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Abstract: Surface-to-volume ratio in two-dimensional (2D) materials highlights among their
characteristics as an inherent and intrinsic advantage taking into account their strong sensitivity to
surface effects. For this reason, we have proposed in this work micromechanically exfoliated 2D
nanosheets of InSe as an optical vapour sensor. As a proof of concept, we used 2-mercaptoethanol as
the chemical analyte in vapour phase to monitor the change of the InSe photoluminescence (PL) before
and after exposure to the analyte. For short vapour exposure times (at low analyte concentration), we
found a PL enhancement of InSe nanosheets attributed to the surface localization of Se defects. For
long vapour exposure times (or higher concentrations) a PL reduction is observed, probably due to
the diffusion of molecules within the nanosheet. These results confirm the capability of 2D InSe as
a photoluminescent sensor of vapours, because of its sensitivity to surface passivation or volume
diffusion of molecules.

Keywords: two-dimensional semiconductors; III-VI semiconductors; InSe; photoluminescence;
vapour sensing; chemical sensor

1. Introduction

Two-dimensional (2D) materials have been vastly studied in the last decade since graphene was
first obtained [1] by micro-mechanical exfoliation from three-dimensional layered materials [2] or grown
through methods like chemical vapour deposition (CVD) [3]. Among these new 2D materials, particular
attention has been paid to transition metal dichalcogenides (TMDs) [4,5], hexagonal boron nitride
(hBN) [6,7], and III-VI semiconductors [8–10]. Each one of these 2D materials has different properties
from those of their bulk counterpart, due to quantum-confinement and surface effects [8,10,11], with
promising opportunities in the fields of nano-optoelectronics [12–14], photovoltaics [15], optics [16],
and energy storage applications [17,18].

Among 2D materials, indium selenide (InSe), a III-VI semiconductor with high electron mobility
compared to other layered materials and potential applications in photovoltaics [19–21] acquires
special relevance due to its highly tuneable bandgap from bulk to its monolayer [8,11]. This property,
coupled with its high electron mobility [22], its recently demonstrated out-of-plane dipole luminescent
orientation [23], and the relatively high reactivity of selenium, make 2D InSe a promising material for
optoelectronic applications related to sensing. Generally speaking, the most valuable characteristic of
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a chemical sensor is its ability to provide a fast and selective response to a given analyte. The small
size and high surface-to-volume ratio of 2D materials appears to be ideal for the design of fast sensors.
In fact, some works have already reported 2D materials such as graphene oxide [24], TMDs [25],
or phosphorene [26] for biological [27,28] and chemical sensing [26,29]. Among them, it is worth
noting chemical sensing using optical instead of electrical properties of 2D materials as a transduction
mechanism [30–32].

Focusing, then, on vapour sensing due to its more direct applicability, there are many interesting
analytes for sensing. Among them, sensing of sulphur containing compounds are of particular interest
for monitoring organic decomposition [33,34] or battery malfunction [35], which could be interesting
for the food and energy storage industry. Similarly, sensing of nitro-containing compounds (-NO2)
are of interest in the detection of explosives and analogues that has become a strategic priority in
homeland security, land mine detection, and military issues [36].

In this work exfoliated InSe nanosheets have been demonstrated as a vapour sensor, which is
validated by using 2-mercaptoethanol (MET) as an analyte, because thiols show a very strong affinity
to metals [30–32]. After the characterization of the samples, we demonstrate chemosensing capabilities
by measuring changes in the photoluminescence (PL) as a function of the exposure time to MET.
We observe a fast sensor response time within tens of seconds. Both enhancement and quenching of PL
is observed depending on the exposure time. A possible explanation of the underlying mechanisms
behind these effects will be explored.

2. Materials and Methods

Bulk InSe monocrystals used to obtain the nanosheets were acquired through a perpendicular
cleave of the (001) direction from an ingot grown by the Bridgman method [37] from a nonstoichiometric
In1.05Se0.95 melt. Tin was added to act as a n-dopant in a content 0.01% previously to growth. MET
was purchased from commercial suppliers and used as received (C2H6OS, Sigma Aldrich, St. Louis,
MO, USA, 99%).

