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Exposure to Forced Swim Stress Alters Local Circuit Activity
and Plasticity in the Dentate Gyrus of the Hippocampus
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Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on
synaptic plasticity and long-term potentiation (LTP) of principle cells. However, evidence suggests that following high-frequency
stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneu-
rons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and
plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity fol-
lowing exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI) and
commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The
application of theta-burst stimulation (TBS) reduced FDI in both control and stressed rats, but this type of plasticity was greater in
stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst
stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the
dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience.

Copyright © 2008 Orli Yarom et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Stress is defined as any condition that seriously disrupts
physiological and psychological homeostasis ranging from
anxiety to posttraumatic stress disorder [1], and affects cog-
nitive functions both in animal models and in humans [2–4].
The hippocampus is of special significance in this respect be-
cause it has been shown to play a major role in regulating
stress [5, 6], and to be involved in some aspects of learning
and memory [7–13].

At present, long-term potentiation (LTP) of synaptic
transmission in the hippocampus is the most studied neu-
rophysiological model for learning and memory processes in
the mammalian nervous system. LTP, like behavior, appears
to be affected by stress. Depending on the type of stress and
the procedures used, stress has been shown to have different
effects on different measures of synaptic plasticity. There is a
general agreement that LTP in area CA1 of the hippocampus
is impaired following stress [4, 14–18]. Some studies have
also shown that stress impairs LTP in the dentate gyrus (DG)
of the hippocampus [16, 19, 20], while others reported in-
tact LTP in the DG following stress [14, 21]. Thus, DG LTP

is considered to be less sensitive to stress compared to LTP in
CA1 [22].

Although LTP is a widely accepted model of learning and
memory, debates continue over its validity, and controver-
sial results regarding its behavioral correlates are reported
(for review, see [23]). A different level of processing that is
likely to be relevant to memory formation is local circuit ac-
tivity. When examining this level of processing, the focus is
on interactions between local, mostly inhibitory GABAergic
neurons and pyramidal or granular principle cells in the hip-
pocampus and cortex [24, 25]. This is in contrast to the fo-
cus on LTP of input excitatory synapses onto principle cells,
which is responsible for transmitting information from one
region to another. Inhibitory interneurons exert a powerful
control over local circuit activity through feedforward and
feedback inhibition. Modification of local circuits can affect
the computational properties of the region, and therefore af-
fect its involvement in behavior.

In the current study, local circuit activity and plastic-
ity were measured by using frequency-dependent inhibition
(FDI) and commissural modulation protocols, following ex-
posure to behavioral stress.
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FDI is suggested to reflect GABA-mediated inhibition
by perforant path- (PP-) activated interneurons onto gran-
ule cells [26]. Increasing stimulus frequency from 0.1 Hz to
1.0 Hz results in the reduction of the population spike (PS)
of the field potential response to stimulation of the PP [27].
Our lab has previously shown that FDI in the DG is NMDA-
dependent [28], GABA-mediated, and that delivering theta-
burst stimulation (TBS) to the PP of the hippocampus in-
duced a lasting reduction in FDI [18].

The DG commissural pathway is activated by stimulating
the contralateral DG at different intervals prior to PP stim-
ulation. Stimulation of the commissural pathway induces a
biphasic, inhibitory/excitatory effect on granule cell respon-
siveness to PP stimulation. The inhibitory phase is a result of
activation of feedforward inhibition [29].

Although the effect of behavioral stress on induction of
hippocampal LTP has been studied extensively, to our knowl-
edge no research has established the relationship between
stress and local circuit activity and plasticity. The current
study addresses this issue in order to further explore the po-
tential relevance of local circuit activity to learning and mem-
ory. Our aim in this study was to characterize local circuit ac-
tivity and plasticity in the DG of the hippocampus following
exposure to behavioral stress.

2. METHODS

2.1. Subjects

Adult, male Sprague Dawley rats, weighing 240–330 g, from
Harlan (Jerusalem, Israel) maintained five per cage on a
12-hour light/dark cycle with water and laboratory rodent
chow ad libitum.

2.2. Corticosterone radioimmunoassay

Trunk blood was collected following decapitation and sam-
ples were centrifuged at 3000 r.m.p. for 20 minutes at 4

o
C.

Serum was stored at −80
o

C. Corticosterone was measured
using a radioimmunoassay kit (Coat-A-Count, Diagnostic
Products Corporation, Los Angeles, Calif, USA).

