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Single molecule localisation microscopy (SMLM) is a powerful tool that has revealed the
spatial arrangement of cell surface signalling proteins, producing data of enormous
complexity. The complexity is partly driven by the convolution of technical and
biological signal components, and partly by the challenge of pooling information across
many distinct cells. To address these two particular challenges, we have devised a novel
algorithm called K-neighbourhood analysis (KNA), which emphasises the fact that each
image can also be viewed as a composition of local neighbourhoods. KNA is based on a
novel transformation, spatial neighbourhood principal component analysis (SNPCA),
which is defined by the PCA of the normalised K-nearest neighbour vectors of a
spatially random point pattern. Here, we use KNA to define a novel visualisation of
individual images, to compare within and between groups of images and to investigate
the preferential patterns of phosphorylation. This methodology is also highly flexible and
can be used to augment existing clusteringmethods by providing clustering diagnostics as
well as revealing substructure within microclusters. In summary, we have presented a
highly flexible analysis tool that presents new conceptual possibilities in the analysis of
SMLM images.
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INTRODUCTION

SMLM has given insight into the spatial arrangement of signalling proteins with unprecedented
resolution (Huang et al., 2009; Patterson et al., 2010; Nicovich et al., 2017; Schnitzbauer et al., 2017).
The complex spatial arrangement of these proteins is an emergent property of interactions between
many types of proteins, and reflect the external environment that is being sensed, as well as being
dependent on prior states of the cell (Ditlev et al., 2018; Yoo et al., 2019; Espinosa et al., 2020). Being a
snapshot of a dynamic process, it can be expected that the image will contain a mixture of spatially
localised subprocesses that coexist side by side. Similar processes that are spatially separated may not
be exactly temporally synchronised. For example, protein clustering, i.e., transition away from well
mixed homogenous states towards droplets/condensates and beyond, is dynamic and may be at
different stages of progress in different parts of the cell, or even within larger condensates. While
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genetically identical cells grown under the same conditions will
result in unique and random instantiations, it could be expected
that they are linked by universal properties, e.g., distribution of
cluster sizes or distribution of distances between clusters.

Within the field of T cell activation, SMLM imaging has made
a large impact on our understanding of the underlying processes.
It is now well established that spatial organisation of T cell
receptor (TCR) in the plasma membrane determines the
probability of phosphorylation and downstream signalling
processes (Grakoui et al., 1999; Pageon et al., 2016a; Sherman
et al., 2016). As proteins that reside in the same regions in the
plasma membrane are more likely to interact, it is important to
map and better understand the organizing principles of
membrane proteins (Saka et al., 2014). For example, chimeric
antigen receptors (CARs) need to integrate into the T cell
signalling network (Lim and June 2017) and therefore ought
to adopt a spatial organisation similar to that of the TCR.
However, quantifying the diversity in spatial organisations that
a single protein can adopt within and across individual cells has
remained challenging. The TCR, for example, has been described
as randomly distributed (Rossboth et al., 2018), monomeric
(James et al., 2007) or as a functional dimer (Kuhns et al.,
2010), to form pre-existing (Sherman et al., 2011) (Schamel
et al., 2005; Kumar et al., 2011) and antigen-induced clusters
(Kumar et al., 2011; Pageon et al., 2016a; Boniface et al., 1998),
which can reside in large, immobile protein islands (Lillemeier
et al., 2010; Drbal et al., 2007; Purbhoo et al., 2010).

The mode of imaging adds a further layer of complexity, as the
molecules are not directly observed. When individual molecules
are not spatially resolvable due to the diffraction limit, sparsity is
induced in both space and time by stochastic photoactivation or
binding of fluorescent probes that generate localisations.
Localisations are points in R2 (for 2D imaging, or R3 for 3D
imaging), and a set of localisations over a small area is evidence
for the existence of a molecule. In real images, it is virtually
impossible to attribute localisations to specific molecular
numbers and positions with high confidence (Feher et al.,
2019). Molecules may be tightly packed and thus sets of
localisations arising from multiple molecules may be spatially
overlapping, dependent on instrument precision. Labelling
efficiency and stochastic blinking effects induce a fundamental
limitation in molecular counting at individual protein sites. It is
possible to estimate the underlying molecular positions by
collapsing repeated localisations in a procedure called
“grouping” but this can introduce new artefacts due to the
afore-mentioned reasons.

Overall, it can be expected that SMLM images of cells have a
complex multiscale structure, generated by convoluting biological
with technical effects and overlaid with spurious noise
localisations. For any given localisation, the spatial
arrangement of the immediately neighbouring localisations is
dominated by the photophysics and the distance of the nearest
neighbouring molecule. The spatial arrangement of more distant
localisations is influenced by the emergent properties of many
interacting proteins. To date, SMLM images of one or two protein
types are possible, but technical advances in simultaneously
imaging multiple protein types are underway. The broad goal

of SMLM data analysis is to extract instances or types of protein
arrangements and link it to biological function. Examples include
droplet size and composition, indicating previous recruitment of
proteins to the site; or proximity of proteins types to each other,
indicating the possibility or otherwise of biochemical reactions
taking place.