InSe nanosheets were obtained through mechanical exfoliation of 3D bulk InSe crystals. Once
exfoliated, they were directly transferred from the scotch tape upon a 285 nm layer of silicon dioxide
over silicon substrate, previously cleaned with acetone, ethanol, and isopropanol in an ultrasound bath.

To characterize the samples, two methods were used. Starting with the optical contrast analysis of
the samples [7,38,39] to achieve a first thickness estimation on a Zeiss (Oberkochen, Germany) Axio
Scope.A1 microscope with an Axiocam ERc 5s Camera. These measurements were corroborated using
micro-photoluminescence (µ-PL) measurements, as the PL response of the material depends on its
thickness, being a more reliable but much more time-consuming method than the first [11]. These
measurements were taken in a Horiba (Kioto, Japan) Scientific Xplora setup, using a 532 nm CW
excitation laser, not exceeding 70 µW of power in 7s acquisition time measurements in InSe nanosheets
to prevent overheating. The optical excitation and collection spots are typically around 1 µm2. It is
interesting to note here that we have maintained the same focal distance for PL spectra acquired in the
2D semiconductor before and after the vapour exposure in order to be able to perform a more direct
quantitative comparison between intensities.

3. Results and Discussion

2D InSe nanosheets prepared by micromechanical exfoliation were tested as optical sensors, in
order to be sensitive to local changes in the environment atmosphere when the target analyte molecules
are chemisorbed on their surface. To validate the use of 2D InSe as a potential chemosensor, MET was
selected as analyte. Thiol groups (–SH) of MET are very well-known chelating ligands. They exhibit a
very strong affinity via their lone pair electrons of S towards metals such as indium atoms [40,41]. The
2D InSe sensor response was determined by monitoring changes in the PL response upon exposure
to vapours of MET, as illustrated in Figure 1. The sensing protocol consisted of the exposure of 2D
InSe nanosheets to the resulting analyte vapour from 40 mL of a 0.1 M MET aqueous solution, in a
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100 mL closed vessel at room temperature. This concentration was chosen to follow more accurately
the real-time kinetic sensor response in contrast to their direct exposure to vapours of pure MET (as
can be observed in Supplementary Figure S1 for 99% purity MET), where a very strong response is
observed after only 30 s. The MET concentration in vapour phase (see Table 1) can be estimated by
Raoult’s Law (pa = p*a · xa, where pa is the partial pressure of the analyte in the solution, p*a is the
vapour pressure of the pure analyte, and xa is the mole fraction of the analyte in the mixture), assuming
that 0.1 M MET solution behaves as a thermodynamically ideal solution. Once prepared, all the sensing
test follows the same protocol: 2D InSe samples (nanosheets deposited on the Si/SiO2 substrate) were
attached to the inner side of the cap of a sealed vessel leaving the substrate faced-down and exposed
directly for a given time. The exposure times to the analyte in vapour phase were systematically varied
from 30 to 300 s. Given that the liquid-vapour equilibrium is broken each time that an exposure is
carried out, so for every sample and measurement it was necessary to have an individual vessel with
the same analyte in the required concentration, in order to assure the equilibrium vapour pressure,
that needs hours to be reached. Furthermore, a constant concentration of the analyte in solution is
assumed throughout the experiment because the analyte solution was saturated. The InSe nanosheets
were characterized by µ-PL before and after exposure to the analyte by using the same PL setup and
experimental conditions. Although InSe is stable in air [42], in order to prevent as much exposure to
air as possible, the whole experimental process (vapour exposure and optical characterization) for each
sample has been performed in a time span less than 4 h.