2.3. Electrophysiology

Rats were anaesthetized (6% chloral hydrate in 100 mL
saline; 0.5 mL/100 g. IP) and prepared for acute stimulation
of the perforant path and for recording of field potentials in
the dentate gyrus as described before [29].

Rats were placed in a head holder in a stereotaxic frame
and small holes were drilled in the skull to allow the inser-
tion of electrodes in the brain. A recording microelectrode
(glass, tip diameter 2–5 μm filled with 2 M NaCl, resistance
1–4 MΩ) was placed in the dentate gyrus (coordinates: 4 mm
posterior to bregma, 2.5 mm lateral to midline). A bipolar
125 μm stimulating electrode was implanted in the ipsilat-
eral angular bundle to stimulate the perforant path (coor-
dinates: 8 mm posterior to bregma, 4 mm lateral to midline).
The depth of the electrodes was adjusted to maximize the size

of the evoked positive-going excitatory postsynaptic poten-
tial (EPSP) recorded in the hilus of the dentate gyrus.

Evoked responses were digitized (10 kHz) and analyzed
using the Cambridge Electronic Design 1401+ and its Spike2
software. Offline measurements were made of the amplitude
of the PS and the slope of the EPSP using averages of 5
successive responses to a given stimulation intensity applied
at 0.1 Hz. Test stimuli (monopolar pulses, 100-microsecond
duration, intensity adjusted to yield a PS of 30–50% of the
maximal pretetanus value) were delivered at 0.1 Hz. After po-
sitioning the electrodes, the rat was left for 20 minutes before
commencing the experiment. During recording the rats were
maintained at 37± 1◦C with a homeothermic blanket system
(Harvard).

2.4. Long-term potentiation

LTP was induced by a TBS (3 sets of 10 trains, each consisting
of 10 pulses at 100 Hz. Intertrain interval: 200 milliseconds,
and the interval between each set: 1 minute, trains are deliv-
ered at 2x test stimulus intensity).

LTP was measured as the difference in EPSP slope before
and 60 minutes after TBS. We defined LTP as an increase of
the least 20% in the EPSP slope of the evoked potentials 60
minutes after application of TBS.

2.5. Local circuit activity

Frequency-dependent inhibition

To determine FDI, 10 pulses were delivered at 0.1 Hz fol-
lowed by 10 pulses at 1.0 Hz, as described before [18]. This
pattern was repeated twice. The pulses given were at test
stimulus intensity. The PS or EPSP slope of the 10 responses
at 0.1 Hz were averaged and compared to the 10 responses at
1.0 Hz in each set. The results of the two sets were averaged.
Inhibition is expressed as an FDI index which was assessed
by dividing the averaged response at 1.0 Hz by the averaged
response at 0.1 Hz.

Commissural-induced modulation

The DG commissural pathway was activated by stimulating
the contralateral DG at different intervals prior to PP stim-
ulation (15, 30, 80, and 150 milliseconds) as described be-
fore [30]. Stimulation of the commissural pathway induces a
biphasic inhibitory/excitatory effect on granule cell respon-
siveness to PP stimulation [31, 32].

Commissural-induced modulation is expressed by com-
missural index which was evaluated as the ratio of the size
of the response to PP stimulation after commissural stimu-
lation divided by that of the response to PP stimulation with
no priming stimulation.

In order to measure TBS-induced alterations on frequen-
cy-dependent inhibition or on commissural-induced inhibi-
tion and facilitation, the stimulation intensity following the
induction of LTP was adjusted to yield a PS size comparable
to pre-TBS level.
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2.6. Behavior

2.6.1. Elevated plus maze

Apparatus

The maze employed is a four-armed black opaque Plexiglas
platform, elevated 50 cm above ground. Two opposite arms
are enclosed by 40 cm high Plexiglas walls on both sides and
on the outer edges of the platform, that is, “closed,” while
the two remaining opposite arms are “open,” and are sur-
rounded only by a 1 cm high Plexiglas rim, which serves as
a tactile guide to animals in the open areas. Individual rats
were placed in the central platform, faced towards different
arms in randomized order.

Procedure

Each five-minute session was recorded using an overhead
video camera connected to a monitor/recorder in an adja-
cent observation room. Animals were placed in the central
platform and allowed to explore for five minutes. Animals
were then subjected to the acute swim stress procedure, and
then allowed to rest for 90 minutes. After the resting period
animals were placed once again in the maze for a five-minute
poststress test. Time spent in the open arms was measured.
Animals were scored as being in an open or closed arm only
when all four paws passed over the open/closed dividing line.

