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An implantable human stem cell-derived tissue-
engineered rostral migratory stream for directed
neuronal replacement
John C. O’Donnell 1,2,7, Erin M. Purvis1,2,3,7, Kaila V. T. Helm1,2, Dayo O. Adewole1,2,4, Qunzhou Zhang5,

Anh D. Le5,6 & D. Kacy Cullen 1,2,4✉

The rostral migratory stream (RMS) facilitates neuroblast migration from the subventricular

zone to the olfactory bulb throughout adulthood. Brain lesions attract neuroblast migration

out of the RMS, but resultant regeneration is insufficient. Increasing neuroblast migration into

lesions has improved recovery in rodent studies. We previously developed techniques for

fabricating an astrocyte-based Tissue-Engineered RMS (TE-RMS) intended to redirect

endogenous neuroblasts into distal brain lesions for sustained neuronal replacement. Here,

we demonstrate that astrocyte-like-cells can be derived from adult human gingiva

mesenchymal stem cells and used for TE-RMS fabrication. We report that key proteins

enriched in the RMS are enriched in TE-RMSs. Furthermore, the human TE-RMS facilitates

directed migration of immature neurons in vitro. Finally, human TE-RMSs implanted in

athymic rat brains redirect migration of neuroblasts out of the endogenous RMS. By emu-

lating the brain’s most efficient means for directing neuroblast migration, the TE-RMS offers a

promising new approach to neuroregenerative medicine.
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Adult neurogenesis continues in the mammalian brain in
the subgranular zone of the dentate gyrus and the sub-
ventricular zone (SVZ) surrounding the lateral

ventricles1,2. Neural precursor cells (NPCs) in the SVZ can dif-
ferentiate into neuroblasts and migrate through the rostral
migratory stream (RMS) to the olfactory bulb (OB) where they
mature into interneurons and integrate into existing circuitry3–6.
Neuroblasts migrate in chain formation at a rate between 30–70
µm/h (0.72–1.68 mm/day)7–10 along with astrocytes that com-
prise the RMS (Fig. 1b). Various directional cues guide SVZ
neuroblasts on their journey through the RMS, critical in reg-
ulating rapid and unidirectional neuroblast migration3,11,12. For
example, the diffusible protein Slit1 is released by migrating
neuroblasts and its corresponding Robo2 receptor is expressed on
RMS astrocytes3,11,13. Via Slit1 release, migrating neuroblasts
tunnel through the astrocytes of the RMS through a chemor-
epellent interaction with astrocytic Robo2 receptors, forming the
glial tube that enables proper migration through the RMS11,14.
Additionally, the membrane-cytoskeletal linking protein ezrin is
expressed at high levels in RMS astrocytes, hypothesized to reg-
ulate migration via two-way communication with migrating
neuroblasts15.

Endogenous neurogenesis is upregulated in the SVZ following
brain injury16–18. Increased neurogenesis has been reported in the
rodent SVZ following multiple experimental models of acquired
brain injury, including but not limited to stroke19–28, controlled
cortical impact brain injury29–31, and lateral fluid percussion
brain injury32,33. Following brain injury, these newly formed
NPCs can mature into neuroblasts, divert from the SVZ/RMS,
and migrate toward injured brain regions27,28,34,35 (Fig. 1c).
However, the quantity of SVZ-derived cells that mature into
functional neurons in injured regions appears insufficient to

improve functional recovery at physiological levels26,36. There is a
plethora of preclinical research demonstrating that enhancing the
redirection of neuroblasts from the SVZ into regions of injury
with experimental intervention can induce functional recovery
following injury14,21,37–48. For example, overexpression of Slit1 in
neuroblasts enhanced SVZ neuroblast migration into a stroke-
induced lesion, maturation into striatal neurons, integration into
the circuitry, and improved functional recovery following
experimental stroke in rodents14.

Neural tissue engineering has introduced the possibility of
developing customized therapies to enhance neuronal regenera-
tion following traumatic brain injury. A variety of biomaterial
and tissue engineering technologies have been developed to
enhance the neurogenic potential of the SVZ and redirect the
migration of SVZ neuroblasts to neuron-deficient brain regions
following various experimental brain injuries (for a recent review,
see Purvis et al., 202049). The evidence from tissue engineering
techniques, along with that of pharmacological and genetic
approaches, collectively demonstrates that experimental inter-
vention to enhance the brain’s intrinsic repair mechanism to
replace lost or damaged neurons with endogenous SVZ NPCs can
improve recovery after acquired brain injury. However, while
promising, these interventions have thus far only afforded tran-
sient re-direction of neuroblasts, while a sustained influx of new
neurons is likely required for meaningful functional improve-
ments across a spectrum of brain injury severities.

