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A score of DNA damage repair
pathway with the predictive
ability for chemotherapy and
immunotherapy is strongly
associated with immune
signaling pathway in pan-cancer
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DNA damage repair (DDR) is critical in maintaining normal cellular function and

genome integrity and is associated with cancer risk, progression, and

therapeutic response. However, there is still a lack of a thorough

understanding of the effects of DDR genes’ expression level in cancer

progression and therapeutic resistance. Therefore, we defined a tumor-

related DDR score (TR-DDR score), utilizing the expression levels of 20

genes, to quantify the tumor signature of DNA damage repair pathways in

tumors and explore the possible function and mechanism for the score among

different cancers. The TR-DDR score has remarkably predictive power for

tumor tissues. It is a more accurate indicator for the response of chemotherapy

or immunotherapy combined with the tumor-infiltrating lymphocyte (TIL) and

G2M checkpoint score than the pre-existing predictors (CD8 or PD-L1). This

study points out that the TR-DDR score generally has positive correlations with

patients of advanced-stage, genome-instability, and cell proliferation

signature, while negative correlations with inflammatory response, apoptosis,

and p53 pathway signature. In the context of tumor immune response, the TR-

DDR score strongly positively correlates with the number of T cells (CD4+

activated memory cells, CD8+ cells, T regs, Tfh) and macrophages M1

polarization. In addition, by difference analysis and correlation analysis,

COL2A1, MAGEA4, FCRL4, and ZIC1 are screened out as the potential
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modulating factors for the TR-DDR score. In summary, we light on a new

biomarker for DNA damage repair pathways and explore its possible

mechanism to guide therapeutic strategies and drug response prediction.
KEYWORDS

DNA damage repair (DDR), therapeutic sensitivity, pan-cancer, genomic instability,
tumor microenvironment
Introduction

DNA damage repair (DDR) plays an essential role in

maintaining the normal function of cells and genome integrity.

When DNA damage occurs, Base Excision Repair (BER),

Nucleotide Excision Repair (NER), and the Direct Repair (DR)

pathways are activated to help with repairing DNA base damage.

At the same time, Mismatch Repair (MMR) contributes to

correcting base mispairs and small loops. Homology-

Dependent Recombination (HDR), Non-Homologous End

Joining (NHEJ), Fanconi Anemia (FA), and Translesion

Synthesis (TLS) pathways are, alone or together, involved in

the repair of DNA strand breaks and complex events like

interstrand crosslinks (1, 2).

The functional abnormalities of DNA damage repair (DDR)

affect cancer risk, progression, and therapeutic effect (3–5). DDR

deficiencies, in many cancers, have built a well-established

connection with cancer development through analyses of

specific pathways loss (6) or single-gene mutations (7, 8) like

TP53 (3, 9–11). Meanwhile, DDR deficiencies can activate the

innate immune system by up-regulating the STING pathway

(12). Furthermore, the defect of MMR genes results in the

accumulation of mutations and the production of neoantigens,

enhancing the anti-cancer immune response (13, 14). In

conclusion, alterations of DNA damage repair genes produce

multifaceted effects on cancer patients by allowing genomic

instability (15, 16), arousing immune responses (17, 18), and

changing the tumor microenvironment from multiple aspects

(19, 20).

Previous studies have suggested that DDR pathways are

associated with sensitivity to chemotherapy, immunotherapies,

and radiotherapy (21–23). Most chemotherapy regimens contain

agents that directly induce DNA damage triggering cell apoptosis,

such as anthracyclines and alkylating agents, while radiotherapy

can also cause DNA damage to uncomplicated locoregional

tumors (24). It is reported that alteration of some DDR genes in

cancers, including BRCA1, BRCA2, RAD51B, and RAD51C, is

associated with therapy sensitivity (25–29). For immunotherapies,

tumors with abnormal DDR function tend to accumulate tumor-

specific neoantigens, which result in a strong anti-tumor immune

response (30, 31). For prior studies provide interesting insights
02
between DDR genes and therapy sensitivity, some assays have

been developed and validated to detect DDR pathway (such as

HDR or FA) function in tumors as a predictor of response and

prognosis after chemotherapy, radiotherapy, or with adjuvant

settings (23, 32, 33). However, the primary mechanism driving

DDR function abnormal remains unknown on a pan-cancer scale

and it is incomplete to understand how DDR genes affect the

cancer treatment effect of chemotherapy and immunotherapy.

Since the DNA repair mechanisms are essential for

preventing tumor formation (34), there is still a lack of a

comprehensive study of gene expression of the DDR pathway

and their association with cancer progression and resistance to

therapy. To fill this gap, we defined the DNA damage repair

tumor score using a 20-gene signature to create a pan-cancer

quantification and explore the signature’s function and

significance in great depth. This is the first study to identify

gene expression signatures of DNA damage repair that reflect

the efficacy of treatments, which can be easily applied to a

multitude of patient samples. Our study strongly suggests that

a high tumor DDR score is associated with elevated proliferation

and decreased inflammatory response. Furthermore, it provides

the theoretical basis for understanding the critical roles of DDR

level alteration, which lights on a framework to guide

therapeutic strategies.
Materials and methods

Multi-omics data and clinical
data collection

We downloaded available level-3 molecular data, including

mRNA expression data, copy number alterations (CNAs) data,

genomic somatic mutation (SNAs) data, and clinical

information across 11 cancer types with normal sample

numbers greater than 30 and tumor sample numbers greater

than 100 from the Cancer Genome Atlas (TCGA) data portal

(35). The chemotherapy treatment information of six cancer

types used in this study, including therapy types, drug names,

and response measures, was extracted from the TCGA dataset.

The immunotherapy dataset consists of the GSE78220 dataset
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from the National Center for Biotechnology Information Gene

Expression Omnibus (NCBI GEO) (36, 37) and the other four

datasets of previous studies (38–41). As the chemotherapy

dataset from TCGA only included data from untreated

samples, we accordingly screened out samples containing pre-

treatment transcriptome data and post-treatment clinical

response information (42) from the immunotherapy dataset.