2.7. Induction of behavioral stress

Apparatus

The water container used for the forced swim procedure con-
sists of a circular container of water (50 cm in diameter with
a rim 75 cm high). Water depth was 50 cm and temperature
was maintained at 23 ± 1◦C.

Acute Swim Stress (ASS) procedure

Rats were subjected to ASS as previously described [33]. In-
dividual rats were subjected to a single 15-minute swim ses-
sion in the water container. After this single swim session,
rats were allowed to dry in a resting cage for 30 minutes, and
then anesthetized and taken to electrophysiology.

3. RESULTS

3.1. Acute swim stress induces elevated levels of serum
corticosterone and increased levels of anxiety

Elevated plus maze

In order to validate that animals subjected to the acute swim
stress procedure were indeed behaviorally affected, we used
the elevated plus maze test [34].

A paired sample t-test revealed that in the poststress
session, animals spent less time in the open arms (see
Figure 1(a), t(7) = 4.25, P < .005).

Levels of corticosterone

Levels of serum corticosterone were measured for con-
trol and stressed rats. An independent t-test revealed that
stress was associated with a significant increase in corticos-
terone levels (see Figure 1(b), t(13) = 4.29, P < .005) (see
Figure 1(b)).

3.2. Acute swim stress does not affect baseline
responses in PP-DG pathway

The stimulation intensity used to elicit a baseline response
was not different between the control and stress groups (t(25)
= 0.93, n.s.). There was no significant difference between
control and stressed rats in the amplitude of the baseline PS
(t(25) = 1.44, n.s.)) and fEPSP slope (t(25) = 0.26, n.s.).

3.3. The effect of behavioral stress on
frequency-dependent inhibition

Upon altering the frequency of stimulation from 0.1 Hz to
1.0 Hz, a marked reduction of the PS was observed in both
control and stressed rats as indicated by the FDI index (see
Figure 2(a)). This reduction was apparent prior to TBS appli-
cation and 60 following it (see Figure 2(b), F(1,14) = 101.16,
P < .05). No significant differences in FDI index were found
between the two groups on both tests (F(1,14) = 0.18, n.s.)

Although no main effect was observed for group under
the different conditions, the analysis of variance indicated a
significant group X test interaction (F(1,14) = 6.53, P < .05).
The initial pre-TBS FDI index of stressed rats was lower than
that of controls whereas the post-TBS FDI index was higher.

Altering stimulation frequency from 0.1 Hz to 1.0 Hz re-
sulted in a slight but significant reduction in the EPSP slope
in both groups. In control rats, stimulation at 1.0 Hz reduced
the slope of the EPSP to 0.85± 0.05 of its size during stimu-
lation at 0.1 Hz (t(7) = 11.49, P < . 05). In stressed rats, stim-
ulation at 1.0 Hz reduced the slope of the EPSP to 0.88±0.02
of its size during stimulation at 0.1 Hz [t(7) = 3.66, P < 0.05].
There was no significant difference in EPSP FDI between the
two groups and, in contrast to the PS, the application of TBS
did not affect EPSP FDI in either group.

3.4. The effects of behavioral stress on
commissural modulation

In both control and stressed rats, the response to the PP
stimulation was inhibited by priming stimulation of the
commissural path at interpulse intervals of 15 milliseconds
and 30 milliseconds (see Figure 3(a)). When using the 15-
millisecond interpulse interval, exposure to stress induced
significantly higher inhibition, as expressed by the small
commissural index of stressed rats compared to controls.
This increase in inhibition was apparent before and after TBS
application (F(1,12) = 64.36, P < .005). The application of
TBS did not cause any significant changes in commissural-
induced inhibition in either group (F(1,12) = 0.126, n.s). (See
Figures 3(b) and 3(c).)
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Figure 1: (a) Time spent in open arms of the elevated plus maze before and after exposure to stress. Following exposure to acute swim stress, rats
spent less time in the open arms of the maze in comparison to the time spent in the open arms prior to the stress procedure (n = 8, P < .005),
indicating increased anxiety. (b) Levels of corticosterone in control and stress rats. Acute swim stress induced elevation of serum corticosterone
in the stressed rats (n = 6) compared to control rats (n = 8, P < .005).
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Figure 2: (a) Left: representative field potential response of dentate gyrus granule cells to stimulating of the PP at 0.1 Hz. Right: representative
field potential response of dentate gyrus granule cells to stimulation of the PP at 1.0 Hz. Time unit: second. (b) FDI before and after TBS
application. The application of TBS significantly reduced FDI in both control (n = 8) and stressed (n = 8) rats (P < .05).