Our laboratory fabricates three-dimensional tissue-engineered
“living scaffolds” that replicate specific neuroanatomical features
of neural architecture and/or circuitry. Implantation of these fully
formed, living microtissue scaffolds in vivo has allowed us to
successfully facilitate nervous system repair by replacing and/or
augmenting lost circuitry50–54 and facilitating axonal

Fig. 1 Physiological inspiration and potential therapeutic application of the tissue-engineered rostral migratory stream (TE-RMS). Sagittal view of a
rodent brain (a) depicting the endogenous rostral migratory stream (b). neural precursor cells continue to be produced in the subventricular zone of most
adult mammals. These cells can mature into neuroblasts and migrate in chains along the pathway of aligned astrocytes that comprise the rostral migratory
stream to arrive at the olfactory bulb. In the presence of a lesion, neuroblasts divert from the endogenous SVZ/RMS and migrate toward the lesion, but
their numbers are not sufficient to improve functional recovery (c). The TE-RMS is comprised of tight bundles of longitudinally aligned astrocytes within a
hydrogel microcolumn. Immature neurons seeded on one end of the TE-RMS migrate as chains through the TE-RMS in vitro (d). Migrating neurons release
Slit1, which is recognized by the Robo2 receptors that are expressed by the astrocytes comprising the TE-RMS (e). This chemorepellent communication
allows the neuroblasts to efficiently migrate through the aligned astrocyte network and serves as one example of the dynamic two-way communication
that occurs in the endogenous RMS. The TE-RMS can be extracted from its hydrogel microcolumn and implanted into the rodent brain to span the distance
between the SVZ/RMS and the lesion (f). Proof-of-principle evidence suggests that neuroblasts will divert from the SVZ/RMS and migrate in chain
formation through the implanted TE-RMS (g). Based on existing literature, we predict that over time redirected neuroblasts will mature into phenotype-
relevant mature neurons in lesioned regions and integrate into existing circuitry (h). This diagram was created with BioRender.com.
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regeneration and pathfinding55. In addition, we have recently
developed the first tissue-engineered rostral migratory stream
(TE-RMS), which is an implantable scaffold designed to replicate
the endogenous RMS56–58. This engineered neuronal replacement
strategy replicates the only known mechanism for continual,
long-distance neuroblast redirection that occurs intrinsically
within the adult brain via the RMS. By recapitulating the struc-
ture and function of the glial tube at the core of the RMS, the TE-
RMS is designed to promote the sustained delivery of neuroblasts
to neuron-deficient regions following injury or neurodegenerative
disease. We anticipate that stable, long-term neuroblast redirec-
tion via this engineered living scaffold will set this technology
apart from previous strategies that have typically induced tran-
sient neuronal redirection.

The TE-RMS is fabricated within a small-diameter agarose
microcolumn that promotes astrocyte bundling with extracellular
matrix and self-assembly into long, longitudinally aligned cables
(Fig. 1d). Previous experiments to date have demonstrated that
the basic structure of the TE-RMS (tight astrocytic bundles with
bidirectional morphology) recapitulate the cell type and basic
morphology of the endogenous RMS56,57. We hypothesize that
the living astrocytes of the TE-RMS will also engage in dynamic,
two-way communication with neuroblasts as they migrate
through the scaffold (Fig. 1e), made possible by emulating the
specific protein expression that facilitates neuroblast migration
within the endogenous RMS. Here, the TE-RMS has the potential
to serve as an anatomically relevant testbed to study the inter-
action between neuroblasts and the RMS in vitro. However, our
ultimate goal for the TE-RMS is to enable the redirection of
endogenous neuroblasts from the SVZ/RMS to neuron-deficient
brain regions in vivo. Following focal brain injury (Fig. 1c), the
TE-RMS could be implanted into the brain spanning from the
SVZ/RMS into the injured brain region (Fig. 1f). We hypothesize
that neuroblasts will divert from the SVZ/RMS and migrate in
chain formation through the TE-RMS and into the lesion
(Fig. 1g). Future studies will test whether gradual, sustained
introduction facilitates neuroblast survival and maturation fol-
lowing arrival at their new location (Fig. 1h), thereby efficiently
repopulating injured regions.