General approaches to analysing point pattern data often
involve clustering or density estimation. Examples within
SMLM data analysis include Ripley’s K-function (Owen et al.,
2010), pair correlation (Sengupta et al., 2013; Shivanandan et al.,
2016), density-based clustering (Pageon et al., 2016a; Jiang et al.,
2017; Rubin-Delanchy et al., 2015) or tessellation based analysis
(Levet et al., 2015). Clustering is most straightforward when
spacing between clusters (inter-cluster) dominates the spacing
between points within the cluster (intra-cluster) in all instances,
and there are no noise points between the clusters. In this case, a
single unambiguous clustering can generally be found. As intra-
cluster spacing grows with respect to inter-cluster spacing and
background noise increases, multiple cluster organisations could
be obtained depending on the chosen optimisation criteria (Liu
et al., 2015; Maurus and Plant, 2016). On the other hand, density
estimates are highly dependent on the chosen bandwidth (Davies
and Baddeley, 2018), and thus multiple bandwidths may be
needed to fully describe multiscale structure. As density is an
average quantity within a window, it can be problematic to
describe discontinuous events, e.g., a small cluster surrounded
by a relatively large empty space.

Bridging the gap between clustering and density estimation are
local indicators of spatial association (LISA) methods (Anselin,
1995). They represent the contribution of each point to a global
spatial statistic, reflecting local spatial arrangements. For
example, Ripley’s K-function can be decomposed into local
K-functions for each localisation. Other methods aim to
deconvolute the superposition of two independent point
patterns (Byers and Raftery, 1998; Cressie and Collins, 2001;
Redenbach et al., 2015). In this work, we describe a novel LISA-
like method of characterising SMLM images that is based on a
vector of nearest neighbour distances corresponding to each
localisation in the image. In more detail, our work extends
ideas in Byers & Raftery (Byers and Raftery, 1998), by
considering the joint distribution of Kth nearest neighbour
(NN) distances (NND) for K � 1 . . . 100. This leads us to
consider SMLM localisations as points in a multivariate
coordinate system defined by the NNDs for each K, so that we
can aggregate localisations with similar properties, in a manner
analogous to that of Cressie and Collins (2001). However, instead
of using local K-functions which requires the scale to be fixed, the
NND vectors can probe the local topology of each localisation,
regardless of that localisation’s local density (K-neighbourhood
analysis).

While clustering will remain central to SMLM data analysis,
we aim to expand the conceptual possibilities in a manner that
does not require explicit spatial segmentation via clustering.
Instead, we wish to view each image as a collection of local
neighbourhoods and use this concept to dissect individual images
and compare between entire images with minimal assumptions.
This will facilitate novel visualisations of SMLM images,
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comparisons amongst sets of SMLM images and provide a
rational framework to find associations between the spatial
structures of different types of proteins. This novel method
can be performed on the entire set of localisations, thereby
avoiding any artefacts introduced by grouping.

The major contribution of this paper is the Spatial
Neighbourhood PCA (SNPCA). This is a transformation that
is derived from the normalised nearest neighbour distance vectors
of each point in a spatially random point pattern, using the first K
neighbours. This basis can be used to compress the K-nearest
neighbour vectors of an arbitrary point pattern and compare the
neighbourhood compositions between sets of arbitrary point
patterns. The properties of SNPCA are investigated using
simulated point patterns to show it can capture structural
nuances that are not apparent with univariate measures such
as local density. The SNPCA is then used to develop a novel
visualisation technique for individual SMLM images. Next, a set
of SMLM images of activated T cells are analysed to demonstrate
the global differences of the CD3 spatial patterns that occur
between different types of cells. Finally, these results are used for a
downstream analysis of CD3 phosphorylation patterns.

MATERIALS AND METHODS

Cell Culture
Jurkat-ILA1 T cells and Jurkat 76T cells were cultured in RPMI
1640 (Life Technologies, 21870076) supplemented with 10% FBS,
2 mMl-glutamine, 1 mM penicillin and streptomycin (all from
Life Technologies). Characterization of the ILA1 TCR is
described in the methods section of Pageon et al. (Pageon
et al., 2016b). Jurkat 76 cells were transduced to express either
LaG17-CD3ζ or LaG17-CD28-CD3ζ CAR construct.

Constructs
Lentiviral anti-GFP CAR constructs were produced and
transduced into Jurkat 76 cells as described in Denham et al
(Denham et al., 2019). We used Jurkat 76 cells since these cells
lack surface expression of the TCR complex and thus anti-CD3ζ
staining was specific for CAR constructs. For bacterial expression
of CAR ligand, a construct of an N-terminally Avitag-labelled
monovalent (A206K mutant), dark (Y66S mutant) EGFP (Avi-
dGFP) was cloned into pTRC-HisA between the NheI and
HindIII restriction sites. For the PI3K PAINT probe, amino
acids 322–724 (constituting the tandem Src homology two
domains) of the regulatory subunit, p85, with M479S, I493S,
Y504S, Y508S hydrophobic to hydrophilic mutations of residues
in the interface with the catalytic domain were fused with mNeon
Green on C-terminus and cloned into pET21 between the NdeI
and NotI restriction sites (p85 tSH2-mNG).