For genomic instability, we obtained data of the samples

from 11 cancer cohorts in TCGA, including mutation counts,

fraction genome altered, and MSI sensor score through the

cBioPortal website (43). Single-nucleotide variant neoantigens

and indel neoantigens were calculated by Thorsson et al. (44, 45).
Cancer cell lines data collection
and preprocessing

We collected mRNA expression data of cell lines from the

Cancer Cell Line Encyclopedia (CCLE) (46). The drug response

data was collected from Genomics of Drug Sensitivity in Cancer

(GDSC), including 153 drugs and 1016 cell lines (47). We used

half-maximal inhibitory concentration (IC50) values to

distinguish drug-resistant and drug-sensitive cell lines. For the

specific drug, we defined the drug-resistant cell line as the cell

line whose IC50 value was greater than the mean value plus 0.3

times the SD of all cell lines (48). Otherwise, the drug-sensitive

cell line was defined as the cell line with IC50 less than the mean

value minus 0.3 times the SD.
DDR genes’ copy number alterations,
genomic somatic mutation, and mRNA
expression analysis in cancers patients

The proportions of CNAs and SNAs for 71 DDR genes were

calculated among tumor samples in 11 cancer types. The copy

number segmentation data (SCNA score) was calculated by the

Circular Binary Segmentation (CBS) algorithm, and the

Genomic Identification of Significant Targets in Cancer calls

was calculated using GISTIC2.0, comprising -2 (deletion), -1

(loss), 0 (diploid), 1 (gain) and 2 (amplification) (44, 49). Gene

Set Enrichment Analysis (GSEA) interpreted the association

between CNAs and mRNA expression of a gene (50). The R-

package “DESeq2” was used to assess DEGs between tumor and

normal tissue. Genes with |Log2FC| > 1 and FDR < 0.01 were

considered as DEGs.
Tumor-related DNA damage repair score
calculation and classification

Focusing on expression dysregulation of the 71 core DNA

damage repair pathway-specific genes (6). We chose 20 genes
Frontiers in Immunology 03
whose expressions were up-regulated between tumor and

normal tissue in more than four cancer types and had an

average TPM higher than 1. We termed these DDR genes

(POLQ, BRIP1, FANCA, XRCC2, EXO1, EME1, BLM, BRCA2,

RAD51, SHFM1, BRCA1, UBE2T, SLX1A, FANCB, FANCD2,

FEN1, ERCC3, GEN1, and PRKDC) as “Tumor-related core

DDR gene set”. Because of their importance in cancer, we

used Gene Set Variation Analysis (GSVA) to calculate the TR-

DDR score based on this core DDR gene set for each sample

(51). We respectively calculated the TR-DDR score across all

cancer samples to obtain the difference among 11 cancer types

and in each cancer type to classify samples into high-score and

low-score groups. The score distribution was shown in Figure S4

for each cancer. Patients were divided into two groups (high-

score and low-score) using the median value as a threshold for

each cancer type.
Cancer cell lines data collection
and preprocessing for gene set
enrichment analysis

The single-sample gene set enrichment score was calculated

using the GSVA program to derive absolute enrichment scores

of gene sets from previously experimentally validated gene

signatures from several publications or MsigDB. These

signatures include tumor proliferation signature, tumor

inflammation signature, DNA replication, G2M checkpoint,

Stem cell signature, MYC targets, EMT markers, collagen

formation, P53 pathways, apoptosis, degradation of ECM,

angiogenesis, inflammatory response, ECM related genes,

TGFB signaling, genes up-regulated by ROS, radiosensitivity

index, PI3K/AKT/mTOR pathway and hypoxia signature (52–

54) (Table S4). The RNA expression counts matrix was used as

an input to calculate the GSVA score of each signature for each

sample in RNA-seq mode. Spearman correlation between TR-

DDR score and scores of differentially enriched gene sets were

calculated in 11 cancer types and CCLE cell lines. Only

correlation with p<0.05 were demonstrated in the heatmap.
Immune cells proportion and tumor-
infiltrating lymphocyte Z score

The estimated proportion of individual 22 immune cell types

was obtained using CIVERSORT (55). For a given sample, we

computed the Spearman correlation coefficient between TR-DDR

score and relative abundance of each immune cell type in 11

cancer types and visualized the correlation with p<0.05 in the

heatmap. In CIBERSORT, LM22 (22 immune cell types) for

signature gene file, 100 for permutations, and disabled quantile

normalization for all runs were selected.
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The comprehensive TIL score for each sample was calculated

by applying an algorithmically optimized method, which used the

expression of representative genes or gene sets of single samples

from 20 single factors and six immune cell types. We conducted

the calculation using the available R code developed by

Charoentong et al. (56). RNA expression matrix transformed

into log2(TPM+1) values were used as the input, and the

average Z score in the output file was selected as TIL

comprehensive score.
Identification of pathways alterations
between TR-DDR score high and
low tumors

The difference in gene expression between TR-DDR score

high and -low groups was analyzed using the R-package

“DESeq2”. Genes with |Log2FC| > 2 and FDR < 0.01were

considered as significantly differentially expressed. We choose

the genes co-upregulated in at least three cancer types as DDR

positively related genes. R-package “cluster profile” was used to

process the Gene Ontology (GO) term and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment analysis.
Statistical analysis

R-package “pROC” was used to plot the receiver operator

characteristic (ROC) curve. Spearman rank correlation analysis

was applied to estimate the statistical significance between TR-

DDR score and other continuous variables, including gene set

enrichment score, immune cells proportion, and genomic

instability. Wilcoxon rank-sum test was used to obtain the

significance of differences between continuous values, while

Pearson’s Chi-square test and Fisher’s exact test were used on

categorical variables.
Results

A systematic analysis revealing common
dysregulation of DDR genes in
human cancers

We scrutinized the expression alterations of 71 core genes

involved in DNA damage repair pathways, including Base

Excision Repair (BER), Nucleotide Excision Repair (NER),

Direct Repair (DR), Mismatch Repair (MMR), Homology-

Dependent Recombination (HDR), Non-homologous End

Joining (NHEJ), Fanconi Anemia (FA) and Translesion

Synthesis (TLS) (6) (Table S1), and observed recurrent up-

regulation of core DDR genes expression, relative to normal
Frontiers in Immunology 04
controls, among the 6166 The Cancer Genome Atlas (TCGA)

cancer samples across 11 tumor types (Table S2). Among the

eight DDR pathways, the HDR and BER pathways responsible

for the double-strand break (DSB) and the single-strand break

(SSB) restoration, as well as the FA pathway were significantly

up-regulated across the pan-cancer cohort (Figure 1A), which

meant at least two genes of the pathway were up-regulated

expression in all cancer types.

