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ABSTRACT Microbes face a trade-off between being metabolically independent
and relying on neighboring organisms for the supply of some essential metabolites.
This balance of conflicting strategies affects microbial community structure and dy-
namics, with important implications for microbiome research and synthetic ecology.
A “gedanken” (thought) experiment to investigate this trade-off would involve moni-
toring the rise of mutual dependence as the number of metabolic reactions allowed
in an organism is increasingly constrained. The expectation is that below a certain
number of reactions, no individual organism would be able to grow in isolation and
cross-feeding partnerships and division of labor would emerge. We implemented
this idealized experiment using in silico genome-scale models. In particular, we used
mixed-integer linear programming to identify trade-off solutions in communities of
Escherichia coli strains. The strategies that we found revealed a large space of oppor-
tunities in nuanced and nonintuitive metabolic division of labor, including, for exam-
ple, splitting the tricarboxylic acid (TCA) cycle into two separate halves. The system-
atic computation of possible solutions in division of labor for 1-, 2-, and 3-strain
consortia resulted in a rich and complex landscape. This landscape displayed a non-
linear boundary, indicating that the loss of an intracellular reaction was not neces-
sarily compensated for by a single imported metabolite. Different regions in this
landscape were associated with specific solutions and patterns of exchanged metab-
olites. Our approach also predicts the existence of regions in this landscape where
independent bacteria are viable but are outcompeted by cross-feeding pairs, provid-
ing a possible incentive for the rise of division of labor.

IMPORTANCE Understanding how microbes assemble into communities is a funda-
mental open issue in biology, relevant to human health, metabolic engineering, and
environmental sustainability. A possible mechanism for interactions of microbes is
through cross-feeding, i.e., the exchange of small molecules. These metabolic ex-
changes may allow different microbes to specialize in distinct tasks and evolve divi-
sion of labor. To systematically explore the space of possible strategies for division
of labor, we applied advanced optimization algorithms to computational models of
cellular metabolism. Specifically, we searched for communities able to survive under
constraints (such as a limited number of reactions) that would not be sustainable by
individual species. We found that predicted consortia partition metabolic pathways
in ways that would be difficult to identify manually, possibly providing a competitive
advantage over individual organisms. In addition to helping understand diversity in
natural microbial communities, our approach could assist in the design of synthetic
consortia.
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Each microbial cell harbors a finite number of metabolic gene functions. The specific
assortment of functions in a given organism thus represents the outcome of a

trade-off between the cost of expressing different genes and the benefit of expression
of those genes under conditions of different environments. This trade-off is considered
to be one of the possible drivers of diversity in natural microbial communities, giving
rise to metabolically differentiated groups rather than an individual superorganism
(1–8). The emergence of metabolically differentiated subpopulations from isogenic
populations has also been documented to occur in a fixed environment (9–21). The
viability of coexisting populations of metabolically differentiated strains or species is
often enabled by the exchange of metabolites (7, 11–13, 17, 18, 22–29). For example,
initially identical populations of Escherichia coli that evolved on minimal glucose
medium have been observed to give rise to a specialized subpopulation of cells that
use the acetate secreted as a by-product of glucose fermentation (12, 13, 17). More
broadly, metabolic interactions mediated by the exchange of small molecules help
maintain the diversity and stability of natural microbial communities and allow com-
munities to accomplish tasks that are metabolically intensive (5, 6, 23, 30). Moreover,
obligate metabolic interdependencies (such as mutualism) are believed to contribute
to the high prevalence of unculturability and fastidiousness among natural microbial
strains (7, 31–35).

A recent and increasingly common strategy to study microbial interdependencies is
the construction (or evolution) of artificial microbial consortia specifically designed to
display obligate mutualism. Current approaches to building synthetic communities of
interacting microbes have so far mainly relied on intuition about simple genetic
perturbations that would cause organisms to engage in obligate cross-feeding. In these
interactions, one strain is unable to synthesize an essential metabolite (e.g., an amino
acid) that is supplied via overproduction or leakage by another strain (36–43). This
ensures that the two strains require each other’s presence in order to grow. While
interesting and valuable, these strategies explore only a small portion of the very large
and complex space of possible environmental and organismal modifications; in prin-
ciple, organisms may have the potential to display complex cross-feeding strategies for
multiple metabolites simultaneously or in an environment-dependent manner (44, 45).
In fact, given the complexity of metabolism and its evolutionary history, it is possible
that naturally evolved cross-feeding strategies may involve complex metabolic mutu-
alism beyond single amino acid exchanges (46). In particular, loss of functions in one
organism due to compensation by others has been hypothesized to be widespread
(47) and may involve multiple genes and complex pathway architectures (29). In the
engineering of consortia for specific metabolic engineering tasks, exploring this larger
space of possibilities may open up novel strategies for bioproduction.

Surveying the landscape of possible paths for metabolic differentiation leading to
obligate mutualism is a combinatorially difficult problem. While future elaborations of
existing methods for high-throughput genetic modifications (e.g., multiplex automated
genome engineering [MAGE] [14]) may enable a systematic exploration of this space in
vivo, computational models can provide a preliminary assessment of the landscape of
possible strategies and of how these strategies depend on different constraints on
metabolic network complexity. Constraint-based models of metabolic networks, such
as flux balance analysis (FBA) (48–58), can be leveraged specifically to ask questions
that cannot be easily addressed experimentally. FBA represents metabolism as a set of
biochemical reactions inferred from genome annotations and literature curation and
evaluates cellular metabolism as a resource allocation problem. Given a set of bio-
chemical, thermodynamic, and environmental constraints, FBA uses linear program-
ming to determine the distribution of fluxes through a reaction network that satisfies

Thommes et al.

March/April 2019 Volume 4 Issue 2 e00263-18 msystems.asm.org 2

https://msystems.asm.org


a given optimization objective. Typically, this objective is that of maximizing the flux
through a biomass-producing reaction, so FBA determines how a cell should optimally
allocate nutrients based on its environment and biochemical capabilities such that the
growth rate is maximized. FBA has also been increasingly used to study metabolic
interactions in microbial consortia (7, 8, 23, 27–29, 38, 49–56, 59–63), as well as to
predict optimal genetic knockouts for metabolite production (48).

Here, we explore how metabolic differentiation emerges from an isogenic popula-
tion by using a newly developed constraint-based modeling approach which we name
“division of labor in metabolic networks” (DOLMN). In particular, using DOLMN, we
explore the space of feasible single-strain or multistrain metabolic networks by sys-
tematically limiting the number of intracellular and transport reactions in each meta-
bolic model. After introducing the mathematical and integer linear programming
formulation of DOLMN, we illustrate its capabilities through an analysis of division of
labor based on core carbon metabolism in E. coli (57). We next apply DOLMN to a
genome-scale E. coli model (58) and show that metabolically differentiated and inter-
dependent communities are able to exist under stricter reaction constraints than a
single, isolated strain and are even able to outcompete the single strain in some cases.
Our results broaden knowledge of the scope of possible metabolic interdependencies
between metabolically different species, with applications in understanding diversity in
natural microbial communities and in designing new artificial consortia.