CAR Ligand and PI3K PAINT Probe
Production
Chemically competent BL21 (DE3) E. coli cells (Agilent
Technologies) were transformed with Avi-dGFP or p85 tSH2-
mNG and grown on ampicillin (50 μg/ml) LB agar plates

overnight at 37°C. The following day an individual colony was
inoculated into LBmedia with 50 μg/ml ampicillin and grown in a
shaker incubator overnight at 37°C. Ten ml of this starter culture
was then inoculated into 1 L of LBmedia and the cells were grown
in a shaker incubator at 37°C until the optical density at 600 nm
was 0.6. The temperature in then decreased to 18°C and IPTG to
0.5 mM was added. For Avi-GFP biotin to 20 µM (to drive
biotinylation of the Avitag) was added to the culture media.
The protein was left to induce overnight, after which the cells
were pelleted by centrifugation and stored at −80°C until protein
extraction and purification was performed. Protein was extracted
by thawing cells, resuspending in 50 mM NaH2PO4, 300 mM
NaCl pH 7.5 (2×PBS), sonicating, and pelleting debris by
centrifugation at 15,000 rcf for 15 min. The clarified lysate was
passed through 2 ml Nickel-NTA agarose resin in a gravity-fed
column, which was then washed with 10 column volumes of
2×PBS, then with 10 ml of 2×PBS with 10 mm imidazole.
Proteins were eluted with 150 mM imidazole pH 7.5. Eluate
was concentrated to 0.5 ml with a 30 kDa spin concentrator
(Amicon) and a final polishing step of size exclusion
chromatography on a HiPrep 16/60 Sephacryl S-200 HR (GE
Healthcare) equilibrated in PBS with 1 mM DTT was performed.
Purified protein was mixed with glycerol to a final concentration
of 10% (v/v) and aliquots were frozen at −80°C until used.

Bilayer Preparation
Glass coverslips were cleaned with 1M KOH, rinsed in MilliQ
water, and then placed in 100% ethanol prior to plasma cleaning.
Eight-well silicone chambers (Ibidi, 80841) were then attached to
the plasma cleaned coverslip. A 1 mg/ml liposome solution with a
lipid ratio of 96.5% DOPC (1,2-dioleoyl-sn-glycero-3-
phosphocholine), 2% DGS-NTA(Ni) (1,2-dioleoyl-sn-glycero-
3-{[N-(5-amino-1-carboxypentyl)iminodiacetic acid]succinyl}
(nickel salt)), 1% Biotinyl-Cap-PE [1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine-N-(cap biotinyl) (sodium salt)], and
0.5% PEG5000-PE {1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[methoxy (polyethylene glycol)-
5000]} (ammonium salt) (mol%; all available from Avanti
Polar Lipids (DOPC, 850375C) [DGS-NTA(Ni), 790404C]
(Biotinyl-Cap-PE, 870273C), (PEG5000-PE, 880220C) was
created by vesicle extrusion, as described previously (Beemiller
et al., 2012). The lipid solution was added to each well at a 1:5
ratio with MilliQ water along with 10 mM of CaCl2 for 15 min
and then washed three times with phosphate-buffered saline
(PBS). 0.5 mM EDTA in MilliQ water was added to remove
the excess CaCl2 followed by washing with PBS. 1 mM of NiCl2 in
PBS was added for 15 min to recharge the NTA groups, then
surfaces washed three times with PBS. Disruption of the lipid
bilayer was avoided bymaintaining 100–150 µl of PBS in the wells
at all times.

To decorate the bilayer with proteins, 100 μg/ml of
streptavidin (Life Technologies, SNN1001) and 200 ng/ml of
His-tagged ICAM-1 (Thermo Fisher Scientific, 10346H08H50)
were combined in PBS and added to the well for 15 min at room
temperature and then washed with PBS. Biotinylated proteins
were then combined with 5% BSA/PBS and added to each well for
30 min at room temperature; for Jurkat-ILA cells 1:500 dilution of
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pMHC 3G (from a 1 mg/ml stock) was used and for CAR-
expressing Jurkat 76 cells 10 nM of dark GFP and 90 nM of
dark mCherry were combined prior to being added to the bilayer.
The wells are then washed with PBS to remove any unbound
proteins.

Antibody Conjugation
CF568-succinimidyl-ester (Biotium, 92131) was conjugated to
soluble pCD3ζ (pY142) antibody (BD Pharmingen, 558402).
CF568-succinimidyl-ester and the antibody were mixed at a 6:
1 molecular at pH 8.0 for 1 h at room temperature in the dark.
The antibody was purified by using Zeba desalting columns
(Thermo Fisher Scientific, 89883). Absorption spectroscopy
determined that the degree of labelling was 1.5:1 dye:
antibody ratio.

T Cell Activation on Bilayer and
Immunostaining
The wells containing bilayers were washed with RPMI culture
media and warmed to 37°C for 30 min prior to adding the cells.
Cells were added to the bilayer at a density of 250,000 cells/well
for 4–5 min at 37°C and fixed using 4% PFA in PBS warmed to
37°C. Fixation of cells was done for 15 min at 37°C. Prior to
immunostaining, cells were permeabilized with Triton X-100
(Sigma-Aldrich, T8787) at 0.1% for 5 min at room
temperature and washed with PBS. The cells were blocked
with 5% BSA in PBS for 1 h at room temperature.