On the individual gene level, the majority of core DDR genes

were identified as differentially expressed genes (DEGs) (FDR <

0.05) between tumor and normal tissue. Six cancers owned more

than 50 DEGs of DDR, including BRCA (65 DEGs), LUAD (59

DEGs), LUSC (59 DEGs), COAD (56 DEGs), HNSC (55 DEGs),

and STAD (53 DEGs), presented in Figure 1A (Table S3). We

also observed that all cancer types harbored similar change

patterns of DDR gene expression levels. Among these DDR

DEGs, there were 7 DDR genes (POLQ, BRIP1, FANCA, XRCC2,

EXO1, and EME1) identified in nine or more cancer types and 13

DDR genes (BLM, BRCA2, RAD51, SHFM1, BRCA1, UBE2T,

SLX1A, FANCB, FANCD2, FEN1, ERCC3, GEN1, and PRKDC)

were found in four to nine kinds of cancers. These 20 DDR-

DEGs had significantly increased expression levels in cancers, so

we termed these genes a “Tumor-related core DDR gene set”

(Table S1).

In addition, the mutations and copy number alterations of

core DDR genes were also observed across 11 major cancer types

(Figures 1B, C). NER and TLS pathways responsible for the

bulky adducts restoration, as well as HDR pathway repairing

DNA double-strand breaks, had significantly high mutation

frequencies which meant the pathway contained over two

mutated genes with more than 5% of samples. On the

individual gene level, PRKDC belonged to the NHEJ pathway,

as the DDR gene with the most prevalent mutation (14.1% in

pan-cancer) was one of the top 2 DDR genes ranked by mutation

frequency in 10 kinds of cancers including COAD (23.68%),

STAD (22.71%), LIHC (14.94%), and LUAD (14.49%) (Figure

S1). We also observed significant regions alteration of all DDR

pathways except DR when analyzed copy number data across the

pan-cancer cohort, using identical filter conditions with

mutation. Under the same criteria, the HDR, NHEJ, BER, and

FA pathways exhibited significant amplification, while only

NHEJ and HDR pathways showed significant deletion

(Figure 1D). The most frequently amplified genes across the

pan-cancer atlas were BRIP1 (HDR, 8.04%), POLB (BER, 6.54%),

MUS81 (HDR, 6.42%), NBN (HDR, 6.31%), and EXO1 (MMR,

6.26%), while the most frequently deleted genes were BRCA2

(HDR, 6.44%), XRCC2 (HDR, 6.38%), and CUL5 (NER, 6,28%).

The amplified DDR pathways were noticeably similar to the

overexpression DDR pathways, so we investigated the

correlation between DNA copy number and mRNA expression

in pan-cancer samples. The results showed the overexpression of

the DDR genes might be driven by copy number amplification in

the tumor tissues (Figure 1E).
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Neoplasm discrimination by a DNA
damage repair gene expression signature

Because most of the DDR genes with an altered expression

between tumor and normal tissue belonged to the “Tumor-related

core DDR gene set”, we used the expression profile of the 20 core

genes to obtain a tumor-related DDR score (TR-DDR score) by

Gene Set Variation Analysis (GSVA). Examining whether the TR-

DDR score was only affected by a small group of key genes, we

found the contribution of individual genes to the score was

approximately uniform (Figure 2A). The sample’s TR-DDR

score was calculated across all cancer types (Figure 2B) and in

each cancer type (Figure S2), respectively. The TR-DDR score

greatly varied among different cancer types. Some cancers had

high scores such as STAD, HNSC, COAD, and LUSC, while

others had low scores such as THCA, PRAD, KIRP, and

KIRC (Figure 2B).

Compared with normal tissues, the TR-DDR score was

significantly higher in tumor tissues across all cancer types

(Figure S2). The distribution of the normal sample significantly

concentrated on the low-scored regions (Figure 2A and Figure

S3). Hence, we evaluated whether the TR-DDR score would be a

tumor predictive marker for all cancer types, and the receiver
Frontiers in Immunology 05
operating characteristic (ROC) curve was used to measure the

true-positive rates against the false-positive rates at various

thresholds of the TR-DDR score. The area under the ROC

curve (AUC), representing the predictive power, ranged from

0.730 to 0.988 across 11 cancer types (Figure 2C and Table 1) and

the results showed that the score had a strong predictive power to

distinguish between tumor and normal tissue. Among them, an

excellent predictive value having AUC higher than 0.9 was found

in 6 cancers (LUSC, LUAD, KIRP, KIPC, BRCA, and COAD).

What is more, we observed that cancer types sharing similar tissue

origins or carcinogenic risk factors harbor similar AUC values,

such as seen in LUSC (0.988) and LUAD (0.946), KIRP (0.930)

and KIRC (0.927). These results demonstrate the TR-DDR score

is altered in tumors and could serve as a potential indicator for

tumor formation with substantial biological significance.

To investigate whether the TR-DDR score was clinically

relevant, we divided patients into two groups depending on the

TR-DDR score in each dataset: high-score groups (the 50%

samples at the top) and low-score groups (the 50% samples at

the bottom). We observed that the high-score group had a

higher proportion of patients classified pathologically as

advanced-stage (tumor stage iii and iv) (Figure 2D and

Figure S5).
A

B D

EC

FIGURE 1

Overview of core DDR genes dysregulation across pan-cancer. (A) The bar chart (left) indicates the total number of DDR genes identified as
differentially expressed genes (DEGs) between neoplastic and normal tissue, and the dot plots (right) respectively show the fold change (dot’s
color) and p-Value (dot’s size) of 71 core DDR genes across eight DDR pathways in 11 cancer types. (B, C) The pan-cancer prevalence of
somatic single-nucleotide variants (SNVs) (B) and copy number alterations (CNAs) (C) events in the 71 core DDR genes in the 11 TCGA cancer
tumors. (D) Radar plot of the prevalence of copy number gain (red line) and loss (blue line) events. The most prevalent gene (the gene belonged
to copy number gain uses red color while the loss uses blue) in each DDR pathway is marked with the pan-cancer prevalence. (E) The Gene Set
Enrichment Analysis (GSEA) of DDR pathways on genes ranked based on their correlation between expression and copy number alterations in
the pan-cancer tumors. Both (A–D) share the same color bar representing different DDR pathways.
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We next assessed the correlation between the TR-DDR score

and the somatic single-nucleotide variants (SNVs) features.

After analyzing the SNVs features of two sample groups across

11 cancer types, we observed a strong correlation between the

score and the SNV frequency (Figure S6). In the high-score

group, the top 5 genes showed a significantly higher mutation

rate than those in the low-score group, such as the TTN gene.