RESULTS
A method to design division of labor in microbial communities. The problem of

metabolic division of labor consists of partitioning a given metabolic network (which
we refer to here as the “global network”) into subnetworks representing individual
organisms (which we also call simply “strains” here) (see minimal example in Fig. 1).
Each strain has its own metabolic network that includes intracellular reactions, as well
as transport reactions, which determine how it interacts with the environment. Envi-
ronmental availability of different nutrients is defined by constraints on the exchange
reactions, which enable the inflow and outflow of environmental metabolites and
by-products. In solving this problem concerning the division of labor, we make specific
assumptions that reflect the nature and architecture of metabolic networks across
different species as follows. (i) We do not set any specific a priori expectations about the
presence of reactions in different strains. Consequently, a reaction from the global
network may be selected to appear in one or more strains or may not appear in any
strain at all. (ii) We expect each strain’s subnetwork to represent a well-connected, fully
functional metabolism, so as to be capable of producing that strain’s biomass (see
Materials and Methods). (iii) Upon simulation of cocultures of multiple coexisting
strains, we require that all such strains must have equal growth rates, so that they
would be able to stably coexist in a chemostat (8, 43, 64, 65).

To solve this problem, we devised division of labor in metabolic networks (DOLMN),
which is formulated as a combinatorial optimization problem. Inputs of DOLMN consist
of the global network (encoded in a stoichiometric matrix S and accompanied by upper
and lower flux bounds, as in standard FBA formulations; see Materials and Methods);
the number of target strains (K); and constraints on the number of intracellular (TIN) and
transport (TTR) reactions allowed in each strain. Key outputs of DOLMN consist of a
binary reaction vector (t) whose elements indicate whether a given reaction is present
in a given strain and a continuous flux vector (x) for all reaction rates. Note that there
is no specific requirement for two or more strains to end up using different reactions
from the global network. A specific solution could entail multiple strains having exactly
the same reactions and yet not interacting with each other. We expect division of labor
to arise only upon making the TIN or TTR value too small for any individual strain to be
able to survive without receiving specific molecular components from a metabolically
distinct partner (Fig. 1a). Note that elements of t can switch on or off as a function of
the current constraints, irrespective of their state under conditions of different con-
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FIG 1 Division of labor in metabolic networks (DOLMN), illustrated as a toy model. (a) One- and two-strain solutions of a toy model. K indicates the number
of target strains, and TIN represents the constraint on the number of intracellular reactions allowed in each strain. Metabolites X, Y, and Z are required for each
network to grow (i.e., produce biomass). (b and c) Two strains can exchange metabolites Y and Z (c), but a single strain can only take up environmental
metabolites (b). (a) When TIN � 2, 1- and 2-strain communities perform the same metabolic functions: uptake of metabolite X, conversion of metabolite X to
metabolite Y, conversion of metabolite Y to metabolite Z, and creation of biomass from metabolites X, Y, and Z. The strains do not take up or secrete metabolite
Y or metabolite Z (indicated as a hollow arrow). When TIN � 1, the presence of an individual strain is no longer feasible because it cannot create metabolite
Z (indicated as a hollow circle). The alternative solution, where reaction 1 is knocked out (not shown), is also infeasible because the single strain cannot then
create metabolite Y. However, 2-strain communities are still feasible because the strains exchange metabolites Y and Z. If TIN � 1 and the number of transport
reactions allowed is constrained to two, then 2-strain communities are no longer feasible (not shown). (b and c) Toy metabolic network and corresponding
(community) stoichiometric matrices and reaction binary vectors of 1-strain (b) and 2-strain (c) communities. The value of each stoichiometric coefficient
represents the number of moles of each metabolite that participates in a reaction, with the sign indicating if a metabolite is a product (positive) or a reactant
(negative). Exchange reactions are represented in black; transport reactions are represented in light green (b), orange (c), or purple (c); and intracellular reactions
are represented in dark green (b), orange (c), or purple (c).
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straints, and that TTR does not differentiate between active transport and passive
transport.

DOLMN, described in detail in Materials and Methods, involves the use of mixed
integer linear programming (MILP). Our problem is NP (nondeterministic polynomial
time) complete. It can be solved exactly for core metabolic network models (i.e., in a
global network of �100 reactions), but it requires heuristics and long computational
times for genome-scale models (�1,000 reactions). Despite the use of the heuristic
speed-up methods, we still obtain a single optimal solution for each value of TTR, TIN,
and K.

Metabolic division of labor in E. coli core metabolism. As a first test and
illustrative example of DOLMN, we investigated how E. coli core carbon metabolism (57)
on minimal glucose medium would be partitioned between two strains (i.e., two
trimmed versions of the E. coli core network) for a given limit on the number of allowed
reactions (see Fig. 2 and Materials and Methods for details). Besides imposing con-
straints on the number of reactions allowed in each strain, we further required that
both strains have the same growth rate of at least 0.1 h�1, effectively simulating stable
coexistence in a chemostat (8, 43, 64, 65). Overall, we solved for 156 nontrivial
combinations of TTR and TIN, i.e., constraints under which either 1-strain or 2-strain
communities could grow (65 nontrivial combinations for a single strain and 91 for two
strains).

An interesting outcome of this analysis, obtained for subnetworks containing no
more than 11 transport reactions and 26 intracellular reactions, was the discovery of a
metabolic strategy in which each of two strains performs half of the tricarboxylic acid
(TCA) cycle (Fig. 2). Both strains take up glucose, oxygen, phosphate, and ammonium;
secrete carbon dioxide and water; perform glycolysis; and operate the nonoxidative
phase of the pentose phosphate pathways (PPP). However, strain x (Fig. 2, orange) takes
up four times as much glucose as strain y (Fig. 2, purple); operates the nonoxidative
phase of the PPP in the forward direction; and utilizes different reactions in glycolysis.
Furthermore, neither strain utilizes the glyoxylate shunt in the TCA cycle; instead, the
metabolites oxaloacetate and 2-oxoglutarate split the TCA cycle into roughly two parts.
Strain y performs the first part of the TCA cycle, converting oxaloacetate and acetyl-
coenzyme A (acetyl-CoA) into 2-oxoglutarate and generating NADPH. Meanwhile, strain
x generates oxaloacetate, NADH, and ATP through the transformation of 2-oxoglutarate
in the second part of the TCA cycle.