Staining of the cells was performed sequentially with primary
labelled antibodies against l CD3ζ conjugated to Alexa Flour 647
(Abcam, 197037) and pCD3ζ (pY142) conjugated to CF568.
Staining was done in 5% BSA in PBS at a concentration of
10 μg/ml for both antibodies for 30 min at room temperature
in the dark, then washed with PBS. Fiducials in the form of
TetraSpeck Microspheres (Thermo Fisher Scientific, T7279) were
added to each well for 15 min then washed with PBS.

dSTORM and PAINT Imaging
For dSTORM imaging, a buffer consisting of 50 mM Tris, 10%
(wt/vol) glucose, 10 mMNaCl, 20 μg/ml catalase (Sigma-Aldrich,
C100), 0.8 mg/ml glucose oxidase (Sigma-Aldrich, G2133), and
30 mM cysteamine (Sigma-Aldrich, 30070), pH 8.0 was used
during data acquisition. Data was acquired on a Zeiss ELYRA
microscope with TIRF illumination using a ×100 oil-immersion
objective (NA � 1.46) coupled to a cooled, electron-multiplying
charge-coupled device camera (Andor, iXon DU-897). Sample
excitation was done with 637 nm laser and 561 nm laser. For
single channel acquisitions 20,000 frames were collected at an
exposure time of 33 ms. Sequential imaging of the fluorescent
probes was performed to acquire two-channel data with the
farther red channel acquired first. For each channel, 20,000
frames were collected with an exposure time of 33 ms. Drift
correction and channel alignment algorithms were performed on
the raw data to produce data tables containing x-y localization
coordinates using Zen 2012 SP5 (Zeiss MicroImaging).

PBS buffer containing 1% (wt/vol) BSA, 0.1% (wt/vol)
saponin, 1 mM DTT and 1 mM EDTA was used for the

preparation and imaging of the PI3K probe. PAINT imaging
was performed by adding 600 pM of the PI3K-mNeonGreen
probe to the well and exciting with 488 nm laser in TIRF
mode. For each cell, 10,000 frames were collected with an
exposure time of 200 ms. Raw image stacks were fitted for
molecular localisations and drift corrected using the “Picasso”
software package (Schnitzbauer et al., 2017).

DNA origami rulers. A single well of an eight-well chamber
(ibidi 80841) was attached to a clean coverslip and washed with
500 μl of PBS. The well was incubated with 200 μl of BSA-biotin
solution (1 mg/ml in PBS) for 5 min. Excess BSA-biotin was
removed by washing with 500 μl of PBS. The surface was
incubated with 200 μl of neutravidin (1 mg/ml in PBS) for
5 min and washed with a PBS with 10 mM magnesium.
Biotin-coated polystyrene beads (Spherotech, TP-305) (40 μg/
ml) were incubated for 1 h and the excess beads were removed.
The well was incubated with the DNA-origami ruler (GATTA-
PAINT, HiRes 20R or 80R) diluted 40 times in PBS with 10 mM
magnesium to get ∼100 rulers per field-of-view. Excess DNA
origamis were removed by washing with PBS with 10 mM
magnesium. The imaging strand was a 9-bp complementary
target strand with Atto 655, with a concentration of 5 nM.
Acquisition was performed as previously described by Coelho
et al., 2020 (Coelho et al., 2020).

Statistical Description of Localisations
Let there beN localisations in a region of interest (ROI), and each
localisation is indexed by i with 1 ≤ i ≤ N. In order to describe each
localisation i via its local topology, i.e., the spatial arrangement of
its neighbouring localisations, the distance Dij from the ith
localisation to its jth nearest neighbour (NN) is calculated for
1 ≤ j ≤ K. Thus localisation i is described by a K-dimensional
nearest neighbour vector NNVi � (Di1, . . . , Dij, . . . , DiK)
(K-neighbourhood).

Choice of K
The parameter K is chosen to be larger than the number of
localisations arising from a single molecule. However, the
K-neighbourhood analysis is quite robust over a range of K
values. Within large aggregates of molecules (e.g.,
microclusters), K-neighbourhoods may appear to be spatially
random because the edge of the cluster has not been reached.
To understand how the K-neighbourhoods are related to long-
range structure, we examined the NNDs for K � 200, 500.

Comparison of Image Localisations to
Spatially Random Localisations
The expected value of Dij under complete spatial randomness is
α√jwhere α is a constant that accounts for the rate of the Poisson
process, i.e., the density of localisations (Thompson, 1956).
To examine a localisation’s topology independently of scale,
we set α � 1/√K and normalised NNVi to yield nNNVi � NNVi/
DiK such that nNNVi falls on the interval (0, 1). Additionally, the
nNNVis of a ROI collectively forms the rows of a table of dimension
N × K, which we named NN feature table (NNFT). The NNFT is an
abstract description of a ROI.
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Principal Component Analysis (PCA) of the
Nearest Neighbour Feature Table (NNFT)
Localisation i can be viewed as a point in R

K via NNVi. To
summarise the major features of the NNFT (Figure 1), dimension
reduction is needed. Principal component analysis (PCA) could
performed on individual NNFTs to yield a new orthonormal basis
corresponding to the directions of largest variance. However,
each PCA will yield a different basis, reflecting the individual
properties of each NNFT, rendering comparisons between images
or cellular conditions impossible. To generate a universal basis for
any NNFT, we simulated 100,000 completely spatial random
(CSR) points with a two-dimensional Poisson process on the unit
square with intensity λ � 105. For each simulated point, the
nNNVi was calculated, the edge points discarded, the NNFT
mean-centred and the PCA calculated. For a NNFT arising from
an experimental ROI, each localisation can be represented by the
orthogonal projection of its nNNVi on the first two principal

components of the CSR PCA, yielding new coordinates (PC1i,
PC2i).

Local Density
In each K-neighbourhood, localisation density is defined as
Deni � (K/2)/(πD�i2), with D�i � (1/K)∑jDij (i.e., the mean NND).
Deni is plotted on a logarithmic scale.