Nanomaterials 2020, 10, x FOR PEER REVIEW 3 of 9 

follow more accurately the real-time kinetic sensor response in contrast to their direct exposure to 
vapours of pure MET (as can be observed in Supplementary Figure S1 for 99% purity MET), where a 
very strong response is observed after only 30 s. The MET concentration in vapour phase (see Table 
1) can be estimated by Raoult’s Law (pa = p*a · xa, where pa is the partial pressure of the analyte in the 
solution, p*a is the vapour pressure of the pure analyte, and xa is the mole fraction of the analyte in 
the mixture), assuming that 0.1 M MET solution behaves as a thermodynamically ideal solution. Once 
prepared, all the sensing test follows the same protocol: 2D InSe samples (nanosheets deposited on 
the Si/SiO2 substrate) were attached to the inner side of the cap of a sealed vessel leaving the substrate 
faced-down and exposed directly for a given time. The exposure times to the analyte in vapour phase 
were systematically varied from 30 to 300 s. Given that the liquid-vapour equilibrium is broken each 
time that an exposure is carried out, so for every sample and measurement it was necessary to have 
an individual vessel with the same analyte in the required concentration, in order to assure the 
equilibrium vapour pressure, that needs hours to be reached. Furthermore, a constant concentration 
of the analyte in solution is assumed throughout the experiment because the analyte solution was 
saturated. The InSe nanosheets were characterized by µ-PL before and after exposure to the analyte 
by using the same PL setup and experimental conditions. Although InSe is stable in air [42], in order 
to prevent as much exposure to air as possible, the whole experimental process (vapour exposure 
and optical characterization) for each sample has been performed in a time span less than 4 h. 

Table 1. Concentration of vapour exposed to InSe nanosheets. 

Analyte [Analyte]liq
 
M [Analyte]vap

 
M [Analyte]vap ppb 

Water - - - 
2-mercaptoethanol 1 0.1 1.4 · 10−7 10.9 
2-mercaptoethanol 1 16.8 8 · 10−5 5714 

1 vapour pressure 1.5 mmHg at 20 °C. 

 
Figure 1. Schematic diagram of the exposure to vapour process followed in this work. After InSe 
cleavage (a), the nanosheet surface was characterized by photoluminescence (PL) (b), exposed to the 
analyte vapour in a controlled atmosphere (c), and again characterized by PL (d). 

Figure 2 summarises the 2D InSe sensor response upon exposure to MET vapour. Figure 2b 
shows the µ-PL spectra acquired in the 2D InSe sample depicted in Figure 2a before and after 30 s 
exposure to MET 0.1 M, yielding a 1.5-fold PL enhancement in intensity. A similar measurement 
process was carried out in more than 60 different InSe nanosheets of different thicknesses (from 4 to 
18 nm, as determined by the PL emission peak position measured in the exfoliated nanosheets [8]), 
collecting the change in the intensity of PL as the ratio It/I0, where I0 and It is the PL maximum intensity 
before and after exposure at a given time. Figure 2c shows the real-time sensor response to vapours 
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Figure 1. Schematic diagram of the exposure to vapour process followed in this work. After InSe
cleavage (a), the nanosheet surface was characterized by photoluminescence (PL) (b), exposed to the
analyte vapour in a controlled atmosphere (c), and again characterized by PL (d).

Table 1. Concentration of vapour exposed to InSe nanosheets.

Analyte [Analyte]liq M [Analyte]vap M [Analyte]vap ppb

Water - - -
2-mercaptoethanol 1 0.1 1.4 · 10−7 10.9
2-mercaptoethanol 1 16.8 8 · 10−5 5714

1 vapour pressure 1.5 mmHg at 20 ◦C.