Neither of the strains, in this case, was able to perform all needed metabolic
functions without the inflow of specific metabolites produced by the partner. In
particular, exchange of 2-oxoglutarate and pyruvate was necessary for survival of this
2-strain consortium (Fig. 2). Strain x performs a portion of the TCA cycle in order to
produce 2-oxoglutarate, which is converted to biomass (as well as L-glutamate and
L-glutamine, which are also converted to biomass). The excess 2-oxoglutarate is utilized
by strain y for biomass as well as for the production of pyruvate. Pyruvate, in turn, is
converted to biomass, and its excess is utilized by strain x.

This example illustrates how, even for a relatively small network, DOLMN can
provide putative division of labor strategies that could not be easily designed manually.
DOLMN could be similarly applied to other core metabolic models (66) such as have
been generated for a large number of organisms.

A growth landscape illustrates division of labor strategies in E. coli genome-
scale metabolism. We next applied DOLMN to a much larger global network, namely,
genome-scale E. coli metabolism (58). In this case, individual strains found by the
algorithm would represent E. coli variants with a reduced set of functionalities. Alto-
gether, we solved for 5,347 combinations of TTR and TIN in which we found a feasible
solution, including 738 for a single strain, 2,207 for two strains, and 2,402 for three
strains.

To display how growth rates vary as a function of TTR and TIN, we systematically
mapped the landscapes of possible 1-, 2-, and 3-strain simulations (Fig. 3a and b; see
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FIG 2 A DOLMN flux solution of E. coli core carbon metabolism. The figure illustrates the solution for 2-strain communities when 11 transport
reactions (TTR � 11) and 26 intracellular reactions (TIN � 26) are allowed in the E. coli core network. Intracellular metabolites that are required

(Continued on next page)
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also Fig. S1a in the supplemental material). One first observation, consistent with
expectations, was that as TIN decreases (for an unconstrained number of transport
reactions), individual strains reach a limit beyond which they cannot sustain growth,
whereas consortia of two and three strains are still viable. In the example analyzed in
Fig. 3, a 1-strain subnetwork needs at least 254 intracellular reactions to grow, whereas
2-strain subnetworks require only 215 intracellular reactions each and 3-strain subnet-
works 203 intracellular reactions each (Fig. S2a). Interestingly, the 2-strain and 3-strain
subnetworks have approximately the same number of intracellular reactions in com-
mon (Fig. S2b).

The observed landscapes display a fundamental nonlinear trade-off between min-
imizing TIN (intracellular complexity) and minimizing TTR (metabolic exchange). This
nonlinearity implies that removing the same number of transport reactions at different
points along the frontier of the feasible region can be compensated for by adding
different numbers of intracellular reactions. For example, decreasing TTR by 2 at large
TTR values can be compensated for by adding a single intracellular reaction (increasing
TIN by 1), while removing the same number of transport reactions at small TTR would
require a much larger compensation with intracellular reactions (Fig. 3a and b; see also
Fig. S1a). It is important to note that decreasing the TTR value negatively influences
growth because it restricts not only each strain’s ability to take up metabolites but also
its ability to secrete metabolites. If an organism cannot secrete metabolites, it accu-
mulates waste (which results in an infeasible FBA solution). Irrespective of the number
of strains in the community, it appears that the E. coli strain subnetworks require at
least 9 transport reactions in order to support growth, corresponding to the main
elemental sources and other irreducible biomass requirements; this strict bound is
illustrated with a gray, shaded region in the (TTR,TIN) landscape (Fig. 3a to c; see also
Fig. 4a, c, d, and e). Among other things, these transporters enable the strains to take
up carbon, nitrogen, sulfate, and phosphate sources (Fig. S2c).

Further analysis of the landscapes for 1-, 2-, and 3-strain communities also reveals
the existence of regions in which division of labor potentially provides a competitive
advantage. Given that multiple strains coexisting in a consortium have to share
available resources, they tend to grow more slowly than individually growing strains
(Fig. 3a and b). One notable exception is a thin strip at the boundary, in which an
individual strain can grow. At this frontier for a single strain, we observed that 2-strain
communities can grow more rapidly than 1-strain communities (Fig. 3c and d). A
biologically important implication of this result is the fact that the 2-strain communities
would in principle have the chance to collectively outcompete the 1-strain ones.
Similarly, 3-strain communities grow faster than 2-strain communities along the bound-
ary in which 2-strain communities can grow (Fig. S1c and f) but only grow faster than
1-strain communities at a single constraint (Fig. S1b and e). These results suggest that
the number of strains that achieve the highest growth rates under a given set of
circumstances might naturally increase as environmental constraints tighten. This
situation could arise, for example, if the burden of protein cost in the cell were to
increase or if selection processes were to gradually come to favor streamlined strains
(e.g., as previously observed experimentally and reported [10, 11, 14–21, 35]).

In examining the union of all intracellular reactions present at a particular constraint,
we observed that the number of unique intracellular reactions seen with multistrain
communities is larger than the number seen with a single strain and that 3-strain
communities sometimes have higher numbers of unique intracellular reactions than

FIG 2 Legend (Continued)
for growth are bolded. Exchange reactions are represented in black and show the direction of the net flux between the two strains. Flux values
(in millimoles per gram cell dry weight per hour) are indicated next to the arrows signifying the reactions. Both strains grew at 0.40 h�1.
Transport reactions are represented in either light orange or purple and intracellular reactions are represented in either dark orange or purple
for strain x or strain y, respectively. Reactions that the algorithm identifies as excluded or that have zero flux are indicated as a hollow arrow.
The tricarboxylic acid (TCA) cycle is split between the two strains. Both strains consume oxygen, glucose, phosphate, and ammonium and
secrete carbon dioxide and water. The two strains exchange the TCA intermediate 2-oxoglutarate and the glycolytic intermediate pyruvate
(bolded and underlined); metabolite exchange is illustrated as an orange or purple arrow to indicate which strain is producing the metabolite.
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FIG 3 Growth (TTR,TIN) landscapes of 1- and 2-strain communities. The gray region depicts the infeasible region in which strains cannot grow because there are not
enough transport reactions to take up and secrete metabolites. Strains were required to maintain a biomass flux of at least 0.1 h�1. Each data point represents a single
simulation. (a) Growth landscape of 1-strain communities. Biomass flux values are interpolated to obtain values for the instances where the numbers of transport
reactions (TTR) allowed are 23, 25 to 33, 35 to 37, and 39 to 45. In the instances where fewer transport constraints (decreasing TTR) are allowed, more intracellular
reactions (TIN) are required. For example, when TTR decreases from 21 to 19, only 1 additional intracellular reaction is required. However, when TTR decreases from 11
to 9, 3 additional intracellular reactions are required. (b) Growth landscape of 2-strain communities. For example, when TTR decreases from 41 to 39, TTR only increases
by 1, but when TTR decreases from 11 to 9, TTR increases by 11. (c) Growth landscape of the differences in growth rates between 2- and 1-strain communities, where
the constraints under which 2-strain communities grow faster than 1-strain communities are indicated. Only those constraints under which 1- and 2-strain communities
can both grow are included. (d) The growth rates of 2-strain communities compared to 1-strain communities. Gray circles represent constraints where 1-strain
communities grow faster than 2-strain communities, and colored circles represent constraints where 2-strain communities grow faster than 1-strain communities. (e)
The number of unique intracellular reactions in 1-, 2-, and 3-strain communities plotted as a function of TIN and colored according to the value of TTR, where the number
of unique intracellular reactions for multistrain communities represents the union of the intracellular reactions present in all strains. (Inset) Means and standard
deviations of the number of unique intracellular reactions under all constraint conditions where 1-strain communities are viable. The blue and red lines indicate means
and standard deviations of the two separate trajectories for 3-strain communities.
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2-strain communities (Fig. 3e). The larger collective metabolic networks (corresponding
to the more specialized subnetworks) likely facilitate growth under conditions of strict
constraints, particularly below the boundary at which 1-strain communities can no
longer exist, and are likely the result of metabolic division of labor. On the basis of these
observations and on the results obtained for the core model (Fig. 2), we expect that the
capacity of two or more E. coli strains to survive together under conditions of tighter
constraints on the number of allowed reactions is due to metabolic division of labor
and cross-feeding. We explore this in the next section.