Comparison of Images and Standardised
Frequency Table
A group of localisations in a single image can be represented by an
N × 3 table with the ith row defined (Deni, PC1i, PC2i). To make
comparisons between images, we compared the joint density of
these three parameters. To do this, we binned each parameter into
equally sized intervals, with the intervals being fixed for all
images. To construct the bins, for each parameter the

FIGURE 1 | Concept of k nearest neighbour distances to identify localised spatial organisations for each point in an image. (A) Three examples of a single point
(highlighted in red) residing in a cluster of six points (left), random point distribution (middle) and segregated from other points (left) and its K � 10 nearest neighbours
(blue lines). (B) Plots of the normalised distance from the red localisation to the jth nearest neighbour (y-axis) against j (x-axis) for the examples above (blue lines) and for
completely spatially random (CSR) data (grey lines). Each of the three scenarios shown in (A) gives rise to a characteristic curve in (B). (C) Schematic diagram
illustrating the workflow of the K-Neighbourhood Analysis.
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combined range over all images was determined. The range was
then split into 50 equal sized bins, and the 1-dimensional bins
were merged to form a 3-dimensional grid composed of 3-
dimensional bins. Finally, the localisations were counted in
each 3-dimensional bin, and the bins are clustered using
average linkage hierarchical clustering (Ward, 1963) to yield a
small number of 3-dimensional bin subsets (termed “groups”)
that correspond to a colour key.When performed on an ensemble
of images, a frequency table was obtained, with each row being
one image and each column corresponding to the total frequency
of localisations falling in a group of 3-dimensional bins. The
frequency table is compositional, i.e., rows sum to one, so log ratio
analysis is performed for dimension reduction (Aitchison and
Greenacre, 2002). This entails log transformation followed by
mean-centering, then principal component analysis (PCA) on the
column centred matrix. To facilitate visualisation of the three
categories, between component analysis is performed on the
dimension reduced table, which is the PCA on the
experimental means of the 3 cell types followed by the
projection of the individuals onto the found space
(Thioulouse, 2011). The table can also be visualised as a
heatmap (Gu et al., 2016). To test for differences in variance
between the experimental groups, the procedure in Anderson
(Anderson, 2006) is used. To test for differences in multivariate
means between the experimental groups, the procedure in Ellis
et al. (Burchett et al., 2017) is used.

Simulations
Point patterns were simulated to investigate the performance of
K-neighbourhood analysis. Spatially random cluster centres were
simulated using a Poisson process. They were populated with
localisations by randomly selecting the localisation count C on an
interval, and drawing C points from a bivariate normal
distribution with a fixed variance and zero correlation. Finally,
the simulated image is overlaid with spatially random noise
localisations that are simulated with a Poisson process.

Phosphorylation Enrichment Score
To calculate a spatially dependent phosphorylation enrichment
score, each CD3ζ localisation in an image is scored TRUE or
FALSE according to whether it is within 10 nm of a pCD3ζ
localisation (co-localised CD3ζ localisation). For each localisation
group indexed by k (here 1 ≤ k ≤ 9), the frequency of localisations
in k that also score TRUE is compared to the frequency of all
localisations in k such that Enrichment � log[Freq(k AND TRUE)/
Freq(k)]. When Enrichment > 0, phosphorylation is
overrepresented among localisations in k and when
Enrichment < 0, phosphorylation in underrepresented among
localisations in k. Differences of multivariate enrichment scores
between experimental groups are tested as described above in
“Comparison between images.” The enrichment score is
additionally plotted for thresholds of 10, 20, 30, 500 nm. To
understand whether enrichment scores are significantly different
from zero, random scores are simulated as follows: For each
image, if there are np co-localised CD3ζ localisations, then a
random vector is drawn from a multinomial distribution
characterised by the CD3ζ frequency vector of that image and

np, the random vector is normalised to sum to one, and an
enrichment score is calculated. This is repeated 10,000 times, and
the 5 and 95th percentiles of the simulated random scores are
obtained. After repeating for each image, the minimum and
maximum (respectively) scores over all images are reported
and plotted.

RESULTS

In order to characterise the neighbourhood of any point in a point
pattern (a point pattern here is defined as a set of points in R2),
the vector of the first K nearest neighbour (NN) distances is
considered. The normalised NN (n-NN) distances can be plotted
as a curve vs the index j (for 1 ≤ j ≤ K) (Figure 1). Independently
of the magnitude of the NN distances, the shape of this n-NN
curve is related to the spatial organisation of neighbouring points.
The n-NN curve can be compressed using a principal component
analysis (PCA) that is defined using n-NN curves arising from
spatially random data (SNPCA), meaning that different point
patterns can be expressed using a set of common basis vectors and
compared directly. The algorithm takes a point pattern and K as
input, calculates a n-NN curve for each point and transforms it
using the SNPCA. Two components have been shown to be
sufficient for SNPCA (Supplementary Figures 1–3). For
completeness, the mean NN value can also be stored along
with the two components, so that information about the NN
magnitude is available. For ease of interpretation, the mean NN
value can be converted to a density. The algorithm is referred to as
K-neighbourhood analysis (KNA).