Figure 2 summarises the 2D InSe sensor response upon exposure to MET vapour. Figure 2b shows
the µ-PL spectra acquired in the 2D InSe sample depicted in Figure 2a before and after 30 s exposure
to MET 0.1 M, yielding a 1.5-fold PL enhancement in intensity. A similar measurement process was
carried out in more than 60 different InSe nanosheets of different thicknesses (from 4 to 18 nm, as
determined by the PL emission peak position measured in the exfoliated nanosheets [8]), collecting the
change in the intensity of PL as the ratio It/I0, where I0 and It is the PL maximum intensity before and
after exposure at a given time. Figure 2c shows the real-time sensor response to vapours of MET.
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by the modification of the nanosheet surface and, second, as a method to passivate of surface defects 

Figure 2. Vapour sensing with InSe. (a) optical image of a 2D InSe sample used in this experiment.
Different optical contrast can be observed in the nanosheets for a fast thickness estimation (yellow for
semi-bulk samples and deep blue to purple for thinner ones), marked with a red circle the position
measured in an 8 nm nanosheet in (b) before and after vapour exposure. (b) micro-photoluminescence
(µ-PL) spectra acquired in the exfoliated nanosheet shown in (a), as-exfoliated and after a 30 s exposure
to 2-mercaptoethanol (MET) 0.1 M. (c) integrated PL intensity measured in several 2D InSe nanosheets
as a function of exposure time to the vapour produced by MET 0.1 M in solution. The integrated
PL signal has been normalized to the value measured in every sample before vapour exposure. For
each exposure time, error bars, mean value (marked as an ×), median (horizontal line), and quartile
calculation using inclusive median method (dark-blue rectangle) have been obtained using all the
statistics collected for that specific exposure time.

Real-time sensor response (averaged for all measured InSe samples) in Figure 2c evidence two
different trends, depending on the exposure time. At early stages of the exposure to MET, the PL
intensity tends to increase, reaching a maximum PL intensity enhancement up to ~ 50% for 60 s of
exposure. For longer exposure times, however, the ability of MET analyte to enhance the PL signal of
InSe nanosheets tends to be reduced progressively, and the PL integrated intensity of the nanosheets
after 300 s exposure is clearly smaller than its value before vapour exposure. Since bonding of MET to
metals have a strong covalent contribution, i.e., thiols are very strong ligands, this response as a sensor
is not reversible.

Our results clearly demonstrate that the sensing response of the 2D InSe to the MET vapour
depends on the nanosheet thickness. In Figure 3 we have split all measurements (Figure 2c) into two
groups: PL intensity ratio after/before MET exposure in 2D InSe nanosheets thicker (Figure 3a) and
thinner than 6.5 nm (Figure 3b), respectively. 2D InSe nanosheets thicker than 6.5 nm exhibit a low
response to vapour exposure at short exposure times (PL ratio = 1.13 in average) and a strong PL signal
attenuation (PL ratio = 0.7–0.8 in average) for longer vapour exposure times. These results can be
interpreted in the following way. At early stages of vapour exposure, the MET is expected to bond,
preferably, to In atoms where there exists Se defects or vacancies at the topmost Se monolayer [43–45],
favouring electron-hole interaction non-occurring in these surface defects passivated by MET molecules
and, therefore, an enhancement in its PL emission is expected due to its consequently reduced non
radiative carrier trapping. However, increasing the vapour exposure (this is, sufficiently long exposure
times to MET or higher MET concentrations in solution, as observed in Supplementary Figure S1
with 99% purity MET), MET molecules would be forced to diffuse inside the material (as occurs for
semiconductor doping processes). As a result, in equilibrium, MET will be fixed, most probably,
within the nanosheets leading to a hampering carrier recombination and the subsequent decrease in
PL emission. Analyte binding between layers would affect locally InSe nanosheets crystallographic
structure creating defects, and therefore, reducing mobility and recombination processes [31]. These
two effects can be exploited, first, as a sensor to check the presence of analytes by the modification of
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the nanosheet surface and, second, as a method to passivate of surface defects (and the subsequent
minority carrier lifetimes) in future developments of electronic and optoelectronic devices.
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Figure 3. Vapour sensing ability of 2D InSe for different thickness. Ratio of integrated PL intensity
after/before exposure to a MET vapour (from a solution 0.1 M) by InSe nanosheets thicker (a) and
thinner (b) than 6.5 nm. For each exposure time, error bars, mean value (marked as an ×), median
(horizontal line), and quartile calculation using inclusive median method (dark-blue rectangle) have
been obtained using all the statistics collected for that specific exposure time.