Emergence of obligate mutualism is coupled with sharp metabolic network
differentiation and exchange of different chemicals. A global overview of how
metabolism enables the coexistence of 2- and 3-strain communities in the (TTR,TIN)
landscape can be obtained by plotting the metabolic distance (see Materials and
Methods) between the subnetworks of the strains (Fig. 4a; see also Fig. S1d) or the
number of metabolites exchanged between them (Fig. 4b; see also Fig. S1g). For
2-strain communities, the fraction of reactions that the two strains have in common
(i.e., the Jaccard similarity) tends to decrease overall as TIN and TTR decrease (Fig. 4a; see
also Fig. S3a and b). This is due to the fact that, as the number of allowed reactions is
reduced, the two strains can grow only if they take distinct metabolic roles (i.e., perform
division of labor). Interestingly, despite the large metabolic network rearrangements
induced by these constraints, the 2-strain consortia are able to maintain a fairly
constant growth rate until they become infeasible (Fig. 3b). These division of labor
strategies are also visible in terms of the number of metabolites that the 2-strain
communities have to exchange with each other in order to grow (Fig. 4b; see also
Fig. S3c).

In short, multiple-strain communities can grow under stricter constraints on TIN

because they distribute metabolic reactions and exchange metabolites (Fig. S3c and d).
Overall, different 2-strain communities can vary widely in terms of the metabolites
being exchanged, with molecules ranging from central carbon compounds such as
acetate and pyruvate to amino acids (Fig. 5a).

In order to gain better insight into the metabolic changes that accompany the rise
in the number of pairs of obligate mutualistic strains, we reduced the multidimensional
space of fluxes using principal-component analysis (PCA) (see Materials and Methods).
Clusters in the principal-component space would indicate common metabolic strate-
gies, hardly detectable through visual inspection of the network themselves; paths
between these clusters would additionally portray how the strain subnetworks move
through this metabolic space as constraints become more stringent. We observed three
clusters, indicating three major metabolic strategies (Fig. 4d; see also Fig. S4). The
largest cluster occurs at the origin and corresponds to large TIN values. That is, for fairly
unconstrained intracellular metabolism (i.e., when both strains are allowed a large
number of intracellular reactions), all strains (for 1-strain and 2-strain simulations) use
the same metabolic strategy for core energetic requirements. In particular, they display
similar uses of the TCA cycle (Fig. 4c) and of other central carbon metabolism pathways
(glycolysis/gluconeogenesis, oxidative phosphorylation; see Fig. S6). These metabolic
regimes correspond to standard respiratory metabolism, in line with the expected
metabolic fluxes for E. coli grown on minimal glucose medium (57, 58, 67). However, as
TIN becomes more constrained (i.e., as the number of intracellular reactions allowed
decreases), the 2-strain subnetworks move away from each other, indicating that they
diversify into different metabolic strategies. Note that the specific path that is followed
by these networks as TIN decreases is also a function of TTR (Fig. 4d; see also Fig. S4).

To understand the different metabolic strategies associated with different clusters in
the PCA, we calculated the Euclidean distance between pathways in each of the two
strains in a 2-strain community and mapped it to the (TTR,TIN) landscape (see Materials
and Methods). A striking outcome of this metabolic distance analysis was the fact that,
for a broad range of TTR values (e.g., values ranging from 9 to 29), the 2-strain
subnetworks had a large difference in their TCA cycle (Fig. 4c), mirroring the observa-
tion reported for the core E. coli network (Fig. 2). This strategy of splitting the TCA cycle
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FIG 4 Landscapes (TTR,TIN) of metabolic differentiation and exchange in 2-strain communities. The gray region
depicts the infeasible region in which strains cannot grow because there are not enough transport reactions for
take-up and secretion of metabolites. Each data point represents a single simulation. (a) Jaccard distance between
reaction binary vectors (t) in 2-strain community simulations. Strains that are more metabolically differentiated
(have fewer reactions in common) have a greater distance. Two-strain communities are more metabolically
differentiated when they are in the region where a single strain cannot grow. (b) The number of metabolites
exchanged between strains in 2-strain community simulations. The number of exchanged metabolites increases as
the constraint on the number of intracellular reactions becomes greater (decreasing TIN). As the constraint on the
number of transport reactions becomes greater (decreasing TTR), the number of exchanged metabolites decreases.
(c) Euclidean distance between the fluxes of TCA cycle reactions in 2-strain community simulations. (d) The
principal-component analysis (PCA) plot of 2-strain communities at TTR � 10, 19, 30, and 45, with arrows pointing
from TIN � 285 to the growth boundary (TIN � 267, 237, 222, and 215, respectively). Solid lines denote strain x and
dot-dash lines denote strain y. (e) Constraints under which the 2-strain communities exchange succinate. Two-
strain communities distribute the TCA cycle under the same constraints as those under which they exchange
succinate.
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was also supplemented by large differences in glycolysis/gluconeogenesis, which were
in fact observed along the entire TIN boundary for 2-strain communities (Fig. S6),
suggesting that this could represent a generalized version of the acetate utilization
phenotype observed in classical evolutionary experiments (8, 12, 13). It is important to
note that Jaccard distance values quantify differences in reaction content (Fig. S5), or
in how the metabolic network was modified, whereas Euclidean distance values
measure differences in reaction flux magnitude and direction (Fig. S6), or in how the
modified network is being utilized.