In the current study, we compare protein expression in
astrocytes of the TE-RMS to that of the glial tube in the endo-
genous RMS. In an exciting recent development, we also report
the ability to fabricate the TE-RMS from a readily available source
of adult human gingiva mesenchymal stem cells (GMSCs) from
which we can derive astrocyte-like cells within one week using
non-genetic techniques without the need for dedifferentiation.
This enhances the translational potential of this technology by
introducing the possibility that, with further development, human
autologous TE-RMS implants can be created. We also demon-
strate that the human TE-RMS facilitates immature neuronal
migration in vitro. Finally, we report that implantation of the
human TE-RMS into the athymic rat brain facilitates migration of
endogenous neuroblasts out of the native RMS and throughout
the TE-RMS, providing surgical feasibility and proof-of-concept
evidence for this nascent technology.

Results
Astrocytes of the endogenous rat RMS are enriched in Robo2
and Ezrin. Previous studies have characterized the enrichment of
protein markers in the glial tube astrocytes of the RMS as com-
pared to surrounding protoplasmic astrocytes. As such, we
compared the expression and distribution of these enriched
proteins in astrocytes of the native RMS versus astrocytes of the
TE-RMS. We applied fluorescence immunohistochemistry (IHC)
in sagittally sectioned FFPE adult rat brains (n= 5 brains) to label

GFAP, Ezrin, and Robo2 (Fig. 2; Supplementary Data 1). We
captured images of each individual label in the RMS and sur-
rounding tissue via epifluorescence microscopy. Standardized
ROIs containing glial tube astrocytes of the RMS and proto-
plasmic astrocytes from the surrounding area were used for
pairwise comparisons of labeling intensities. Since these proteins
can be expressed by other cell types, the GFAP channel was used
to spatially isolate astrocytic signals from each channel for
quantification. Mean intensities were calculated for each ROI to
remove the influence of differences in the astrocytic area. Com-
paring mean astrocytic intensities via two-tailed, paired Student’s
t-tests revealed that astrocytes of the RMS were significantly
enriched in GFAP (Fig. 2f; t= 3.770, df= 4, p= 0.02), Ezrin
(Fig. 2l; t= 3.642, df= 4, p= 0.02), and Robo2 (Fig. 2r; t= 3.890,
df= 4, p= 0.02), compared with surrounding protoplasmic
astrocytes. It should also be noted that the astrocytic intensity of
GFAP, Ezrin, and Robo2 labeling in the endogenous rat RMS was
higher than that of the surrounding protoplasmic astrocytes in
every brain analyzed, though there was some variability in the size
of those differences between brains.

Astrocytes of the rat TE-RMS are enriched in Robo2 and Ezrin.
We have previously reported on the development of fabrication
techniques for the TE-RMS, in which optimal microcolumn
diameter, collagen concentration, media constituents, seeding
density, and other factors were optimized to facilitate astrocyte
self-assembly into longitudinally aligned, tightly bundled cords
over a period of just 8 h. We have also provided evidence for
similarities in the morphology and structural arrangement of rat
TE-RMS astrocytes compared with astrocytes of the endogenous
RMS56–58. In this study, we sought to test the hypothesis that TE-
RMS astrocytes also recapitulate the enhanced expression of
GFAP, Ezrin, and Robo2 observed in the endogenous RMS (as
verified in the experiments of Fig. 2). We tested for the enrich-
ment of these proteins in the TE-RMS by comparing fluorescence
immunocytochemistry (ICC) labeling intensities in TE-RMS
astrocytes with those of protoplasmic astrocytes from planar
sister cultures imaged via epifluorescence microscopy (Fig. 3;
Supplementary Data 2). While seeding from the same sources
provided excellent control for any unforeseen culture variability
that could have interfered with our ability to test differences
between planar vs. TE-RMS groups, the fabrication and culturing
process after seeding led us to consider each sample as inde-
pendent. Therefore, we could not take advantage of paired means
testing as in the brain sections of Fig. 2, and instead employed
two-tailed Student’s t-tests to compare labeling intensities in the
planar cultures (n= 6) and TE-RMSs (n= 9) seeded from pri-
mary cortical rat astrocyte cultures. Due to the close proximity of
cells in TE-RMSs as compared to planar sister cultures, Hoechst-
stained nuclei were often in overlapping visual fields in TE-RMS
images, making automated cell counting unreliable. Therefore, we
measured the total nuclear area from the Hoechst channel for
each image to allow for an unbiased, automated calculation of cell
amount in each image for normalization. This revealed that
Hoechst intensities of the planar and TE-RMS groups were not
different (Fig. 3g). Also, as observed in the endogenous RMS,
astrocytes of the TE-RMS were significantly enriched in Ezrin
(Fig. 3j; t= 3.845, df= 13, p= 0.002), GFAP (Fig. 3m; t= 3.086,
df= 13, p= 0.009), and Robo2 (Fig. 3p; t= 4.855, df= 13, p=
0.0003), as compared with the astrocytes in the planar sister
cultures.