These two different effects can be observed in thicker nanosheets (Figure 3a) in contrast with thinner
ones (Figure 3b). In this case, for the time exposure studied and due to their higher surface-to-volume
ratio compared with thicker ones, MET bonding in Se surface defects is expected to be more relevant,
and therefore, a more maintained and higher PL ratio enhancement is observed. After that, a
hampering due to MET diffusion within the nanosheets becomes relevant, reducing PL ratio measured
in the nanosheets.

The defect-inhibition process and subsequent vapour diffusion into the InSe layers described
above place the relevant question related to the possibility that vapour diffusion could take place in a
layer-by-layer fashion. This possibility is particularly relevant for fine-tuning of quantum confinement
effects [8,46–49]. Clearly, such a study would imply a careful and gradual vapour exposure process.
However, preliminary results obtained already reveal a layer-by-layer vapour diffusion into 2D InSe
nanosheets. Figure 4 shows the µ-PL response observed in three of the more than 60 near-2D InSe
samples exposed and characterized in which quantum-confinement effects appear to be fine-tuned by
means of vapour exposure. In these 2D InSe samples, we observed a blueshift of the PL emission after
exposure to MET vapour. This can be attributed to an effective reduction of one layer and, therefore, in
its PL peak position [8]. This fact can attributed to the reactivity of the surface to the molecules in air,
with high concentrations or exposure times, the effective thickness of the sample could be reduced in
one layer, considering the top layer completely bonded to the analyte molecules in air, obtaining a
shift in the PL emission of the resulting nanosheet. This effect, instead of occurring in a controlled
layer-by-layer alongside the nanosheet can be observed first in small micrometric regions that can be
measured within a confocal micrometric collection spot. These results can be observed in Figure 4.
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Figure 4. Layer-by-layer vapour sensing effects in 2D InSe. (a)–(c) three different examples of the
enhancement of quantum confinement effects in 2D InSe nanosheets of thickness 16, 14, and 6 nm,
respectively, observed as a consequence of the vapour exposure.

Results reported here allow us to propose 2D InSe nanosheets as nanometric vapour sensors
for sulphur-containing compounds like MET, as a representative example. Besides, we also found
promising sensing response of 2D InSe nanosheets to nitro-containing compound characteristics of
explosives like 3-nitrotoluene (3-NT) with very fast response as shown in Supplementary Figure S1 in
Supplementary Material. We believe that the present work paves the path to different studies using
this 2D material as building blocks for the fabrication of fluorescent/photoluminescent sensing devices.

4. Conclusions

In this work, we have studied the ability of 2D InSe nanosheets to act as fluorescent sulphur
sensors. A change in the photoluminescence of exfoliated InSe nanosheets has been observed by
the exposure to 2-mercaptoethanol due to the reactivity of surface exfoliated Se free radicals in InSe.
Our results reveal that, at lower concentrations and exposure times, the vapour preferably bonds to
surface defects or Se vacancies improving the electronic surface quality and enhancing the luminescent
response of the nanosheet. However, higher vapour exposure times or concentrations, tends to favour
vapour diffusion into the InSe nanosheets, which hampers its luminescent response. Our preliminary
results show that vapour diffusion into 2D InSe tends to occur in a layer-by-layer fashion that introduces
significant changes as a function of the nanosheet thickness.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/7/1396/s1,
Figure S1: Vapour sensing with InSe. Integrated PL intensity measured in 2D InSe nanosheets after 30 s of
exposure to MET 99% and 3-NT 99%. The integrated PL signal has been normalized to that measured in each
sample before vapour exposure. For each vapour, error bars, mean value (marked as an ×), median (horizontal
line), and quartile calculation using inclusive median method (dark-blue rectangle) have been obtained using all
the statistics collected for that specific exposure vapour..
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