As indicated by the increase in the number of exchanged metabolites that occurs as
constraints become tighter (Fig. 4b), the pairs of metabolically differentiated strains
described above can survive due to metabolic cross-feeding. For example, in a 2-strain
community, one of the strains could utilize the metabolites available from the envi-
ronment and could secrete by-products that can enable the other strain to survive. We
again used the (TTR,TIN) landscape to track how constraints affect the metabolites being
exchanged (Fig. 4e; see also Fig. S7 and S8). Different metabolites display drastically
different patterns (Fig. S7 and S8): some metabolites are exchanged almost universally

FIG 5 Characterization of exchanged metabolites for 2-strain community simulations. (a) Bar plot of the percentage of simulations
in which a metabolite is exchanged in 2-strain communities, clustered hierarchically using Ward’s method. (b) Spearman correlation
and associated dendrogram of exchanged metabolites, measuring the relationship of the metabolite exchange. A positive value
specifies that both of the metabolites are secreted or taken up by a strain (only secretion is shown in the cartoon), and a negative
value specifies that one metabolite is taken up and the other is secreted by a strain.
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(e.g., acetate) whereas others appear only in specific subregions of the landscape (e.g.,
L-glutamate below the TIN boundary for 1-strain communities). Notably, succinate is
shown to be exchanged predominantly at the TIN boundary of 2-strain communities
(Fig. 4e), in very close correspondence to the area of the landscape where the TCA cycle
is drastically split (Fig. 4c). Furthermore, succinate exchange (Fig. 4e) and the metabolic
differentiation of the TCA cycle (Fig. 4c) have a correlation coefficient of 0.63 (Fig. S3f).
This suggests that, based on genome-scale simulations, succinate would be one of the
key intermediates for the rise of E. coli strains surviving by using complementary halves
of the TCA cycle.

Fluxes of metabolic sharing can be strongly correlated. Consortia of obligate
symbiotic partners are predicted to emerge in regions of the (TTR,TIN) landscape where
1-strain communities are infeasible. As shown above, what makes these consortia
viable (i.e., what makes it feasible for the corresponding strains to produce biomass
despite the strong restriction on intracellular reactions) is the possibility of metabolite
exchange between the 2-strain communities.

We thus sought to perform analyses of the metabolites being exchanged across the
whole (TTR,TIN) landscape. In the specific setup used for the in silico experiments, among
a total of 143 extracellular metabolites, only 37 (25.9%) metabolites were exchanged in
at least one simulation of 2-strain communities. Most (78.4%) of these exchanged
metabolites were exchanged in at least 10% of all coculture simulations (Fig. 5a). One
class of abundantly exchanged molecules is the set of amino acids. These solutions can
be viewed as similar to the artificially imposed auxotrophies used to engineer synthetic
consortia (39–43, 68). Other frequently exchanged molecules include carboxylic acids
(e.g., acetate and pyruvate) and nucleic acids (e.g., thymidine and adenine), which are
known to be exchanged in natural communities (12, 13, 23, 61).

Additional insight can be gained by exploring the relationship between exchanged
metabolites, i.e., by asking whether we should expect specific pairs of metabolites to be
simultaneously exchanged in the same or opposite directions between two organisms.
Knowledge of such correlations/anticorrelations may be useful as a strategy for choos-
ing biomarkers (if two organisms exchange A, they are also likely to exchange B), as an
indicator of fundamental metabolic trade-offs (X can provide A only if Y provides B), or
as a broad suggestion of the existence of unavoidable couplings in the interactions
present in a microbial community. Similar analyses of coupling between fluxes, e.g.,
through linear optimization (69–71), elementary flux modes (72), or Bayesian ap-
proaches (73), have become a broadly used way of determining structural network
properties that can be helpful for metabolic engineering applications. Here, we sought
to estimate correlations between exchange fluxes across an ensemble of networks with
different stoichiometries [i.e., all the networks in the (TTR,TIN) landscape], making the
use of existing algorithms challenging. We thus applied the Spearman correlation to
exchange reaction fluxes (Fig. 5b) in order to measure if metabolites are exchanged
jointly (both taken up or secreted by a strain [positive �]) or reciprocally (one is taken
up and the other is secreted by a strain [negative �]). While Spearman correlation was
chosen because we do not expect fluxes to scale linearly with TTR and TIN (Fig. S9c), we
also computed Pearson correlations for the same data set (Fig. S9a), obtaining quali-
tatively similar results. Notably, the correlations described in detail below are substan-
tially different from those that one would observe from applying a Bayesian flux
coupling algorithm (73) to the original metabolic network for two coupled E. coli strains
(Fig. S9b).

Two major patterns emerged from this analysis. First, by looking at the hierarchically
clustered correlation matrix, one can immediately recognize several block structures.
The largest block structure seems dominated by amino acid exchange. In particular,
two sets of (mostly) amino acids seem to be highly correlated within each set but to be
highly anticorrelated across the sets. The first set includes L-arginine, L-histidine,
L-threonine, and uridine, which are all correlated with each other, whereas the second
set includes acetate, L-alanine, L-isoleucine, L-leucine, L-tryptophan, L-proline, ornithine,
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and L-serine. Interestingly, these anticorrelated block sets do not seem to map trivially
to different precursor pathways (e.g., the upper versus lower glycolysis pathways),
suggesting that other metabolic trade-offs may determine these patterns. One can
also observe a second block structure dominated by amino acids that are all corre-
lated, containing D-alanine, L-lysine, L-asparagine, L-phenylalanine, L-tyrosine, pyruvate,
and—to a lesser extent—fumarate, 2-oxoglutarate, putrescine, and L-valine.

The second significant outcome of this correlation matrix is related to the TCA
cycle-splitting result described above. In particular, succinate and fumarate are anti-
correlated (� � �0.67), indicating reciprocal exchange. These two metabolites are
intermediates of the TCA cycle and are involved in sequential steps, suggesting that
this anticorrelation corresponds to the metabolic division of labor strategy character-
ized by splitting of the TCA cycle (Fig. 2). This is further confirmed by the fact that the
region in the (TTR,TIN) landscape where succinate is exchanged matches very closely
with the region in which the 2-strain communities show very distinct forms of use of
the TCA cycle (Fig. 4c and e) and that the exchange profile of succinate is correlated to
the metabolic differentiation of the TCA cycle (Fig. S3e and f).

DISCUSSION

Although this study was purely computational, the data provide a new conceptual
framework and new predictions, including specific testable modifications, and enable
us to perform analyses that are currently beyond current experimental capabilities. The
phenotypic space that we explore involves 5,000 in silico experiments on the full E. coli
network, across 1-, 2-, and 3-strain communities, under conditions of multiple con-
straints on the number of transport and intracellular reactions. For each organism’s
model, we take into account large numbers of variables (1,075 reactions and 761
metabolites in each strain). Efficient algorithms therefore represent a key step toward
exploring possible strategies for division of labor in synthetic microbial communities
and toward understanding how metabolic specialization may arise in natural microbial
consortia.