Orli Yarom et al. 5

−2

0

2

4

6

(M
v)

0 0.01 0.02 0.03

Time

−2

0

2

4

6

8

(M
v)

0 0.01 0.02 0.03

Time

−2

0

2

4

6

(M
v)

15 ms

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

Time

−2

0

2

4

6

(M
v)

15 ms

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

Time

(a)

0

0.4

0.8

1.2

1.6

2

C
om

m
is

su
ra

li
n

de
x

∗ ∗

Control
Stress

15 30 80 150

Intervals (ms)

(b)

0

0.4

0.8

1.2

1.6

2

C
om

m
is

su
ra

li
n

de
x

∗

∗

Control
Stress

15 30 80 150

Intervals (ms)

(c)

Figure 3: (a) The effects of commissural priming on responses of the DG to PP stimulation. Top: representative field potential responses of
dentate gyrus cells to stimulating the PP without commissural priming (left), and to stimulating the PP with priming stimulation to the con-
tralateral DG at 15 milliseconds (right) in control rats. Bottom: representative field potential responses of dentate gyrus cells to stimulating
the PP without commissural priming (left), and to stimulating the PP with priming stimulation to the contralateral DG at 15 milliseconds
(right) in stressed rats. Time unit: second. (b) Commissural-induced modulation prior to TBS application. Commissural-induced inhibition
was significantly higher in stressed rats (n = 6) at 15-millisecond and 30-millsecond interpulse intervals in comparison with control rats (n
= 6) (P < .05). (c) Commissural-induced modulation following TBS application. Commissural-induced inhibition was significantly higher in
stressed animals at 15-millisecond and 30-millisecond intervals n = 6 (P < .05).
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Figure 4: TBS-induced potentiation in control and stress rats. Both
control (n = 14) and stress (n = 11) rats have shown an increase in
the slope of the EPSP. The magnitude of the EPSP potentiation was
not significantly different between the two groups.

When priming stimulation of the commissural path at
interpulse interval of 30 milliseconds, stressed rats exhibited
significantly higher commissural-induced inhibition than
control rats before and after TBS application (F(1,12) =
90.42, P < .001), as seen in the 15-millisecond interpulse in-
terval. Interestingly, both groups have shown a significant de-
crease in commissural-induced inhibition following TBS ap-
plication (F(1,12) = 13.68, P < .005). (See Figures 3(b) and
3(c).)

When using the 80-millisecond and 150-millisecond in-
terpulse intervals, the response to the PP stimulation was fa-
cilitated in both control and stressed rats, as expressed by
the large commissural indexes. In both groups, commissural-
induced facilitation was significantly increased after TBS ap-
plication (80 milliseconds: F(1,12) = 17.55, P < .005; 150 mil-
liseconds: F(1,12) = 7.87, P < .05). No differences were found
between the two groups before or after TBS application (80
milliseconds: F(1,12) = 0.68, n.s; 150 milliseconds: F(1,12) =
0.057, n.s). (See Figures 3(b) and 3(c).)

3.5. The effect of the stressor on LTP induction
in the dentate gyrus

Sixty minutes following the application of TBS, there was a
clear potentiation of the slope of the EPSP in control rats
(38%± 5.9, t(13) = 6.38, P < .001) and stressed rats (35%±
9.3, t(10) = 3.54, P < .05), compared to pre-TBS levels. The
application of TBS also resulted in an increase in PS ampli-
tude in both groups (control: 128% ± 32, t(13) = 4.02, P <
.005); stress: 127%± 38, t(10) = 4.6, P < .05).

No significant difference in LTP was found between the
two groups (EPSP-LTP: t(23) = 0.33; PS-LTP: t(23) = 0.93,
n.s)] (see Figure 4).

4. DISCUSSION

In the present study, we have examined the effects of behav-
ioral stress on local circuit activity and plasticity in the DG.
We report that when using FDI [26], this form of local cir-
cuit activity was reduced following the application of TBS
in both control and stressed rats. However, this reduction in
FDI plasticity was greater in the stressed rats compared to
controls.