Astrocyte-like cells can be derived from adult human GMSCs
and used for TE-RMS fabrication. In pursuit of a clinically
relevant starting biomass for TE-RMS fabrication, we evaluated
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the efficacy of a novel differentiation protocol to derive astrocytes
from GMSCs. Of note, this protocol was adapted from a pre-
viously published method for astrocyte derivation from oral
mucosal stem cells59. Here, we successfully applied this non-
genetic derivation protocol to GMSCs from three deidentified
adult human patients obtained via minimally invasive punch
biopsy. After the derivation process—which takes less than a
week—the cultured cells from each subject expressed astrocytic
proteins glutamine synthetase (GS), glutamate aspartate trans-
porter (GLAST), GFAP, and S100-β and were negative for the
endothelial marker CD31 (Fig. 4a–j). Western blot analyses
confirmed that GMSCs from three de-identified donors did not
express GFAP or GS prior to derivation, but the astrocyte-like
cells derived from GMSCs did express GFAP and GS (Fig. 4k;
Supplementary Data 3). The morphology of these cells was also
consistent with astrocytes in planar culture, and they thrived
under astrocytic culture conditions. These cells were also com-
patible with passaging techniques for astrocyte culture purifica-
tion, including vigorous mechanical perturbation prior to
trypsinization that is commonly applied to detach non-astrocytic
cells from culture flasks for removal prior to passaging. Fur-
thermore, when we used the human GMSC-derived astrocytes as

starting biomass for TE-RMS fabrication, they rapidly self-
assembled into cables of longitudinally aligned, bidirectional
astrocyte-like cells within the same 8 h timeframe observed when
fabricating with primary astrocytes from the rat cortex. This rapid
remodeling/bundling appears to be unique to astrocytes, as when
we apply the same fabrication methods using Schwann cells,
bundling and alignment take several days60. These human TE-
RMSs stained positive for Ezrin and Robo2, which can be seen
localized to the plasma membrane in the single high magnifica-
tion z plane confocal images of Fig. 4l–n.

Astrocyte-like cells of the human TE-RMS are enriched in
Robo2 and Ezrin. We used fluorescence ICC with laser confocal
microscopy to confirm that TE-RMSs fabricated from human
GMSC-derived astrocytes express GFAP, Ezrin, and Robo2
(Fig. 4l–n), the combination of which is characteristic of glial tube
astrocytes of the RMS. Then, to test whether the human GMSC-
derived TE-RMS is enriched in GFAP, Ezrin, and Robo2 as
observed in the endogenous rat RMS and the cortical rat astrocyte
TE-RMS, we employed the same experimental techniques and
analyses used to investigate the rat TE-RMS (see Fig. 3). Hoechst