The properties of the KNA are investigated using simulated
point patterns that mimic an SMLM image of spatially random
binding sites (Figure 2A). First, the region of interest (ROI) is
populated with molecules using a Poisson process of a given
intensity. Next, each molecule is replaced with clusters of
localisations generated from a bivariate normal distribution
(fixed variance in x and y, and correlation coefficient of zero),
with the number N of localisations being uniformly distributed
between 10 and 90. Finally, spurious background localisations are
generated using a Poisson process of a given intensity. For each
localisation associated with a “parent” molecule (signal
localisations), its local neighbourhood is strongly influenced by
the total number Nclus of localisations associated with the parent
molecule, the distanceDB to the parent molecule, and the distance
DBNN from its parent molecule to the neighbouring molecule. For
noise localisations, its local neighbourhood is strongly influenced
by the distance DB to the nearest molecule. Further properties
such as distance to the second neighbouring molecule also
influence local neighbourhoods but they are not considered here.

These three quantities are plotted against kernel density
estimates (adaptive smoothing using a Gaussian kernel)
calculated at each point, for two different bandwidths (Figures
2B,C). For signal localisations, there are negative and positive
trends (resp.) with DBNN and Nclus. However, there are two
separate trends with DN, with density estimates occuring in
the same range for signal and some noise localisations. While
this differentiation can be improved by lowering the bandwidth, it
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indicates that a single univariate parameter such as density
cannot capture the nuance of coexisting spatial arrangements.
A similar phenomenon occurs when plotting nearest neighbour
distances for individual values of K (Supplementary Figure 4).

The KNA of the same simulated dataset is carried out, and the
first two components are converted to polar coordinates r and θ
relative to the origin of the axes. There is a trend between DBNN

and r, showing that DBNN has radial dependence, and the slope of
this trend also depends on Nclus (Figures 3A,B). There is a trend
between Nclus and θ, showing that Nclus has an angular
dependence, and this effect is strongest for clusters that are
further from other clusters (as clusters in close proximity to
each other start to resemble larger aggregates) (Figures 3C,D).
Noise localisations occupy a distinct angular region in relation to
signal localisations (Supplementary Figure 5). For localisations
belonging to the same cluster, those closer to the parent molecule
have a lower value of SNPC1 than those farther from the parent
molecule, i.e., there is a local trend betweenDB and SNPC1. Noise
localisations generally have higher values of SNPC1 than signal
localisations (Figure 3E). While these trends have been evaluated
separately, they are in fact linked and jointly contribute to each
localisation’s local neighbourhood. Other aspects of structure
such as distance to the second nearest binding site have not
been considered, but they will also potentially contribute to each
local neighbourhood. Finally, as the density of noise localisations
increases (Supplementary Figures 6–7), it will cause an apparent
increase in the counts per cluster, and cause low count clusters to
be indistinguishable from noise localisations. For this reason,
meaningful comparisons can only be made between images

acquired under the same imaging conditions, unless batch
effects are being assessed.

Because the SNPCA is fixed, any point in the SNPC1-SNPC2
plane will always correspond to a fixed normalised NN curve, but
interpretation of the process it arises from requires careful
consideration of the context. For example, consider two
different scenarios with different densities of noise. In scenario
A (Figure 3), the density is low, and so the noise localisations in
fact appear to be segregated. In other words, the definition of
noise arises due to the fact they do not carry biological signal but
they are not spatially random within their neighbourhoods due to
positioning of surrounding clusters. In contrast, the noise points
in scenario D (Supplementary Figures 6–7) are much denser and
so their neighbourhoods have a larger tendency towards being
spatially random. Correspondingly, their SNPC1 and SNPC2
values have decreased compared to scenario A.

Having tested KNA on simulated data we then applied it to a
DNA PAINT image of DNA origami rulers. This image is
composed of localisations corresponding to a single type of
structure randomly scattered over the ROI (Supplementary
Figure 8A). As this image has low complexity, the image
components can easily be gated in a plot of mean NN
distance and SNPC1 (Supplementary Figure 8B). The gated
components correspond to specific structures in the image
(Supplementary Figures 8C,D). The KNA of an image can
also be used to assess parameter choice when clustering, e.g.,
with DBSCAN (Supplementary Figure 9). Here, this assessment
demonstrates that it is hard to find a parameter choice that
perfectly captures all localisations belonging to the rulers while

FIGURE 2 | (A) Simulated SMLM image of spatially random molecules. Molecules are generated using a Poisson process with intensity of five over a square
window with sides of length 10 (arbitrary units). The molecules are replaced with clusters of localisations, generated with a bivariate normal distribution with variance of
0.000625 and covariance of zero. The number of localisations per cluster is an integer randomly sampled on the interval (10, 90). Finally, the noise localisations are
generated using a Poisson process with intensity of 50. DB, DBNN, Nclus plotted vs Kernel Density Estimates (KDE). (B) KDE (adaptive smoothing) of Figure 4 fitted
with a global bandwidth of 0.1. (C)KDE (adaptive smoothing) of Figure 4 fitted with a global bandwidth of 0.2. At low values of the bandwidth, it is possible to differentiate
between signal and noise localisations but the trend with DBNN and Nclus becomes less clear. At a higher value of the bandwidth, the trend DBNN and Nclus becomes clear
but it is no longer possible to differentiate between signal and noise localisations. This highlights that a KDE at using a single bandwidth is not adequate to capture the
entire spatial structure. Trend lines are fitted with a linear model and are supplied for visualisation purposes.
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rejecting other localisations. Next, KNA is applied to a T cell
image stained with a PAINT probe for phosphoinositide 3-kinase
(PI3K) binding sites (Figure 4). The structure in the localisation
pattern can be visualised by creating a colour key (hue) for each
localisation that corresponds to θ which is performed at K � 100.
The colour key is selected such that blue/violet lines up with the
largest clusters, and yellow/green lines up with noise localisations,
creating an obvious contrast. The visualisation could be further
extended by introducing a saturation or value corresponding to r,
but in practice it became visually confusing.