When using commissural-induced modulation, inhibi-
tion was significantly higher in stressed rats both before and
after TBS at 15- and 30-millisecond intervals.

FDI results from direct afferent excitation of inhibitory
interneurons or of other cells that excite inhibitory cells
[26, 35], and thus provides a simple method for measuring
local circuit activity mediated by dentate interneurons. In the
present study, an attempt was made to find out whether be-
havioral stress would have an effect on FDI activity and plas-
ticity. Our results reveal that both control and stressed rats
have shown a decrease in FDI following TBS, and that dif-
ferences between pre- and posttetanic levels of FDI were not
significantly different between the two groups. When exam-
ining the differences between pre- and post-TBS levels of FDI
within each group, a greater difference was observed in the
stressed group, which may suggest that undergoing behav-
ioral stress has caused an increase in FDI plasticity.

This increased plasticity is somewhat surprising since ex-
posure to stress is typically shown to suppress plasticity and
to impair learning [36–40]. It should be noted though that
most studies related to stress effects on plasticity focused
mainly on LTP and on CA1 area of the hippocampus. The
effects of stress on LTP in other brain regions are less con-
sistent [14, 21, 41]. Furthermore, even in CA1, while stress
may suppress LTP, it is reported to enhance other forms of
plasticity, such as LTD [17, 42].

The effects of stress on commissural-induced modula-
tion were also examined. Stressed rats have shown a marked
increase in inhibition both before and after the application
of TBS, indicating a lasting modification in this form of local
circuit activity. This result is in agreement with other studies
that have shown that stress levels of corticosterone produce
a profound and long-lasting inhibitory influence on hip-
pocampal cell activity [43–47]. Although stress has caused
a reduction in local circuit activity in this case, no alteration
in commissural local circuit plasticity was observed after TBS
application.

The fact that FDI activity was not affected by the stress
while commissural-induced modulation was significantly af-
fected suggests that stress may affect only a subpopulation
of inhibitory interneurons. Indeed, it has been previously
suggested that interneurons in the hippocampus may be di-
vided into those showing no activity-dependent plasticity
and those that do. It was further suggested that activity-
dependnet plasticity of this sort may contribute to mood and
anxiety disorders [48].

The fact that an increase in inhibitory activity was ob-
served in the hippocampus may imply that deficits in cogni-
tive functioning and flexibility might take place, as has been
suggested before for aged rats [18]. This does not necessarily
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mean that rats that have undergone stress would show im-
paired learning in a specific task, but it is possible that they
would be less adaptive if required to shift to a new coping
strategy during task acquisition. For example, stress has been
shown to cause impairment in reversal learning and induced
perseveratory behavior in the Morris water maze without
having a significant effect on task acquisition [49].

In the present study, dentate gyrus LTP was not affected
by the stress employed. As indicated above, the effects of
stress on dentate gyrus LTP may depend on the exact nature
of the stress experience [14, 21, 41]. Interestingly, although
stress seemed to have caused alterations in local circuit plas-
ticity (as observed in the FDI findings) and in local circuit ac-
tivity (as observed by the commissural modulation findings),
it had no effect on LTP induction. This further supports the
notion that local circuit activity and plasticity is independent
of synaptic plasticity such as LTP [18, 28].

The study of the effects of stress on GABAergic neu-
rotransmission is of special interest because it has been
suggested that GABA plays a role in the pathophysiol-
ogy of mood and anxiety disorders [50–54]. The results
presented here may further support the potential role of
GABA-impaired modulation of neural activity and plasticity
in stress-related disorders.

Our results suggest that stressful experience may lead to
alterations in local circuit activity and plasticity. Understand-
ing the alterations that take place in these local interneurons
may contribute to a better understanding of their involve-
ment in memory formation and regulation under normal
and psychopathological conditions.
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[29] G. Buzsàki and E. Eidelberg, “Commissural projection to the
dentate gyrus of the rat: evidence for feed-forward inhibition,”
Brain Research, vol. 230, no. 1-2, pp. 346–350, 1981.

[30] G. Richter-Levin and M. Segal, “The effects of serotonin deple-
tion and raphe grafts on hippocampal electrophysiology and
behavior,” Journal of Neuroscience, vol. 11, no. 6, pp. 1585–
1596, 1991.
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