b d

c e

h j

i k

n p

o q

0

5

10

15

20

25

30

35

Proto RMS

%
Pr

ot
o

In
te

ns
it y

GFAP

*

f

0

5

10

15

20

25

30

35

Proto RMS

%
Pr

ot
o

In
te

n s
ity

Astrocytic Ezrin

*

l

0

5

10

15

20

25

30

35

Proto RMS
%

Pr
ot

o
In

te
ns

ity

Astrocytic Robo2

*

r

g

h

i

Ezrin

m

n

o

Robo2

GFAPa

b

c

Proto

RMS

Fig. 2 Characteristic protein enrichment in RMS astrocytes relative to surrounding protoplasmic astrocytes in the rat brain. Formalin-fixed, paraffin-
embedded (FFPE) rat brains were sagittally sectioned and immunostained for GFAP (a–f), Ezrin (g–l), and Robo2 (m–r). GFAP, Ezrin, and Robo2 channels
from a representative image are displayed in a wide view containing a portion of RMS and surrounding brain (a, g, and m), with standardized regions of
interest (ROIs) annotated within for both RMS and protoplasmic (Proto) astrocytes. Enlarged ROIs are provided for each channel (b, c, h, i, n, o).
Automated binary masks were generated from GFAP ROIs (d, e) to allow for the isolation of astrocytic signals from the ROIs of each channel. Images
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t-test for GFAP (f), Ezrin (l), and Robo2 (r). Intensity values normalized to the Proto measurements for each pair are displayed for all five animals. *p <
0.05. Scale bars: 200 microns (a, g, m), 50 microns (b, c, h, i, n, o).
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Fig. 3 TE-RMSs fabricated from rat astrocytes are enriched in GFAP, Ezrin, and Robo2 relative to planar sister cultures. Primary rat astrocytes were
passaged, split, and either plated in a planar collagen matrix or used for TE-RMS fabrication. Cell nuclei were labeled with Hoechst stain, and cells were
immunostained for GFAP, Ezrin, and Robo2. Representative wide views of merged fluorescent channels are provided for planar sister cultures (a) and TE-
RMS (b), with call-out boxes providing magnified views of planar (c) and TE-RMS (d) organization, morphology, and relative protein. Maximum contrast
white-on-black single-channel images along with quantification of normalized intensities are provided for Hoechst (e–g), Ezrin (h–j), GFAP (k–m), and
Robo2 (n–p). Values are displayed as mean ± SEM. Means were compared by Student’s t-test. **p < 0.01, ***p < 0.005. Scale bars: 250 microns.
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Fig. 4 Astrocyte-like cells can be derived from adult human gingiva mesenchymal stem cells (GMSC) and used for TE-RMS fabrication. A
representative image of human GMSC-derived astrocyte-like cells in planar culture is provided with merged fluorescent channels (a), and maximum
contrast white-on-black single-channel images are provided for Hoechst staining of nuclei (b) and immunostaining that demonstrates expression of
astrocytic proteins glutamine synthetase (GS), glutamate/aspartate transporter (GLAST) (d), and GFAP (e). A merged fluorescent image is also provided
at higher magnification with alternative staining targets (f), with maximum contrast white-on-black single-channel images for Hoechst staining of nuclei
(g) and immunostaining that demonstrates expression of astrocytic proteins S100B (h) and GFAP (i), but not endothelial marker CD31 (j). Western blot
analysis from three donors before and after astrocyte induction, demonstrating increased expression of astrocytic proteins GFAP and GS, with GAPDH
loading control (k). A representative TE-RMS fabricated using the human GMSC-derived astrocytes as starting biomass was labeled with Hoechst nuclear
stain, immunostained for Ezrin and Robo2, and imaged via laser confocal microscopy (l–n). Single z plane overlay illustrating the bidirectional morphology
and longitudinal alignment of astrocytes comprising the human TE-RMS. Maximum contrast white-on-black single z plane images of individual channels at
high magnification demonstrate the presence and plasma membrane localization of Ezrin (m) and Robo2 (n) proteins known to be enriched in glial tube
astrocytes. Scale bars: 200 microns (a–j), 50 microns (l–n).
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Fig. 5 TE-RMSs fabricated from adult human gingiva-derived astrocytes are enriched in GFAP, Ezrin, and Robo2 relative to planar sister cultures.
Astrocytes derived from adult human gingiva stem cells were passaged, split, and either plated in a planar collagen matrix or used for TE-RMS fabrication. Cell nuclei
were labeled with Hoechst stain, and cells were immunostained for GFAP, Ezrin, and Robo2. Representative wide views of merged fluorescent channels are provided
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intensities of the planar (n= 6) and TE-RMS (n= 5) groups were
not different (Fig. 5g). As observed in the endogenous RMS and
rat TE-RMS, human GMSC-derived TE-RMSs were significantly
enriched in Ezrin (Fig. 5j; t= 4.720, df= 9, p= 0.001), GFAP
(Fig. 5m; t= 4.350, df= 9, p= 0.002), and Robo2 (Fig. 5p; t=
2.639, df= 9, p= 0.027), compared with the astrocytes of their
planar sister cultures (Supplementary Data 4).