The spontaneous emergence of division of labor in natural microbial systems is still
a poorly understood process. One possible mechanism for this type of interdependence
is the Black Queen hypothesis, on the basis of which division of labor could arise in
complex microbial communities through the loss, instead of the gain, of functions that
can be performed by “leaky” partners (29, 47). Our approach bears some analogies to
the Black Queen hypothesis, in that it identifies network solutions that are reduced
relative to those of an initial large network, generating networks of metabolite-
mediated interdependencies. However, in our optimization algorithm, we assume that
all strains are simultaneously constrained by the same maximal number of reactions
allowed and thus that reductions in gene numbers occur in parallel in coexisting strains,
generating complementary metabolic capabilities.

Our results may be relevant for microbial ecology of natural communities, as well as
for the study of synthetic microbial consortia. Ongoing efforts in synthetic ecology are
mostly focused on engineering metabolic dependencies by making one strain unable
to produce a terminal biomass precursor (e.g., an amino acid) which is then provided
by another strain. Although this strategy has yielded new insight into how microbes
interact within communities, it may not reflect the possible complexity of natural
metabolic interactions. Our approach has the capacity to uncover a much broader set
of potential opportunities for obligate cross-feeding, including the exchange of me-
tabolites that are part of core metabolic processes, or “deep symbiosis” between
organisms.

The split TCA cycle that we present in Fig. 2 is an example of this potential deep
symbiosis, which can be related to existing metabolic diversity across microbial taxa.
The TCA cycle is traditionally described as a method to generate energy, but it is also
essential for the production of essential precursor metabolites for cellular biosynthesis.
The classic, cyclical form focuses on energy generation, but branched variants empha-
size biosynthetic precursor production. These branched forms have been observed in
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bacteria and are the result of either an incomplete TCA cycle (66, 74–79) or differential
regulation (76, 78, 80, 81). The enzyme 2-oxoglutarate dehydrogenase, which cata-
lyzes the conversion of 2-oxoglutarate to succinyl-CoA, is often lacking in organisms
with an incomplete TCA cycle (75–79). Furthermore, 2-oxoglutarate dehydrogenase
is transcriptionally repressed in E. coli under anaerobic conditions (78, 80, 81) and
has been found to show reduced metabolic flux in E. coli evolution experiments (82,
83). Due to the inability of these organisms to generate succinyl-CoA from
2-oxoglutarate, they instead reduce oxaloacetate to succinyl-CoA “in reverse.”
Moreover, the phosphoenolpyruvate (PEP)-pyruvate-oxaloacetate node (also known
as the anaplerotic node) is the metabolic link between the TCA cycle and glycolysis/
gluconeogenesis and acts as a switch to control how carbon flux is distributed
through central carbon metabolism (84).

Interestingly, the TCA cycle splitting that we observed in the model predictions
occurred at the metabolites 2-oxoglutarate and oxaloacetate, both of which are used
to create various amino acids. 2-Oxoglutarate is used to produce the amino acids
glutamate, glutamine, proline, and arginine, whereas the amino acids aspartate, aspar-
agine, methionine, threonine, isoleucine, and lysine can be produced from oxaloac-
etate. The biological significance of a split TCA cycle is also manifested in the patterns
of secretion and uptake reported in the literature. In particular, both 2-oxoglutarate and
pyruvate (the two exchanged metabolites) have known transporters in E. coli (85, 86).
These metabolites are often observed in the extracellular environment (87–89), indi-
cating that they are available for utilization. Moreover, cross-feeding of 2-oxoglutarate
has been observed between Saccharomyces cerevisiae and lactic acid bacteria (24) and
in “Chlorochromatium aggregatum” (25), a phototrophic consortium of the green sulfur
bacterium Chlorobium chlorochromatii and a proteobacterium (Comamonadaceae).
Consequently, there is evidence that some of the strategies representing the division of
labor identified by our approach are similar to the pathway configurations of existing
consortia.

Our predictions were initially produced under the assumption that the different
perturbations applied by our method correspond to genetic modifications. However,
they could equally be interpreted as being a consequence of instances of gene
downregulation instead of gene loss (16). In other words, all the solutions found by
DOLMN may in principle manifest themselves in the form of phenotypic differentiation
within a population of cells. In a complex multicellular system (such as the human
body), this could occur in the form of division of labor among cell types in different
tissues, whereas in clonal populations of microbes, this could imply phenotypic varia-
tion due to heterogeneous gene expression (90–92). Single-cell studies of microbial
physiology (16), aided by genome-scale models of metabolism, could help unravel both
genomic and transcriptional variability potentially associated with division of labor in
the microbial world.

Experimental testing of the proposed division of labor strategies in E. coli may prove
challenging due to the multiplicity of gene deletions that would have to be simulta-
neously performed, although conceptually driven complex redesign of metabolic
networks has been successfully implemented experimentally before (93, 94). Recently
developed technologies, such as multiplex automated genome engineering (MAGE)
(95), conjugative assembly genome engineering (CAGE) (96), and the clustered regu-
larly interspaced short palindromic repeat (CRISPR)/Cas system (97), could in principle
facilitate such an endeavor. Still, a challenge of implementing multiple targeted knock-
outs experimentally is the chance of encountering high-order epistatic interactions
between genes that are difficult to predict computationally and that may result in
nonviable strains. Thus, instead of implementing all of the genetic perturbations at
once, it may be advisable to engineer increasingly complex interactions involving
gradual modifications of different reactions and pathways. For example, rather than
deleting genes, one could consider engineering promoters to reduce the flux through
each reaction and potentially let the strains evolve in the laboratory. Alternatively, one
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could perform proteome perturbations through protein overexpression or energy
dissipation (98).

Besides experimental testing, one could ask whether assortments of reactions
similar to the ones predicted by DOLMN for our mutualistic E. coli strains can be found
in existing organisms. For example, natural coexisting microbes may have identified,
through long-term adaptation, metabolic strategies close to those predicted by
DOLMN. This issue could be addressed by comparing the presence/absence of different
metabolic enzymes in our predicted mutualistic strains to enzyme presence/absence
profiles across microbial genomes coexisting in specific environments (99). A broader,
related issue is whether the overall assortment of enzymes across individual species in
complex communities is predictable on the basis of fundamental principles. Through a
computationally improved future version of DOLMN, one could ask whether an
ecosystem-level metabolic network could be correctly partitioned into metabolic net-
works that are representative of major observed taxa.

