16q22.1-
q23.2; 21q11.2-q21.1.

Genetic Results
Following the inconclusive clinical investigation, the affected
boy and his unaffected mother, father, and sister were recruited
in PRISMES’s project. Genome analysis was first initiated by a
private company with impact to the regions within homozygous

blocks. Meanwhile exome sequencing of the participants was
performed at the NGS platform of the CHU de Quebec.
Exome sequencing covered up to 125 bp of intronic part
flanking the exons with excellent coverage. Variants were then
analyzed through PRISMES’s pipeline. Both PRISMES and
clinical genetic analysis have identified a novel homozygous
mutation NM_001271208.1: c.21522+119C>G in the intron
144 of NEB gene, which positively segregates in a family. This
mutation is classified as a variant of uncertain significance
according to recommendations of the American College of
Medical Genetics and Genomics (ACMG). This deep intronic
substitution, located at 119 bp following the end of exon 144
in the genome, is predicted by in silico tools to create a new
splice site that could affect the natural splicing site of the same
intron. Indeed, according to human splicing finder, the new
donor splicing site created by the C>G substitution in the intron
is as strong if not more than the natural splicing site at the end of
exon 144 (Figure 4). These predictions led us to speculate that the
splicing of the intron 144 could occur at both locations, leading to
normal and altered isoforms. As mentioned, exons 143 and 144
are not found in the same isoforms. It is therefore very likely that
perturbation in this critical region subject to alternative splicing
could lead to change in isoform levels or functions.

Analysis of Exons 142–145 Covering
Region
To assess the effects of the mutation on this critical region,
exons 142–145 of nebulin cDNA from patient biopsy and control
were amplified by PCR and cloned. Analysis of sequencing
data of 96 clones allowed, as predicted, detection of fragments
with exon 143 or with exon 144 but never both at the same
time. In the patient’s biopsy, clone with intact exon 143 or 144
was also detected indicating that some transcripts are properly
spliced. But interestingly, few fragments with exon 144 that
include 118 additional nucleotides were found (Figure 5A).
Indeed, electrophoresis analysis of amplified PCR fragments
using primer selected in exons 144 and 145, showed an additional
band of higher molecular weight in the patient’s muscle cDNA
(Figure 5B). These additional base pairs correspond to the
nucleotide sequence upstream of the mutation in intron 144,
meaning that in these isoforms, the new splicing site created by
the mutation competed with the natural splicing site, leading
to a pseudo exon. Analysis of this sequence using Open
Reading Frame finder and ExPASy translate bioinformatics tools
predicted that the addition of the 118-bp sequence disrupt
the reading frame and introduce premature termination codon
which would give a truncated protein of 7,180 amino acids
instead of 8,560 (Figure 5C). This suggested that this mutant
mRNA is more likely to become the target for degradation by
non-sense-mediated decay (NMD) and that most of them are
probably degraded before being translated into the protein (53,
54). In fact, very few clones with this partial intron retention was
found among the hundred clones analyzed, indicating that this
mutated isoform is probably very unstable. These transcriptional
disturbances are most likely responsible to affect the level of
nebulin expression. In order to assess relative quantities of the
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FIGURE 4 | In silico analysis of the effects of the mutation. Sequence of the exon 144 followed by the first part of the intronic sequence that includes the mutation.

This schematic representation of the affected region of the nebulin gene shows the new splice site predicted to be created by this intronic variant. According to

Human Splicing Finder, the new site has a strength of 90.24* in comparison with 85.75* for the natural site. *These numbers are relative consensus values established

by the tool ranging from 1 to 100.

nebulin in the patient biopsy compared with those of the control
pool, we performed quantitative real-time PCR on both skeletal
muscle RNA samples.