The human TE-RMS facilitates directed migration of imma-
ture rat neurons in vitro. Looking beyond replicating the mor-
phology, arrangement, and protein expression of the endogenous
RMS, the human TE-RMS must ultimately replicate the function of
the RMS to be used for clinical application or as an in vitro testbed.
We adapted techniques from our previously reported migration assay
in the rat TE-RMS58, and assessed migration of immature rat cortical
neurons through the human TE-RMS as compared to acellular
collagen-coated or collagen+ laminin-coated control columns (Fig. 6;
Supplementary Data 5). Immature cortical neuronal aggregates were
placed at one end of a microcolumn containing a fully formed human
TE-RMS, an acellular collagen control, or an acellular collagen+
laminin control, and migration from the aggregate to the opposite
side of the microcolumn was assessed at 72 h. For ICC analyses, we
applied Hoechst nuclear stain and immunostained for Tuj1 (Beta-III-
tubulin) to label neuronal processes. We also co-stained for Human
Nuclei and GFAP in the TE-RMSs, collagen in the collagen controls,
and laminin in the collagen+ laminin controls. Under these condi-
tions, we observed little if any migration into the acellular collagen
control columns (n= 4) or into the acellular collagen+ laminin
columns (n= 5), while immature rat neurons (Hoechst-positive/
Human-negative nuclei with Tuj1-positive processes) migrated
through the entire 4mm length of human TE-RMS within 72 h (n=
4). Neuronal aggregates exhibited notably different behavior when
seeded into the collagen+ laminin control columns, in which they
exhibited little migration out of the aggregate but instead extended
neurites into the ECM to an average length of 353.6 µm (SEM= 71.0)
at 72 h (Fig. 6b′). Neuronal aggregates did not exhibit any measurable
neurite extension in the collagen-only control columns. To compare
migration quantitatively, we measured the area of Hoechst-positive,
Human-negative nuclei (nuclei from the immature neuronal aggre-
gate) in a zone proximal to the aggregate (within 1mm) and a zone
more distal (1–3.5mm from aggregate). The amount of migrating
neurons within 1mm of the aggregate (Fig. 6d) in the TE-RMS was
significantly greater than in the acellular collagen (t= 5.223, df= 10,
p= 0.001) or collagen+ laminin controls (t= 4.460, df= 10, p=
0.004). Beyond 1mm there were essentially no migrating neurons in
the controls whereas migrating neurons were found throughout the
entire length of the TE-RMSs, so unsurprisingly the amount of
migrating neurons between 1 and 3.5mm of the aggregate (Fig. 6e) in
the TE-RMS was significantly greater than in the acellular collagen
(t= 5.626, df= 10, p= 0.0007) or collagen+ laminin controls (t=
6.375, df= 10, p= 0.0002). A single z plane view of neuronal
migration through the TE-RMS (Fig. 6f–h‡) allows for the visuali-
zation of cell-to-cell interactions in greater detail, though in some
cases components may be out of a plane (e.g. nuclear signal with
processes out of the visible z plane). Completing a 4mm journey
through the TE-RMS construct within 72 h indicates an average
migration rate of at least 56 µm/h, placing them within the reported
range of 30–70 µm/h for neuroblast migration in the endogenous
RMS7,10,61. Hoechst-positive/Human-negative nuclei from the rat
cortical aggregate were densest near the aggregate, where a narrow
“follow-the-leader” path can be most easily visualized (yellow lines,
Fig. 6g′). Hoechst-positive/Human-negative nuclei were also observed
throughout the length of the human TE-RMS (white arrows, Fig. 6g†

and g‡). These migrating cells were Tuj1-positive, consistent with an
immature neuronal phenotype (Fig. 6h), and their Tuj1-positive

processes ran parallel to—but did not overlap—the GFAP-positive
processes of the human TE-RMS (Fig. 6h′, h†, and h‡).

The human TE-RMS redirects migration of neuroblasts from
the rat RMS in vivo. Finally, we performed in vivo experiments
with stereotactic implantation of human TE-RMSs into the brains
of athymic rats to test surgical feasibility and proof-of-principal
for redirecting neuroblast migration away from the endogenous
RMS (Fig. 7). In athymic rats (n= 6), we bilaterally implanted
pairs of 4 mm TE-RMSs and acellular collagen control micro-
columns to span RMS to the motor cortex. Animals were
euthanized 6 days later, and their FFPE brains were sagittally
sectioned for IHC analyses. By injecting implants 2.5 mm rostral
from bregma and 1 mm from the midline in either direction at a
depth of 5 mm, we were able to reproducibly contact the endo-
genous RMS as verified by gross pathology and epifluorescence
microscopy (Fig. 7d, e). During the 6 days following implantation,
we did not observe alterations in behavior and there was minimal
disruption of surrounding areas by gross pathology. Doublecortin
(DCX) positive cells were observed near the ends of the con-
tralateral acellular collagen control implants but were absent from
central regions (Fig. 7f, g). However, we observed doublecortin-
positive, human-negative cells—indicative of migrating endo-
genous rat neuroblasts—throughout the human TE-RMS
implants (Fig. 7h, i), suggesting that host cells were migrating
through the TE-RMS while only incidental infiltration of host
cells was taking place near the ends of the acellular control col-
umns. However, given the techniques employed for these feasi-
bility experiments we were unable to distinguish between DCX+
cells from the RMS and those that may have somehow entered the
TE-RMS from the cortex, so future studies will be needed to
provide greater specificity. Combined with the in vitro experi-
ments of Fig. 6, this implantation study provides proof-of-
principal evidence for redirection of neuroblast migration via the
human GMSC-derived TE-RMS and surgical feasibility for its
implantation into the brain to span the endogenous RMS and
cortex.