Conclusion. We computationally explored the possible ways in which sets of
metabolic reactions can be distributed among interacting microbial strains, with the
goal of better understanding the trade-off between metabolic self-reliance and mutu-
alistic exchange. The mathematical problem of designing metabolically viable organ-
isms and communities from a global set of possible reactions is a very difficult one. The
approach, heuristics, and examples illustrated in this work show, however, that solu-
tions identified by our algorithm are feasible and biologically interpretable. Although
direct experimental testing of our predictions would require further preliminary com-
putational work (e.g., complementing the current analysis with dynamic FBA and
kinetic modeling) and laborious generation of modified strains, it is important that
instances of division of labor similar to what we predicted may be found from further
scrutiny of known symbiotic relationships (100, 101) and experimental evolution data
(102). Thus, in addition to illustrating putative nontrivial avenues for engineering
communities of codependent strains (synthetic ecology design), our approach could be
viewed as a step toward addressing a broader, overarching issue, namely, whether
fundamental design principles can help improve understanding of microbial ecosystem
diversity and the metabolic network structure of individual organisms in natural
communities. Specifically, one could imagine that abundant horizontal gene transfer
and long-term selection processes in ecosystems may have acted over geological time
to efficiently allocate genes into mutually dependent organisms, very much in the
manner in which our algorithm does. With increasing computational power and further
optimized algorithms, it may become possible to extend our approach to a larger
number of organisms, with the potential of providing a general theoretical scaffold for
understanding how environments shape division of labor strategies and microbial
diversity.

MATERIALS AND METHODS
Flux balance analysis (FBA). To mathematically formulate FBA, let S denote the stoichiometric

matrix of dimensions m � n, where m is the number of metabolites and n is the number of metabolic
fluxes. Metabolic fluxes are defined as vector x, where xlb and xub are the lower and upper bounds,
respectively, of the metabolic fluxes. These bounds are implied by empirical evidence of irreversibility or
by nutrient availability in the growth medium. The cellular objective is expressed as a vector of weight
coefficients for each reaction (e.g., biomass), denoted by c, and the optimal objective value is a scalar
value corresponding to Zopt. The FBA problem is formulated as follows:

Zopt � maxx c'x

such that Sx � 0 (1)

xlb � x � xub

where 0 is the vector of all zeroes and the prime indicates transposition.
Community-level flux balance analysis. In order to perform FBA capturing all reactions spanning

an entire microbial community, we introduce a “universal stoichiometric matrix,” also denoted by S,
which expresses the stoichiometric coefficients of all metabolic reactions in the community irrespective
of the organism they belong to, as previously described (63). Specifically, S � �M�N, where M � Me �
Mi represents the number of distinct metabolites and N � Ne � Nt � Ni represents the number of distinct
reactions (see Fig. S10a in the supplemental material). The distinct M metabolites consist of two types:

Metabolic Division of Labor in Microbial Communities

March/April 2019 Volume 4 Issue 2 e00263-18 msystems.asm.org 15

https://msystems.asm.org


Me extracellular metabolites and Mi intracellular metabolites. There are 3 different types of reactions: Ne

extracellular reactions, Nt transport reactions, and Ni intracellular reactions. The availability of nutrients
(extracellular metabolites) from the environment is encoded in the extracellular reactions, and intracel-
lular reactions encode each organism’s metabolism. Organisms use transport reactions to move metab-
olites between their intracellular compartment, which is unique to each organism in the community, and
the extracellular environment, which is shared by all organisms in the community.

A method for metabolic division of labor. We first reformulate the universal stoichiometric matrix
S to construct putative stoichiometric matrices for each species in the community. In particular, we
construct a community stoichiometric matrix Sc, whose structure is shown in Fig. S10b. The block
matrices Se, St1, St2, and Si in Sc are consistent with those in S. Organisms in the community share the
same nutrients and extracellular reactions. Because there are K organisms in the community, we replicate
the block [St2, Si] that includes transport reactions and intracellular reactions K times and diagonally
arrange them in Sc. Similar compositions of stoichiometric matrices had used in previous work on
community-level flux balance modeling (45, 103, 104).

After the intracellular metabolites are obtained via the transport reactions, intracellular reactions take
place inside each organism. This construction leads to the community stoichiometric matrix Sc � �Mc�Nc,
where Mc � Me � K � Mi and Nc � Ne � K � (Nt � Ni). Notice that Sc has 1 block column for extracellular
reactions (Ne columns) and K block columns (of dimension Nt � Ni), one for each organism, including all
transport and intracellular reactions.

To capture design choices, we introduce a binary putative vector t � (t1,. . ., tNc
), where tj � �0,1� and

j � 1,. . ., Nc is a binary variable, indicating whether the j-th reaction is included in the corresponding
organism (Fig. S10b). With t and Sc available, we can partition Sc to K individual matrices, Sk, by removing
column j with tj � 0.

The problem of identifying t can now be formulated as the following MILP problem:

max
x,t

c'x

s.t. Scx � 0 ,

xlb � x � xub (2)

diag�xlb�t � x � diag�xub�t ,

ti � �0, 1� ,

tmin � Rt � tmax,

where diag(x) denotes a diagonal matrix whose main diagonal consists of the elements of vector x, R is
a regularization matrix, and tmin and tmax are appropriately defined constant vectors. Specifically, by
appropriately defining R, tmin, and tmax, we can impose constraints on the number of internal and
transport reactions for each organism.

The first optimization problem. Suppose there are K organisms. The upper bounds on the number
of active transport reactions and intracellular reactions in each organism are TTR and TIN, respectively. We
let xbiomk

denote the flux of the biomass reaction for each organism k � 1,. . ., K. We also let TRk and INk

denote the index sets of the transport reactions and intracellular reactions for each organism k,
respectively. For example, suppose for organism k the transport reactions have indices 4 and 6 and the
internal reactions have indices 2, 5, and 9. Then, TRk � {4,6} and INk � �2,5,9�. Both of these sets are
subsets of the entire reaction index set {1,. . ., Nc} for the community. The MILP (as shown in problem 2)
takes the following form:

max
x,t

c'x

s.t. Scx � 0 ,

xlb � x � xub,

xbiom1
� . . . � xbiomK

� 0.1, (3)

diag�xlb�t � x � diag�xub�t ,

�
j�TRk

tj � TTR, k � �1, · · · K� ,

�
j�INk

tj � TIN, k � �1, · · · K� ,

tj � �0, 1�
Let x*,t* denote an optimal solution of the MILP problem above.

We note that solving such a large-scale MILP problem, which involves hundreds or thousands of
integer variables, is computationally expensive. Our experiments suggest that solving problem 3 for a
community of two E. coli core models can be done relatively quickly (on the order of minutes or hours).
On the other hand, solving the problem for a community model of two iJR904 E. coli models is very
time-consuming. We employ certain methods to speed up finding an optimal solution. One method
leverages the fact that instances with similar values for TTR and TIN have similar sets of active reactions.
Specifically, as we decrease the values of TTR and TIN, we use the sets of active reactions corresponding
to larger TTR and TIN values to generate feasible solutions that are offered as putative solutions to the
MILP solver. This tends to drastically decrease solution times. A complementary approach uses a
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decomposition idea. In particular, for solving problems involving a community of K organisms, we can
use solutions for K � 1 organisms and append solutions for the additional organism. This generates
feasible solutions, and it is possible to search for an effective feasible solution by varying the way the
K-organism community is decomposed into a (K � 1)-organism community and an additional organism.