Additionally, the point mutation rate of TP53 had an extreme

elevation in high-score groups compared to low-score groups

among BRCA, COAD, LIHC, LUAD, LUSC, PRAD, and STAD

(Figures 2E, F and Figure S7).
The correlation between the key cancer
hallmarks and TR-DDR score

To reveal the relationship between the cancer hallmarks and

TR-DDR score in each cancer type, we calculated the signature
Frontiers in Immunology 06
enrichment score of each cancer hallmark (Table S4) by GSVA

analysis, using the publicly available gene set in Molecular

Signatures Database (MSigDB). And then the Pearson’s

correlation coefficient R and corresponding P-Value were

computed between the TR-DDR score and enrichment score

of each cancer hallmark with independent signatures.

Determining more reliable and consistent results of the

correlation across multiple cancers, data from the Cancer Cell

Line Encyclopedia database (CCLE) was included in the analysis.

The heatmap of the correlations showed that DNA replication,

Tumor proliferation signature, G2M checkpoint, Cell stemness

signature, and MYC targets gene signatures had a strong positive

correlation with TR-DDR score across 11 TCGA cancer types

(mean correlation coefficient r > 0.53) and CCLE database

(correlation coefficient r > 0.49), whereas ECM related genes

signature, Angiogenesis, TGFB signature, Apoptosis, and p53

pathway signature had a negative correlation across 7–10 TCGA

cancer types (mean correlation coefficient r < -0.14) and CCLE
A
B

D E

F

C

FIGURE 2

Identification of a DNA damage repair gene expression signature and its association with clinical outcomes. (A) Samples are ordered from
lowest to highest Tumor-related DNA damage repair (TR-DDR) scores with 20-gene expression distribution in LUAD. The top color bar shows
the samples’ type and TR-DDR score. (B) TR-DDR scores are calculated based on the mRNA abundance signature in 11 tumor types, sorted by
the median GSVA score for each cancer type. (C) ROC curves for the performance of TR-DDR score for neoplasm discrimination for 11 cancer
types from TCGA cohorts. Area Under the Curve (AUC) values are presented in the figures and Table 1. (D) Comparison of conventional clinical
parameters between TR-DDR high- and low-group patients in LUAD. (E, F) Top 5 frequently mutated genes in TR-DDR score high-group (top)
and low-group (bottom) in BRCA (E) and LUAD (F) cohort. Genes are ranked by their mutation frequency in patients.
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database (correlation coefficient r < -0.39) (Figure 3A and Table

S5-1). It is worth mentioning that the coefficient R between

Tumor cell proliferation signature score and TR-DDR score was

relatively high in all cancer types (r = 0.75 – 0.92 in TCGA, r =

0.63 in CCLE), implying a strong correlation between tumor

proliferation and TR-DDR score (Figure 3D). Using the data

from the CCLE database for further analysis, we also observed

that the group of cancer cell lines with fast growth (the cell lines

with short 30% of the double-time) own a higher TR-DDR score

than the group with slow growth (the cell lines with long 30% of
Frontiers in Immunology 07
the double-time), which verified the above results (Figure 3B). In

addition, TR-DDR score had a significantly positive correlation

with the Cell stemness signature score (r = 0.38 – 0.69 in TCGA,

r = 0.49 in CCLE) and had a negative correlation with the

Apoptosis signature score (r = -0.16 – -0.58 in TCGA, r = 0.53 in

CCLE) (Figures 3E, F). These results were highly consistent

among the different types of cancer tissue and cell line, implying

indicative value across pan-cancer.

After identifying the DEGs (FDR < 0.05 and |log2FC| > 2)

between high- and low-TR-DDR score groups in 11 cancer types
A B D

E

F

C

FIGURE 3

Association of TR-DDR score with cancer hallmarks and pathway signatures. (A) Heatmap showing the Pearson’s correlation coefficient for
GSVA scores of cancer hallmarks signatures and TR-DDR score in tumors. Only the correlation coefficient with a p-Value less than 0.05 is
shown in the heatmap. (B) The distribution of TR-DDR score of cancer cell lines with fast and slow proliferation rates is categorized according
to the double-time of the cell lines. A two-sided Student’s t-test was used to assess the difference. p < 0.05. (C) GO term enrichment in the
differentially expressed genes between high- and low- groups of TR-DDR score. (D–F) Spearman correlation between TR-DDR score and stem
cell gene set, tumor proliferation signature, apoptosis score of tumor cells and tissues in CCLE and LUAD. p < 0.05.
TABLE 1 The sample size statistics and AUC value of TR-DDR score for neoplasm discrimination.

Cancer Type No. of Normal Tissues No. of Cancer Tissues AUC Value of TR-DDR

LUSC 49 496 0.988

LUAD 58 512 0.946

KIRP 32 288 0.930

KIRC 72 527 0.927

BRCA 99 1078 0.925

COAD 41 453 0.902

HNSC 44 497 0.897

LIHC 50 371 0.798

STAD 32 373 0.796

THCA 56 505 0.735

PRAD 51 482 0.730
frontiersin.org

https://doi.org/10.3389/fimmu.2022.943090
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ding et al. 10.3389/fimmu.2022.943090
respectively (Table S6), we screened a total of 75 DEGs (69 up-

regulated and six downregulated genes) by choosing the DEGs

overlapping in more than three cancers (Table S7). 11 GO terms

were uncovered, and these terms contained three stem cell

related terms and one cell development related term, including

“regulation of stem cell proliferation”, “positive regulation of

stem cell proliferation”, “stem cell proliferation” and “negative

regulation of cell development” (Figure 3C). The results of GO

analysis were consistent with the results of cancer

hallmarks above.
The predictive capability of score
combining TR-DDR, TIL and G2M
checkpoint for response to
chemotherapy or immunotherapy
across multiple cancers

According to the results above, the TR-DDR score showed

a positive correlation with tumor proliferation level and a

negative correlation with the inflammatory response. Besides,

previous studies have demonstrated that functions of DDR-

related genes influence chemotherapy resistance leading to

poor patient survival (57, 58). Therefore, we further

speculated that the TR-DDR score could serve as a predictor

of response to chemotherapy or immunotherapy.