Discussion
The TE-RMS is the first biomimetic implantable microtissue
designed to redirect the migration of endogenous neuroblasts out
of the RMS and into distal lesions, intended to provide sustained
delivery to replace lost neurons and improve functional recovery.
In pursuit of this goal, we have designed the TE-RMS to emulate
the brain’s only existing method for transporting neuroblasts to a
distal area for neuronal replacement. Whereas prior studies have
transplanted exogenous fetal grafts, single-cell suspensions, or
cells in 3-D matrices, our method is considerably different in that
the living cytoarchitecture of the TE-RMS—mimicking the
architecture of the RMS—is fully fabricated in vitro and then
precisely delivered to unlock the regenerative potential of the
brain’s own endogenous neuroblasts. In the current study, we
confirmed that the TE-RMS is enriched in Ezrin and Robo2, both
of which are similarly enriched in the endogenous RMS and
important for facilitating neuroblast migration. We also report a
new method for deriving astrocyte-like cells from adult human
GMSCs adapted from a previous protocol applied to the oral
mucosa, potentially providing a minimally invasive autologous
starting biomass for patients. Indeed, utilizing these cells for
fabrication produces a human TE-RMS consisting of tightly
bundled, bidirectional, longitudinally aligned, astrocyte-like cells
enriched in GFAP, Ezrin, and Robo2. Furthermore, the human
TE-RMS facilitates in vitro migration of immature neurons at
rates within the range observed for migration of neuroblasts in
the endogenous RMS. Finally, we provide in vivo evidence of
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Fig. 6 Migration of immature rat neurons is facilitated by human TE-RMSs in vitro. Immature neuronal aggregates prepared from the rat cortex were
inserted in one end of human GMSC-derived TE-RMSs and acellular collagen controls, and these assembled in vitro migration assays were then fixed 72 h
later for immunolabeling and analyses. Compressed z stacks of stitched confocal images are displayed in a wide view with all channels merged, consisting
of Hoechst (nuclei) and Tuj1 (neurites) channels, along with either Collagen in the representative acellular collagen control (a), Laminin in the
representative acellular collagen/laminin control (b), or Human nuclei and GFAP in the representative human TE-RMS (c). Call-out boxes provide
magnified views proximal to the aggregate in each column (a′–c′). Quantification of the area of Hoechst-positive, Human-negative nuclei (nuclei from the
immature neuronal aggregate) is provided for all groups for 0–1 mm from the aggregate (d) and 1–3.5 mm from the aggregate (e). Data are displayed as
mean ± SEM with points to indicate individual sample values; n= 4, 5, and 4 for Coll, Lam+ Coll, and TE-RMS, respectively (**p < 0.005, ***p < 0.001 with
Bonferroni correction for multiple comparisons). A single z plane of a stitched confocal image from a representative human TE-RMS containing Hoechst,
Human Nuclei, Tuj1, and GFAP channels is displayed in a wide view with all channels merged (f), with just the nuclear labels (g), and with just the astrocyte
and neuron-specific cytoskeleton labels (h). Call-out boxes provide magnified views along the TE-RMS proximal to the aggregate (f′–h′), ~2.5 mm from the
aggregate (f†–h†), and ~3.5 mm from the aggregate (f‡–h‡). Opaque yellow outlines in g′ highlight the narrow path for chain migration forged by immature
neurons through the TE-RMS. White arrows in g† and g‡ indicate the Hoechst+/Human- nuclei of immature neurons migrating the length of the TE-RMS.
Scale bars: 500 microns (a–c; f–h), 250 microns (a′–c′; f′–h‡).
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Fig. 7 Implantation of human TE-RMSs in the brains of athymic rats demonstrates surgical feasibility and proof of principle for redirecting neuroblast
migration. Pairs of human GMSC-derived TE-RMSs and acellular collagen controls were bilaterally implanted into the brains of athymic rats using precise
stereotaxic coordinates to span RMS and cortex. Images captured during (a) and after (b) bi-lateral stereotactic implantation of TE-RMS. Gross pathology
of the formalin-fixed brain from the top (c) and side (d) view (note that d is blocked to show the implant trajectory). Immunolabelling rat GFAP
demonstrating accurate placement of TE-RMS contacting the RMS (e). Immunolabelling showing labelling of collagen within the acellular control implant
and DCX positive host cells present in the surrounding tissue but absent from the collagen implant midway through the column (f; ~3 mm from RMS), and
present in the collagen at the interface with the endogenous RMS (g). Immunolabelling showing non-overlapping colabeling of human nuclei of the TE-RMS
astrocytes and DCX positive (Human negative) host neuroblasts migrating through the TE-RMS midway through the implant (h; ~3 mm from RMS; white
arrows indicate DCX+/Human− cells), and at the interface between TE-RMS and host RMS (i). Scale bars: 500 microns.
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surgical feasibility for human TE-RMS implantation into athymic
rat brains spanning from the RMS to the cortex, and proof-of-
principle evidence that the human TE-RMS can redirect migra-
tion of endogenous rat neuroblasts out of the RMS and into the
cortex with no overt negative histological or behavioral effects on
test subjects.