The power of this method is being able to express unique
images in a fixed basis which facilitates direct comparison
amongst a set of images. This opens up new concepts in
SMLM image analysis such as being able to define variance in
a set of images, or defining differences between different sets of
images. To do this, KNA is performed on each image of the set,
and SNPC1, SNPC2 and mean NN distance are retained. A fixed
grid is defined in R3 (with sets of parallel planes) and the data is
binned (Figures 5A,B). The number of points in each bin are
counted and the grid is unfolded to yield a frequency vector. Thus
each image is now represented by a frequency vector and
multivariate statistics can be applied to the set of images. A
set of 11T cells images are compared with 13 first generation
chimeric antigen receptor (first gen CAR) images and 13 2nd gen
CAR images by performing correspondence analysis (CA) on the

frequency matrix (columns are first filtered such that all bins are
occupied in all images) (Figure 6). While there is overlap between
the different sets, they are significantly different from each other.
Furthermore, the two CAR sets show a wider variance than the
T cell set.

While a visualisation based on KNA was previously developed
for individual cells, the frequency table can also be used to
develop a joint visualisation for a set of cells (Figures 5B–D).
For this, the filtered frequency matrix is first clustered using
k-means clustering (kkmeans � 4). The remaining bins, which are
not occupied by all images, become another category. This
category is split in two based on density. Finally, frequency
clusters that have a large extent in SNPC1 are split into two,
with the boundary being SNPC1 � 0 (Figure 3E). In this example,
three out of six frequency clusters are split to yield nine frequency
clusters, and they were chosen based on visual inspection. The
frequency clustering is then converted into a localisation colour
key that can be applied to an image. In the k-means step, higher
values of kkmeans were tested (not shown) but this led to a
confusing visualisation. The process is summarised graphically
in Figure 5. The major intent of this visualisation is to highlight
the contrast in global structure between images. For this image
set, black, green and cyan generally correspond to nanoclusters
with decreasing separation (resp.) to other clusters. Magenta,
coral and purple transition from low count nanoclusters to noise

FIGURE 3 | (A) Relationship between SNPCA and DBNN. DBNN has a positive trend with r, and this effect is strongest for larger clusters. Trend lines are fitted with
robust linear models and are supplied for visualisation purposes. (B) Relationship between SNPCA and cluster count Nclus. Nclus has an angular dependence within the
SNPCA. The relationship is strongest for well separated binding sites otherwise individual clusters appear to be larger aggregates. Trend lines are fitted with robust linear
models and are supplied for visualisation purposes. (C) Relationship of DB with SNPCA. After normalising SNPC1 to the smallest value in each cluster, it has a
positive trend with DB. Trend lines are fitted with robust linear models and are supplied for visualisation purposes.
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localisations, with decreasing separation (resp.) from other
clusters. Microclusters are composed of red, blue, cyan and
purple localisations, with red patches having the highest
density. Finally, violet localisations have a relatively low
frequency and often correspond to a very small number of
unusually dense nanoclusters. These properties can be gleaned
from the n-NND curves (Figure 5E). While the frequency
clustering will often be aligned with discrete spatial structures,
e.g., nanoclusters, sometimes discrete spatial structures will have
memberships of more than one frequency cluster. Given that this
method is not intended to be a new spatial clustering method, it is
not a necessarily a fault but it does point to future refinements
that can be made.

To a rough approximation, KNA will be most sensitive to the
regions on the PC axes with the maximum freedom to vary
(Supplementary Figure 3). For K � 100 this is roughly in the
range of 10–70 nearest neighbours and in our T cell receptor
dataset this corresponds to nanoclusters and structures within the
large microclusters. However longer-range structure can be
probed with larger K values. Although the local topology

description is truncated at K � 100, the distribution of single
NND values for K � 200, 500, partitioned by the nine groups
(Supplementary Figure 10), mostly have well defined peaks
which are highly reproducible amongst all the T cells. The
colours dominating the microclusters consistently have the
smallest NNDs. This indicates that the spatial organisations
found with K � 100 have highly specific relationships to long-
range structure. These properties are biologically important
because neighbouring spatial organisations are likely to
exchange proteins and facilitate protein interactions.

Finally, the frequency clusters are used to assess
phosphorylation patterns. For each cell, the proportion of co-
localised localisations in each frequency cluster is compared to
the global proportions of each frequency cluster (Supplementary
Figure 11). Here, co-localisation is defined as a CD3 localisation
being within 10 nm of a pCD3 localisation. These frequency pairs
are used to define a phosphorylation enrichment score, which is
the log-ratio of the two frequencies. Scores greater than one
indicate an enrichment for phosphorylation while scores less than
one indicate a depletion. These results are displayed in Figure 7