To verify this hypothesis, we first downloaded the IC50 data

of 153 anti-cancer drugs in corresponding cancer cell lines

from the CCLE database and grouped the cell lines as

sensitivity groups or resistance groups for different agents

respectively. Analyzing the correlation between TR-DDR

score and drug sensitivity, we observed that cell lines in

sensitivity groups showed relatively high levels of TR-DDR

score in 128 drugs (83.7%), and it is in none of the drugs that

the resistance group was correlated with high levels of TR-DDR

score (Table 2). The TR-DDR score of sensitivity and resistance

groups for the drug Cisplatin, Nilotinib, and others were shown

in Figure 4C and Table S8.

Moreover, we focused on clinical chemotherapy and

immunotherapy by analyzing the datasets from TCGA treated

with chemotherapy and five published GEO datasets on PD-L1/
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PD-1 blockade immunotherapy (Table S2) (59–63). The pre-

treatment transcriptome information and post-treatment

clinical response data were downloaded for the subsequent

computation of predicting clinical response to the drug. The

ROC curve and AUC were used to evaluate the capability of the

TR-DDR score to be a predictor of response to chemotherapy or

immunotherapy. The results showed that the AUC values were

0.432–0.7 (mean AUC = 0.557) in chemotherapeutic datasets

(Figure 4A) and were 0.454–0.680 in immunotherapeutic

treatment datasets (mean AUC = 0.594) (Figure 4B). We

observed the predictive power of the TR-DDR score was not

significantly higher than the pre-existing predictors, like the

tumor-infiltrating lymphocytes (TILs), as well as numerous

factors that independently predict clinical response, including

PDL1 expression, immune cell exhaustion, and disordered

expression levels of cytokines (60, 61).

As the TILs score is usually used as a predictor for response

to chemotherapy or immunotherapy (64–67), and coordinated

activity of G2M checkpoint is also induced by DNA damage

(68). So, we combined the TR-DDR score, the TIL score and

G2M checkpoint score to optimize the predictive accuracy of

drug response. The results showed that the AUC values of the

combined score were 0.564–0.800 (mean AUC = 0.662) in

chemotherapeutic datasets (Figure 4A) and 0.679–0.844 (mean

AUC = 0.744) in immunotherapeutic treatment datasets

(Figure 4B). The results showed that the combined score was

more suitable for immunotherapy than chemotherapy. In this

study, we did not focus only on pan-cancers but also on multiple

therapeutic approaches and drugs. In chemotherapeutic

datasets, the combined score has a better accuracy of

predictive power in BRCA and LUSC, perhaps because of the

multiple chemotherapeutic agents causing different toxic

mechanisms in different cancer types. In addition to that, the

results show that the combined score was more suitable for

immunotherapy than chemotherapy, perhaps because tumor-

infiltrating lymphocytes (TIL) is of critical importance in

influencing immunotherapy (69, 70). Overall, the combination

of the TR-DDR score, the TIL score and G2M checkpoint score

has a higher AUC (mean AUC = 0.700) than the single TIL score

(AUC = 0.505–0.686, mean AUC = 0.585) or G2M checkpoint

score (AUC = 0.530-0.748, mean AUC = 0.610) alone for

chemotherapy or immunotherapy, which suggests that this

combined index exhibits higher accuracy to predict drug

response (Table 3).
Association of TR-DDR score with
enhanced tumor immunogenicity,
genome-instability, and expression of
COL2A1, MAGEA4, FCRL4, ZIC1

To explore the mechanisms of drug resistance involved in

DDR, we investigated the correlations between TR-DDR score
TABLE 2 The percentage of sensitivity or resistance cell line groups
having a high level of TR-DDR score.

The group with a high TR-
DDR score

No. of drug
agents

The percent-
age (%)

Sensitivity group 128 83.7

Resistance group 0 0

No significance 153 16.3
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and numerous factors that independently predict clinical

response, including tumor mutation burden (TMB), neo-antigen

genotype, and the expression of TR-DDR-related DEGs. The

significant high levels of genomic instability, including

neoantigens, MSI sensor, mutation count burden, and fraction

genome altered, were observed in the high TR-DDR score group

in 11 cancer types (Figure 4D and Table S5-2), which indicated

tumor cells with high levels of TR-DDR score harbored more

mutations and genomic rearrangements which would carry more

neo-antigens. To be specific, the fraction of genome altered

showed a significantly positive correlation with TR-DDR score

among most cancer types (BRCA, LUSC, KIRC, KIRP, HNSC,

LIHC, PRAD, LUAD, and STAD), while neoantigens had

significantly high R values in 4 cancer types (BRCA, COAD,

PRAD, and LUAD) (p <0.01). This result was consistent with

those of previous research that the DDR pathways are associated
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with hypersensitivity to chemotherapeutic drugs (71). In addition

to this, some recent evidence also showed that DDR pathways

could change specific factors, such as TMB, which could affect

immunotherapy response across different tumor types (72, 73).

We next explored the correlations between identified DEGs

and TR-DDR genes using Spearman correlation analysis. As a

result, seven DEGs correlated with more than 10 TR-DDR

genes (r>0.3) in at least 10 cancers were regarded as candidate

genes, including COL2A1 (the R ranged from 0.39 to 0.60),

MAGEA4 (0.24–0.62), FCRL4 (0.33–0.62), ZIC1 (0.24–0.33),

LCN15 (0.20–0.41), PRSS3 (0.24–0.35), CSAG1 (0.31–0.38)

(Table S9). What is more, the expression of COL2A1 and

MAGEA4 especially had significantly positive correlations

with 19 TR-DDR genes, which is an especially large number

compared with other DEGs. Collectively, the data show that

the expression of 4 DEGs (COL2A1, MAGEA4, FCRL4, ZIC1)
A

B

D

E

C

FIGURE 4

Predictive ability of a combination of the TR-DDR score and TIL score in clinical response of chemotherapy and immunotherapy across pan-
cancer types. (A, B) ROC curves for the performance of TR-DDR score, TIL score, G2M checkpoint score, and the combination of both scores
for predicting chemotherapy (A) and immunotherapy (B) response in patients. Area Under the Curve (AUC) values are presented in Table 3.
(C) The distribution of TR-DDR score of cancer cell lines under resistant and sensitive conditions with Cisplatin and Nilotinib medication
therapy. A two-sided Student’s t-test was used to assess the difference. p < 0.05. (D) Heatmap showing the Pearson’s correlation coefficient for
genomic instability with TR-DDR score in tumors. (E) The Pearson’s correlation coefficient for COL2A1 (the most correlated DEGs with TR-DDR
score) and core-DDR genes. Only the correlation coefficient with a p-Value less than 0.05 is shown in the heatmap.
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are strongly associated with the TR-DDR score and may play a

critical role in the DDR pathways (Figure 4E and Figure S8).
The composition and abundance of
immune cells among different TR-DDR
score levels in the context of tumor
immune microenvironment