The second optimization problem. In order to reduce levels of redundant fluxes in transport and
intracellular reactions, a second optimization problem is introduced where the integer variables are fixed
to the optimal solution t* of the first-stage problem (problem 3) and where the biomass fluxes are also
set to the optimal values obtained by the first-stage problem (problem 3). Specifically, we use the
following equations:

min
x

� x �Ne � 1 : end��1

s.t. Scx � 0 ,

xlb � x � xub,

xbiomk
� xbiomk'

* k � �1, · · · K� , (4)

diag�xlb�t* � x � diag�xub�t*

This problem minimizes the �1 norm of the flux vector (excluding exchange reactions) to induce
sparsity and can be rewritten as a linear programming problem.

Data structure and analysis. For each constraint on the number of transport reactions, TTR, DOLMN
outputs a structure, C (“model”), for each strain. This structure C contains fields to indicate the constraint
on the number of intracellular reactions, TIN (“model.sparse_con”); the reaction names in the global
network (“model.rxns”); the growth rates at each TIN (“model.biomass”); the reaction flux values at each
TIN (“model.flux”); and the reaction binary integer values at each TIN (“model.int”). For each value of TIN,
TTR, and K, only a single simulation was performed.

The analysis of the DOLMN output is performed in several MATLAB scripts. All analyses are split between
the core and full iJR904 E. coli model. The scripts dolmn1a_parse_iJR904.m and dolmn1b_parse_core.m apply
the function algorithm2models to all of the DOLMN outputs for the full and core iJR904 E. coli models,
respectively. The function algorithm2models parses C into individual metabolic models, calculates the
exchange flux of each individual strain (instead of the community exchange flux), and identifies
exchanged metabolites. The scripts dolmn2a_summary_iJR904.m and dolmn2b_summary_core.m re-
structure the data for plotting, calculate the Jaccard distance and exchange flux correlations, and
perform standard PCA (MATLAB function pca). Interpolations for the constraint landscapes are performed
in dolmn2a_summaryInterp_iJR904.m and dolmn2b_summaryInterp_core.m. The only exception is the
flux coupling analysis, which is performed separately. All main text figures were plotted using
dolmn3_figures_main.m, and all supplementary figures were plotted using dolmn4_figures_supp.m.

All data (raw and analyzed), functions, and scripts can be found in the GitHub repository (https://
github.com/segrelab/dolmn). Analysis was performed with MATLAB 2017b. MILP problems were solved
by the use of Gurobi 7.0 (105).

E. coli models. E. coli core (57) and genome-scale iJR904 (58) models were retrieved from the BiGG
database (106). The models were downloaded as .mat files in the COBRA (COnstraints-Based Reconstruc-
tion and Analysis) format (107). Stoichiometric matrices were reformatted as a community stoichiometric
matrix Sc, as previously described, and the results are shown in Fig. S10b. Reaction and metabolite names
were reordered to correspond with the community stoichiometric matrix.

Calculating net metabolite exchange flux from transport reaction flux. Many metabolites have
multiple transport reactions, which means that the net flux of a metabolite into or out of an organism
(and thereby into or out of the environment) is typically represented by exchange reactions. However,
in community flux balance analysis, organisms share exchange reactions (Fig. S10b). In order to deter-
mine if a strain subnetwork took up or secreted a metabolite in multistrain communities, we had to
calculate the net metabolite exchange flux within each strain subnetwork. The calculated net metabolite
exchange flux is the sum of all transport reactions (determined as follows):

xe
k � St1,kxt

k (5)

where xe
k is the exchange flux of organism k, xt

k is the transport flux of organism k, and S(t1,k) is the portion
of the stoichiometric matrix for extracellular metabolites and transport reactions (see Fig. S10).

Calculating metabolic differentiation. Two metrics were used to measure metabolic differentiation
based on intracellular reactions. Jaccard distance measures differences in reaction content and quantifies
diversification at the level of network topology. In contrast, Euclidean distance evaluates differences in
the magnitude and direction of reaction fluxes and therefore illustrates how the network topology is
being utilized differently between strains. Both Jaccard and Euclidean distance metrics were used
because, at the extreme, strains could have kept the same reactions (could have a zero Jaccard distance)
but could have used the reactions differently (could have a nonzero Euclidean distance), as shown in
Fig. S3a and b. The built-in MATLAB function pdist2 was used to calculate Jaccard and Euclidean distances
with the “jaccard” and “euclidean” metrics, respectively.

Identifying exchanged metabolites. Metabolites are exchanged if one strain secretes the metab-
olite (has a positive exchange flux) and the other takes it up (has a negative exchange flux). Metabolites
that were part of the medium (e.g., hydrogen ions) were not considered to be exchanged even if one
strain secreted the metabolite and the other took it up. We created the MATLAB function identifyEx-
changedMets to determine which metabolites, if any, are exchanged between strains.
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Principal-component analysis. Principal-component analysis (PCA) was performed on the intracel-
lular flux values of 1- and 2-strains using the built-in MATLAB function pca. The biomass flux was
excluded from the intracellular reactions and was instead used to normalize the intracellular flux values.

Correlation and hierarchical clustering of exchange reaction flux. The MATLAB function corr was
used to calculate the Spearman and Pearson correlations of exchange reaction fluxes, normalized by
biomass flux, providing information on how metabolites are exchanged together. The Spearman
correlation of exchange reaction fluxes was hierarchically clustered by the inner squared Euclidean
distance (Ward’s method) using the MATLAB functions linkage and dendrogram.

Flux coupling analysis. Flux coupling analysis was performed using the Bayesian metabolic flux
analysis (73) MATLAB function bfba, which evaluates reaction fluxes as distributions instead of a single
value. We sampled FBA solutions with 200 samples of 5 independent Markov chain Monte Carlo methods
for a total of 1,000 flux vector samples, which represent all possible flux configurations compatible under
the given constraints of the use of minimal glucose medium. We used thinning and accepted only every
1,000th flux sample to reduce the correlation of successive Markov chain Monte Carlo samples. Solutions
were obtained with Gurobi (105) as the solver, the Gibbs sampler, and a 0.01 steady-state error value on
mass balance. Flux coupling was indicated with flux sampling covariances, as in the function plotfluxcov.

Data availability. All data generated and analyzed in this study and the corresponding codes are
available in the GitHub repository (https://github.com/segrelab/dolmn).
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