FIGURE 4 | Visualisation based on theta for K � 100. (A) A novel visualisation is constructed by converting θ to hue. (B) PAINT image of T cell stained with PI3K
probe, and coloured according to (A). This choice of visualisation highlights cluster size (or local aggregation within microclusters) and contrasts aggregation (blue, violet,
magenta, red, orange) with segregation (green). (C) Inset of (B). This visualisation is limited in that it is only based on a single parameter. Other information is suppressed,
for example, segregated points (green) have a different density within or outside microclusters. This indicates that they arise from different processes: they occur in-
between tightly packed molecules within microclusters, and as spurious noise outside the microclusters.
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and while the three types of cells formmarkedly different patterns
of CD3 clustering, this does not seem to alter the local thresholds
for phosphorylation. Enrichment scores are simulated for a
random assignment of phosphorylation to each frequency

cluster, and the actual enrichment scores are almost always
significantly different from random (Supplementary
Figure 12). The enrichment scores are re-calculated at
multiple co-localisation thresholds up to 500 nm

FIGURE 5 | Joint K-neighbourhood analysis over a set of diverse SMLM images. SMLM data are from ILA TCR, first gen CAR and second gen CAR in Jurkat cells
activated on supported lipid bilayers containing ICAM-1 and pMHC or CAR ligands. (A) Each image is converted into topological coordinates, and the ensuing cloud of
points is discretised using a 50 × 50 × 50 grid that is common to all images. Example images of TCR (top panel), first gen CAR (middle panel) and second gen CAR
(bottom panel) are shown. (B) The number of localisations in each bin is counted and the grid is unfolded to yield a count vector. The count vector forms a
frequency table, where each image is now represented by a row of the frequency table. The bins (columns) are clustered to give localisation groups that have a similar
frequency profiles across all images. (C) The colour key derived in (B) is transferred to the topological coordinate system. (D). The colour key is transferred back to the
SMLM image. Scale bar � 5 μm. (E) Density-normalized nearest neighbour distances (NND) from the entire dataset for the first K � 100 neighbouring localisations for
each of the nine spatial organisations arranged in the pattern of the 2-D plot in a. identifies differences in local topology. Colour key as in (C).

Frontiers in Bioinformatics | www.frontiersin.org October 2021 | Volume 1 | Article 72412710

Feher et al. K-Neighbourhood Analysis

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


(Supplementary Figure 13). As the co-localisation thresholds
increase, the scores approach zero however at different rates for
the different frequency clusters. Of particular note are the red and
blue localisations, which are consistently the most enriched in
phosphorylation across all cell types. The median enrichment
score for the red group was 0.29, which means that
phosphorylation of red CD3ζ localisations was nearly twice as
frequent compared to a hypothetical random phosphorylation
event, even though red localisations exhibited a wide variance in
number. Although red localisations resided in microclusters, not
all spatial groups in microclusters were enriched in
phosphorylation suggesting that highly local organisations
determined the likelihood of TCR triggering.

DISCUSSION

The promise of SMLM is to transition away from static
biochemical networks, which can be likened to the ingredient
list of a recipe, to dynamic spatial signalling networks, i.e., the

instructions of a recipe. To do this in a reliable way, it is necessary
to move away from the visual inspection of individual cells
towards robust statistics over large cohorts of cells. This needs
to happen at two levels: picking out the functionally relevant
molecular interactions within cells, and quantifying the variance
of occurrence across cells (both within and between cell types). To
the best of our knowledge, we have presented the first framework
which makes it possible to pick out multiscale molecular
structures with minimal assumptions, and examine their
prevalence across multiple cells with different types of
receptors, giving a systematic overview. We have demonstrated
that while the three receptor types TCR, first Gen CAR and
second gen CAR have general similarities in how they self-
arrange, they in fact are subtly distinct from each other which
can be attributed to their different structure. The analysis has
pooled the information across multiple biological replicates and
characterised the variance within the three cell types, which is of
key importance in performing reproducible research. We devised
a method to characterise the interaction of two molecular species,
namely CD3ζ and pCD3ζ, and concluded that the spatial

FIGURE 6 | Comparison of diversity in spatial organisation between cells expressing TCR, first generation CAR or second generation CAR. (A–C) Representative
SMLM images of CD3ζ chain in the TCR-CD3 complex [(A), n � 11 images], first generation CAR [(B), n � 13 images)] second generation CAR [(C), n � 13 images] in
Jurkat cells activated on pMHC-containing bilayers. Spatial organisations are colour coded as in Figure 1. Scale bars � 2.5 μm (D) Between-component analysis (BCA)
of the 9-dimensional frequency table that contains the occupancy of each spatial group as percentages of total localisations. Each symbol represents the total point
pattern of TCR (red symbols), first generation CAR (green symbols) and second generation CAR (black symbols) obtained from one SMLM image. Large triangles
represent the SMLM images shown in (A–C) Adjacent data points indicate that their images have a similar overall spatial composition even though each image is unique.
The three data sets are significantly different from each other (Methods) with the TCR exhibiting the least cell-to-cell variability. (E)Occupancy of the black, magenta, cyan
and purple spatial organisations as a function of expression levels (total localisations) for TCR (red circles), first generation CAR (green open circles) and second
generation CAR (black crosses). Other spatial groups showed no correlation with expression levels.
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preference of phosphorylation remained constant across the three
cell types, despite the differences in receptor spatial composition.
Moreover, this analysis can be extended to 1) further types of
T cells to further characterise the spatial preference of
phosphorylation, 2) other key pairs of molecular species and
3) images of >2 molecular species. Finally, as an outlook, this
analysis can be used to build an “atlas”of known cell types (T cell
or other interesting cells), to identify commonalities and
differences in receptor clustering and also integrate spatial
information with other forms of single cell “omics” data. Such
an atlas can then be used to classify novel and unknown cell types
using machine learning.
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