To further explore the DDR mechanisms of drug

resistance, we next considered the potential effects of the TR-

DDR score on the tumor microenvironment. It has been

verified that the abundance of CD8+ T cells correlates with a

better response to immunotherapies (74, 75). As inflammatory

response signatures were negatively correlated with the TR-

DDR score shown in the above result (r = -0.09 – -0.60)

(Figure 5A), we sought to determine the differences in types

and abundances of various immune cells with tumor samples

of the high- or low-TR-DDR score. To apply machine learning-

based CIBERSORT to classify and estimate the level of immune

cell infiltration, we divided the 22 immune cells into seven

categories: T cells, B cells, macrophages, dendritic cells, natural

killer cells, mast cells, and granulocytes. The difference in

abundance of seven types of immune cells in the high group

and the low group of BRCA was shown that the high-score

group contained a high level of many kinds of T lymphocytes

and Macrophages M1 cells compared to the low-score group

(Figure 5B). The results for other TCGA cancer cohorts were

presented in Supplementary Files (see Figure S9 and

Table S10).
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We further observed a correlation between TR-DDR score

and the composition of immune cells for several cancers. The

infiltration level of CD4+ memory T cells activated, Macrophages

M1, T cells follicular helper, CD8+ T cells, T cells regulatory, NK

cells resting, and Dendritic cells activated had strongly positive

correlations with TR-DDR score in at least five cancers, whereas

the infiltration of CD4+memory T cells resting,MacrophagesM2,

Mast cells resting, and Monocytes had negative correlations with

TR-DDR score across in over five cancer types (Figure 5C). In

addition, the ratio of CD4+ memory T cells activation/resting and

macrophages M1/M2 polarization was significantly higher in the

high TR-DDR score group than in the low TR-DDR group in 5

kinds of cancers (Figure 5D).

Among the T cells category, the infiltration level of CD4+

memory activated cells was positively correlated with TR-DDR

score in 11 cancers significantly (r = 0.17 – 0.47), and the

infiltration level of CD4+ memory resting cells was negatively

correlated across six cancer types (r = -0.13 – -0.55) (Table S5-3).

CD8+ T cells, mainly involved in killing tumor cells, also had a

positive correlation with TR-DDR scores across six cancers, such

as KIRC (r = 0.25), and LUAD (r = 0.25). Infiltration levels of T

follicular helper cells, which mainly play a role in protective

immunity and help B cells produce antibodies against foreign

pathogens, had highly positive correlations with TR-DDR score

in 8 cancers (r = 0.11 – 0.40) (Table S5-3). Infiltration levels of T

regulatory cells (Tregs), a suppressor of immune cells, correlated

inconsistently with TR-DDR score in different cancers (positive

correlation in five cancer types, and negative correlation in two

cancer types). These results revealed that the increased number

of CD8+ and CD4+ T cells might be related to the advanced
TABLE 3 The sample size statistics and AUC value of TR-DDR score, TIL score, G2M checkpoint score, and combined the two scores for the
chemotherapy or immunotherapy research cohort.

Cancer Type Therapy Type No. of Responders No. of Non-
Responders

AUC Value

TR-
DDR

TIL G2M
checkpoint

Combined
score

BRCA chemotherapy 156 8 0.700 0.505 0.748 0.800

LUSC chemotherapy 49 16 0.624 0.587 0.568 0.761

LUAD chemotherapy 62 31 0.590 0.618 0.608 0.640

HNSC chemotherapy 64 8 0.432 0.602 0.547 0.619

STAD chemotherapy 71 42 0.488 0.586 0.542 0.590

COAD chemotherapy 52 20 0.508 0.564 0.530 0.564

ccRCC immunotherapy 20 13 0.454 0.515 0.609 0.844

Melanoma cohort 1 immunotherapy 13 13 0.680 0.686 0.698 0.781

Urothelial cancer
cohort 2

immunotherapy 9 16 0. 583 0.618 0.569 0.736

Urothelial cancer
cohort 1

immunotherapy 68 230 0. 672 0.588 0.634 0.681

Melanoma cohort 2 immunotherapy 26 23 0.649 0.567 0.662 0.679
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stage of patients. For macrophages, macrophages M0 are

polarized into M1 classically activated macrophages

(inflammatory macrophage) or M2 alternatively activated

macrophages (anti-inflammatory macrophages) under different

stimulation (76). The infiltration level of macrophages M1

increased significantly along with the TR-DDR score

increased, while the infiltration level of macrophages M2

decreased along with the TR-DDR score increased.
The expression patterns of immune-
related genes in different levels of the
TR-DDR score

Besides the different composition and abundance of

lymphocytes in different TR-DDR score levels, immune

genes, which had become one of the most important factors
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influencing tumor immune microenvironment, were taken into

consideration to find out possible reasons for the above

differences between the high- and low-TR-DDR group. We

observed that the expression of genes related to activated

immune cells (such as CD4+ T cells, CD8+ T cells, and NK

cells) had significant increases in groups with high TR-DDR

scores (Table S5-4). High-score groups exhibited higher

expression of genes involved in stimulatory immune-related

genes, such as chemokines (IFNG, IL1A, etc.), tumor necrosis

factor receptor superfamily genes (TNF), and IFN response,

and exhibited lower expression of VEGF (Figure 5E), compared

to low-score groups. In addition, IL1A, IL6, and TNF up-

regulated in high-group may play important roles in

macrophage M1 polarization, while inhibitory cytokines

(such as IL10 and TGF-) secreted by M2-like macrophages

exhibited a higher expression in low-score groups (Figure 5E).