Comparative Analysis of RNA Expression
in Patient and Control Muscle Biopsy
At least 20 different nebulin isoforms are reported among which
13 code for a protein (ENSEMBL, https://www.ensembl.org/Ho
mo_sapiens/Gene/Summary?db=core;g = ENSG00000183091;r
=2:151485336-151734487). To compare the levels of expression
of nebulin transcripts in patient vs. control, quantitative RT-PCR
analysis was performed on the patient’s and control’s skeletal
muscle sample. Primer set were selected in the exons 142 and
145 of the nebulin to cover the affected region. Result shows
that normalized relative expression of nebulin fragments 142–145
in the patient biopsy represented 69% of the control, meaning
that there is a decrease of 34% of the expression of isoforms
including fragments 142–145 (Figure 6). These results tend to
suggest that some nebulin isoforms are affected by this mutation
in intron 144.

As we have shown, the creation of a new splicing site in
this mutated isoform disturbs the natural intron splicing and
generates a pseudo exon susceptible to degradation or lead to a
truncated protein. Impaired transcription of nebulin isoforms is
therefore not so surprising. Indeed, the intron splicing and/or
excision of the two mutually exclusive exons 143 and 144
are likely to be interdependent, and the mutation could lead

to a defective alternative splicing in this critical region (55).
The alternative splicing events in nebulin are numerous and
interrelated. The production of the different isoforms follows a
rigorous cascade of events.We can easily imagine that an obstacle
to this chain of events will lead to perturbation in the isoforms
transcription. Formation of a pseudo exon which makes pre-
mRNA vulnerable for degradation, the presence of important
regulatory sequence within the mutated intron, or the formation
of an abnormal secondary structure in the pre-mRNA are all
situations that may affect transcription (55, 56). Altogether, these
data suggest that this novel homozygous mutation in NEB alters
the expression levels of nebulin in this patient’s skeletal muscle. It
is therefore a possibility that this variant is related to the nemaline
myopathy of this young patient.

DISCUSSION

PRISMES project has been launched in 2017. Since then, 118
families including probands and their affected or non-affected
close relatives have been recruited in the project. Over the years,
we had several cases presenting with neuromuscular disorders,
but this young boy was our first case diagnosed with nemaline
myopathy. Presence of rod-like accumulations in the biopsy
in combination with the typical patient’s phenotypes made the
diagnostic of NM quite clear (28). The discovery of this intronic
mutation in the NEB gene following the NGS sequencing of the
patient and his family reinforces this idea.
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FIGURE 5 | Analysis of cloned fragments ranging from exons 142–145 from the patient’s biopsy or skeletal muscle control RNA. (A) Fragments with or without exons

143 and/or 144 found in the control and patient’s biopsy. (B) Electrophoresis analysis of the PCR fragment of the exons 144–145 shows the presence of an additional

band in the patient which corresponds to the intron containing fragment found in the biopsy. The smaller fragment found in both control and patient corresponds to

the normal exons 144–145 region. (C) Comparison of part of the sequence of the normal and intron containing fragments with exon 144. The mutation disrupts the

reading frame by introducing a premature termination codon that targets the mRNA for degradation or production of a truncated protein. C, control; P, patient.

During the last decade, more than 3,000 variants were found
in different regions of the nebulin (Exome Variant server, https://
evs.gs.washington.edu/EVS/). NEB is special for its giant size and
for its high number of splicing events, giving rise to a multitude
of different nebulin isoforms (57). Although various mutations
were found all over the gene, it is logical to speculate that
mutations affecting the splicing mechanisms would be harmful.
In fact, in a study cohort of 159 families, Lehtokari et al. have

shown that up to 34% of the mutations found in NEB gene were
suspected to affect splicing sites (31). However, even if splicing
site mutations are frequent, variants affecting the alternatively
spliced exons of NEB are still rare (ClinVar, https://www.ncbi.
nlm.nih.gov/clinvar/?term=neb%5Bgene%5D). We might think
that this kind of mutation in NEB gene would be even more
critical (58). To our knowledge, we report in this study the first
homozygous mutation that is thought to disrupt the splicing of
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FIGURE 6 | Decreased levels of nebulin expression in the patient’s skeletal

muscle. Quantitative real-time RT-PCR comparative analysis on the covering

region from exons 142–145. Relative expression represented as fold ratio of

nebulin fragments in the patient biopsy compared with control. Fold changes

were normalized using the three reference genes beta-2-microglobulin (B2M),

hypoxanthine phosphoribosyltransferase 1 (HPRT1), and

glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Data are represented

as mean of the quadruplicate ± SD. ***P = 0.0005.

the alternatively spliced exon 144. To date, only two pathogenic
or likely pathogenicmutations in exon 144 were reported: (ex144;
c.21423del; p.Lys7141fs - ex144: c.21506C>A; p.Ser7169∗) (31).