And then, we analyzed the expression of immune checkpoint
A B

D E

C

FIGURE 5

The abundance of immune cells and the expression of immune factors among high- and low- groups of TR-DDR score in 11 cancer types.
(A) Spearman correlation of the TR-DDR score and Inflammatory response score of tumor cells and tissues in CCLE and LUAD. (B) The
abundance difference of six main subclass immune cells in LUAD between high- and low- groups of TR-DDR score. (C) Heatmap showing the
Pearson’s correlation coefficient for the proportion of 13 types of immune cells and TR-DDR score in tumors. Only the correlation coefficient
with a p-Value less than 0.05 is shown in the heatmap. (D) The distribution of ratio of T cells CD4 memory activation/resting and macrophages
M1/M2 polarization in 8 cancer kinds. A two-sided Student’s t-test was used to assess the difference. p < 0.05. (E) Heatmap showing the
Pearson’s correlation coefficient for the expression of several immune-related characteristics with TR-DDR score in tumors. Only the
correlation coefficient with a p-Value less than 0.05 is shown in the heatmap. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.
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genes, including CD4, CD8A, CTLA4, FOXP3, PD1, and PDL1,

finding that PDL1, PD1, and CTLA4 had significantly higher

expression in high-score groups (Figure 5E). These results of

expression analysis of immune genes could partially explain

the above finding of the different composition and abundance

of lymphocytes in different TR-DDR score groups.

Overall, we found that the TR-DDR score had positive

correlations with the expression of PDL1, and IFNG in over

ten cancers, suggesting that these signatures may play more roles

in the crossroads of the DDR pathway and immune response

(Figure 5E). Positive correlations were also observed between the

TR-DDR score and expression of PD1 and CTLA4 in 8 cancer

types. We further identified CD4 displayed negative correlations

in several TCGA cancers (LUSC, LUAD, STAD, and COAD),

while positive correlations in other four cancer types (KIRC,

THCA, BRCA, and PRAD) (Figure 5E). Worthy of note, the TR-

DDR score was observed to have a positive correlation with all

expressions of immunotherapy-related factors in KIRC and

THCA, suggesting that DDR pathways may have a strong

influence on immunotherapy-related factors in these

two cancers.
Discussion

For the first time, we have used expression profiling data of

transcriptome from cancer patients and tumor cell lines at the

bulk level, combined with clinical information, to elucidate the

comprehensive and profound links between dysregulation of

the DDR pathway with cell proliferation signaling,

inflammatory responses, tumor immunogenicity, genomic

instability, composition and abundance of immune cells,

immune-related genes across pan-cancers. We also found

DDR pathway scores have the predictive capability of

response to chemotherapy or immunotherapy in pan-cancer.

It is observed that alterations in DNA damage repair

(DDR) genes are prevalent in different cancers, including

overexpression, somatic mutations, and significant

enrichment for copy number amplification. Analysis of the

genetic landscape of DDR genes in cancer will have important

implications for tumor diagnosis, individualized therapy, and

targeted drug use (7, 8, 77). Tumor cells are characterized by

rapid clonal proliferation that differs from normal cells and is

accompanied by higher genomic instability, such as defects in

DDR genes (78, 79). Based on the function of DDR genes and

pathways, it has been verified that many alterations of DDR

genes may increase the number of specific mutation types and

the overall mutational burden (80, 81). However, frequent

overexpression of DDR genes, which may play critical roles

in cancer occurrence and progression, has long been neglected

in cancer studies. Here, we defined 20 DDR-DEGs with
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significantly increased expression as a “Tumor-related core

DDR gene set”. The importance of these genes in genome

maintenance has been verified by multiple studies (2, 82). In

our study, the TR-DDR score reflects the expression level of

tumor-related DDR genes. A high level of TR-DDR score in

cancers seemingly represents a barrier to achieving

uncontrolled cell growth. However, this barrier just cannot

slow down the progression of the tumor (83). Interestingly, our

results point out that cancers with a higher TR-DDR score

grow faster than cancers with a lower score. Moreover, a higher

TR-DDR score is correlated with greater genomic instability,

including neoantigens, MSI sensor, mutation count burden,

and fraction genome altered. This paradox could be explained

by a dynamic continuum of cancer initiation and progression.

DDR genes belong to tumor suppressor genes, and their loss of

function is conducive to the occurrence and development of

tumors (6), while it is also widely observed that alterations of

copy number amplification or overexpression in DNA damage

repair (DDR) genes are prevalent in different cancers (32,

84, 85).

During the initial stages of cancer initiation, dysregulation

of the DDR can lead to genomic instability that promotes

tumorigenesis (6). However, as normal cells evolve

progressively to a neoplastic state, they acquire a succession

of these hallmark capabilities, including sustaining

proliferative signaling, evading growth suppressors, enabling

replicative immortality and so on (86). With the progression of

tumor malignancy, tumor cells characterized by rapid clonal

proliferation would cause high DNA replication stress, which

leads to DNA double-strand breaks, genomic instability and

selective pressure for p53 mutations (9). Therefore, increased

replication stress and endogenous DNA damage level need

more expression of DDR genes to exercise their function. This

has been verified in previous studies that oncogenic stress can

cause the dysregulation of cell proliferation, leading to the

activation of the DDR pathway (9, 87). This is also concordant

with observations in the literature that alterations of copy

number amplification or overexpression in DNA damage

repair (DDR) genes are prevalent in different cancers (32, 84,

85). In this study, the TR-DDR score reflects the expression

level of tumor-related DDR genes. Our results point out that

cancers with a higher TR-DDR score grow faster than cancers

with a lower score. Therefore, a higher TR-DDR score is

correlated with high DNA replication stress which leads to

genomic instability.

Another main contribution of this study is to point out the

predictive capability of the TR-DDR score for the effect of

chemotherapy or immunotherapy in specific cancer types, and

to put forward a combined index consisting of the TR-DDR

score, TIL score and G2M checkpoint score, which has a

stronger predicting accuracy than the pre-existing predictors
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(PDL1 expression or CD8+ T cell density) in immunotherapy.

Some DNA damage repair pathways or genes have been

considered as a potentially useful application of diagnostic

biomarkers, which predicts the sensitivity of the agent. For

instance, it has been reported that the aberrant expression of

BRCA1 impairs the DNA damage repair machinery in certain

tumors, and therefore, its expression levels can be an effective

biomarker of survival for non-small-cell lung cancer patients

with cisplatin-based chemotherapy (88). For another example,

defective HDR or FA pathway would be used to predict

sensitized tumors that are prone to exhibit cellular

hypersensitivity to chemotherapeutic drugs, such as

alkylating and cisplatin (71). In comparison, coordinated

activity of G2M checkpoint is induced by DNA damage to

response prediction for chemotherapy and radiotherapy (68,

89). Apart from the explanation mentioned above, our research

shows that the reason for the TR-DDR score being an indicator

of response prediction for chemotherapy or immunotherapy

resistance may mainly correlate with genomic instability and

tumor immune microenvironment. Having a strong

connection with genomic instability and a high level of

mutation burden, the high TR-DDR score of tumors usually

implies more “alien” peptides which means higher

immunogenicity of the tumor (72, 73, 90). The neo-antigens

in the tumor, presented by MHC molecules, can potentially be

recognized by the endogenous T cell repertoire, causing

increased T cell influx and a better overall response rate to

therapeutics (14, 63, 91). A growing body of clinical

observations indicates that aberrant expression of DNA

damage repair pathways in human cancers is correlated with

changes in genome stability or immune composition,

influencing therapy response.