Our results suggested that the mutation in the intron 144
created a new splicing site strong enough to compete with the
natural splicing site next to the mutation. The similar strength
of the new and natural splicing sites can let us to believe that
both sites could be used equally which could partly explain that
many isoforms are not affected by the mutation. The relative
diminution of nebulin isoforms in the biopsy compared with the
normal control is likely to be attributed to the creation of an early
stop codon generated by the frameshift, when the new splicing
site is used. Most of the time, this situation is known to expose
the mutant mRNA to degradation by non-sense-mediated decay.
Several deep intronic mutations leading to inclusion of a pseudo
exon have been reported in patients affected bymultiple disorders
(53, 54).

In our study, we have also found few isoforms with a larger
pseudo exon 144, including a small sequence belonging to
the intron that were apparently not degraded. However, those
isoforms are predicted to be truncated and lack the 1,380 last
amino acid of the nebulin protein. These shortened transcripts
are very likely to be non-functional since they lacked the C
terminal portion of the gene which encodes the SH3 domain
(59). The binding of multiple essential partners of nebulin have
been found to be regulated by this highly conserve serine-
rich SH3 domain (39). Among those we found are α-actinin,
myopalladin, CapZ, titin, and many other major players of the
muscle sarcomere (Figure 1). C-terminus of nebulin anchors the
Z-disk and also contributes to stabilization and length regulation
of the thin filament (40). It has been shown that thin filament
dysregulation resulting of a mutation in NEB, can contribute to
muscle weakness in patients with nemaline myopathy (60, 61).

As the splicing of the two mutually exclusive exons 143 and
144 are likely to be related, it makes sense that the mutation
in intron 144 affects these selective splicing events (55). The

regulation and role of these exons in developmental and adult
muscle fibers were reported to be important (62). Indeed,
these exons are alternatively spliced depending on the muscle
type and the developmental stage. Both isoforms have different
charges and hydrophobicities suggesting they may have different
functions. Lam et al. reported that nebulin containing exon 144
is present early in myogenesis while the one containing isoform
143 appears at later stages of the muscle development. Moreover,
in human skeletal quadriceps, protein with exon 143 is expressed
in fast fibers while almost absent in slow fibers (37, 63, 64). These
exons also encode one domain of the S21 super repeat region of
NEB gene that was shown to bind the KLHL40 protein (Figure 1).
Mutation in KLHL40 was associated with NM and is thought to
be involved in stabilization of the thin filament and regulation of
nebulin level (18, 65). These different functions led us to assume
that in addition to a decrease in the global expression levels, a
perturbation in the ratio of these isoforms would have negative
consequences. A study of the isoforms of the giant muscle titin
gene showed that not only the level of the different isoforms are
important, but their ratio also appears to be crucial, among other
things, during heart development (66).

The alternative splicing mechanistic of the nebulin is very
complex and not well-understood. In their review, Rita Vaz-
Drago and colleagues discussed how multiple types of splicing
dysregulation may be caused by deep intronic mutation. More
frequently, the degradation of the pre-mRNA and also the
binding modification of splicing regulatory protein in the intron
or formation of abnormal pre-mRNA secondary structure can
disrupt the splicing event (53). Indeed, many studies show that
a single regulatory element mechanism can regulate several
splicing events on proximal and distal regions of a RNAmolecule
(55, 56).

This study suggests that although a good percentage of
isoforms are still expressed in the patient, a decrease or
disturbance in their ratios could have an impact on the
proper function of this protein. Future discovery of other
variants in the NEB gene and especially the one that are in
alternatively spliced region will allow a better understanding of
this complex giant protein. Indeed, finding of variants affecting
the alternative splicing of nebulin will make it possible to
know more about the function of the different isoforms and
allow us to clarify their respective implications in congenital
nemaline myopathy.
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