The tumor immune microenvironment, which is the key to

influencing immunotherapy, appears heterogeneous across

patients and tumor types. The heterogeneity of different

immune cell interactions on immune activation can be

observed between TR-DDR high- and low-score groups.

Firstly, it has been documented that the aberrant DNA

damage repair pathway has a strong correlation with

genomic instability (92). Meanwhile, MAGEA4, one of the

DEGs between TR-DDR high- and low-score groups, also

promotes genome destabilization by contributing to TLS

pathway activation, DNA-damage tolerance, and genome

maintenance in cancers (93, 94). Other studies showed gene

instability has an impact on the tumor microenvironment

(90), including chemokines recruitment and activation of T

lymphocytes, DCs, and NK cells (95–97). Among these

immune cells, CD8+ T cells exert cytotoxic effects through

secreting TNF, perforin, and granzymes (95), and CD4+ T

cells further activate other immune cells by secreting IL-1,
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IL-6, IFN-g, and other cytokines (96, 97), in which IL-1 and

IL-6 play important roles to polarize macrophages toward M1

type with anti-tumor functions (98). In contrast, it has been

confirmed that genomic stability tumors have more M2-like

macrophages, which inhibit T cells and antigen-presenting

cells by secreting TGF-b, and IL-10 (99, 100). In this study, the

high-TR-DDR group contained high levels of not only

genomic instability but also some immune cells (T

lymphocytes, DCs, and Macrophages M1 cells), and had a

strong association with high expression of immune factors

(IFN-g, IL1, TNF). In addition, it was found thatMAGEA4 had

a high expression in the high-TR-DDR score group. The low-

TR-DDR tumor was strongly correlated with a high level of

M2-like macrophages and high expression of TGF-b. The
results in the present study combing with the previous

research further revealed that abnormality of DDR pathways

might cause increased immune cell infi ltration and

cytotoxicity by promoting genomic instability (Figure 6).

Secondly, it is widely accepted that DCs promote tumor

immunity through antigen processing and presentation

(101). The emergence of these “alien” peptides consequently

brings higher immunogenicity to the tumor and better

immunotherapy efficacy (73). In our results, high infiltration

level of activated DCs was found in the high-TR-DDR group,

linked with high immunogenicity of tumors. Therefore, the

reason for the predictive ability of the TR-DDR score for

chemotherapy or immunotherapy resistance may be explained

by high immunogenicity caused by the effects of abnormal

DDR pathways on the tumor immune microenvironment

(Figure 6). Thirdly, we also noticed that mutations of certain

DDR gene (TP53) correlate with increased PDL1 expression in

a cohort of lung adenocarcinoma patients (102). In our study,

the significantly higher expression of immune checkpoint

genes, including PDL1, PD1, and CTLA4, and elevation of

the point mutation rate of TP53 were found in high-TR-DDR

score groups, which indicated that mutations of DDR genes in

a tumor might influence treatment efficacy through altering

expression levels of immune checkpoint molecules (Figure 6).

Fourthly, previous studies revealed that both COL2A1, which

encodes a component of type-II collagen and collages (103,

104), and ZIC1 could suppress cancer metastasis by regulating

the signaling pathway of the extracellular collagen-derived

antiangiogenic factor (105, 106) and Wnt signaling pathway

(107) respectively. While, FCRL4+ B cell is capable of aborting

B cell receptor-mediating signaling and proliferation and

producing pro-inflammatory cytokines TNF-a (108, 109). In

our study, the expressions of these four DEGs have strong

associations with most of the core DDR genes. Therefore,

COL2A1, FCRL4, ZIC1, and MAGEA4 (discussed earlier) may

play roles in the immune microenvironment between TR-
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DDR high- and low-score groups in our speculation

(Figure 6). In conclusion, we systematically analyzed and

speculated the possible regulatory mechanisms of DDR

genes on the immune microenvironment. Nevertheless, these

possible mechanisms still need further verification in

the future.

Taken together, the combination of TR-DDR, TIL scores

and G2M checkpoint score can optimize the accuracy

of predicting chemotherapy or immunotherapy response

in several cancer types. The possible regulatory mechanism

of DDR genes on the immune microenvironment

was speculated.
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FIGURE 6

Possible mechanism underlying the difference in the efficacy of chemotherapy and immunotherapy in cancer patients with different TR-DDR
scores. (A) The high-TR-DDR tumor microenvironment (TME) improves therapeutic effect through enhancing antitumor immunity of tumor-
infiltrating lymphocytes (CD8+ T cells, CD4+ T cells), DCs, and M1-like macrophages, while low-TR-DDR tumor microenvironment has stronger
ability of invasion and metastasis with an increasing number of Monocytes and M2-like macrophages. In high-TR-DDR tumors, CD8+ T cells
exert cytotoxic effects through secreting TNF, perforin, and granzymes, and CD4+ T cells further activate other immune cells by secreting IL-1,
IL-6, IFN-g, and other cytokines, in which IL-1 and IL-6 play important roles to polarize macrophages toward M1 type with antitumor functions.
Additionally, DCs promote tumor immunity through antigen processing and presentation. In contrast, VEGF-rich TME for low-TR-DDR tumors
promotes M2 polarization of macrophages, which inhibits T cell (CD8+ T cells, CD4+ T cells) and antigen-presenting cells (DCs) function. In
addition, recruitment and activation of Monocytes also could facilitate tumorigenesis by promoting immune suppression, angiogenesis, and
tumor cell intravasation into the vasculature. (B) COL2A1, MAGEA4, FCRL4, and ZIC1 possibly play roles in DDR function and immune
microenvironment. COL2A1 and ZIC1 could suppress cancer metastasis by regulating cell signaling pathways and the Wnt signaling pathway
respectively. MAGEA4 exerts function in the TLS pathway, promoting genomic instability and tumor immunity. FCRL4+ B cell is capable of
aborting B cell receptor-mediating signaling and proliferation, and producing TNF. The deep investigations of mechanisms of these DEGs at
molecular levels have not been reported.
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