While the direct implantation of neural stem cells into injury
sites has been shown to improve outcomes by providing neuro-
trophic factors, and recent work has demonstrated that integra-
tion of human-induced pluripotent stem cell (iPSC)-derived
neurons in rat cortex is possible62, appropriate maturation and
integration of these exogenous cells to functionally replace lost
neurons remains a significant challenge63–65. Furthermore, each
delivery of exogenous neural stem cells requires invasive surgery,
therefore these proposed treatment strategies typically involve
only a single bolus delivery of exogenous stem cells. In contrast, a
single surgical procedure to implant the TE-RMS could, in theory,
provide sustained delivery of endogenous NPCs by emulating the
brain’s own strategy for relocating and integrating new neurons.
In addition, strategies for direct implantation of exogenous stem
cells often rely on iPSCs that must be dedifferentiated from a
more mature cell source and therefore carry risks related to the
retention of epigenetic memory from the original cell source (i.e.
leading to de-differentiation)66. In contrast, the TE-RMS provides
the brain’s own endogenous NPCs that do not require any prior
de-differentiation, and therefore do not suffer from the pheno-
typic abnormalities sometimes associated with epigenetic memory
in iPSCs. Endogenous neuroblasts from the SVZ have been
observed migrating into injured striatum and forming mature,
synaptically integrated neurons, and when this injury response
was experimentally enhanced by overexpressing Slit1 in neuro-
blasts it significantly improved functional recovery in a rodent
model of stroke14,24. Genetic modification of neuroblasts may not
represent a translational therapeutic strategy, but it does provide
compelling evidence for the feasibility of enhancing neuroblast
migration into lesions to facilitate neuroregeneration. The TE-
RMS can be precisely implanted to span SVZ to the lesion,
providing a migratory pathway to augment and amplify this
natural regenerative response of endogenous SVZ neuroblasts
after injury without the need for genetic manipulation.

Vasculature plays an important role in neuroblast migration
along the endogenous RMS. Blood vessels surround and support
the structure of the RMS, and neuroblasts occasionally migrate
along astrocytic processes enwrapping these blood vessels that
run parallel to the RMS11. Vascular remodeling occurs following
neuronal injury11, and we expect significant vascular remodeling
following TE-RMS transplantation such that blood vessels will
grow to surround and support the transplanted TE-RMS. Of note,
while the TE-RMS may be fabricated to be centimeters in length,
the relatively narrow diameter of the resulting microtissue (e.g.,
typically < 200 µm) should allow adequate diffusion-based mass
transport of oxygen and other nutrients to support implant sur-
vival while vascular remodeling ensues. Future studies will test the
hypothesis that angiogenesis will occur surrounding the TE-RMS
implant tract, aiding in the recruitment of new blood vessels to
form this vascular scaffolding surrounding the TE-RMS. Such
vascular remodeling could support the long-term stability of the
transplanted TE-RMS, and trophic factors secreted by these
recruited vascular endothelial cells could serve as chemoattractant
factors for neuroblasts much as they do in the endogenous
RMS11.

Increasing delivery of neuroblasts into lesions after an injury
has also been approached through pharmacological strategies and
implantation of acellular permissive substrates49,67. Pharmaco-
logical approaches have focused mainly on the administration of
neurotrophic factors. Intraventricular infusion of various

combinations of neurotrophic factors including epidermal growth
factor, erythropoietin, fibroblast growth factor, vascular endo-
thelial growth factor, and others has been shown to improve
short-term functional recovery by enhancing proliferation in the
SVZ after injury, in turn increasing the number of neuroblasts
migrating into lesions by virtue of increasing the overall number
of neuroblasts39. There is extensive evidence in humans and
animal models for exercise-induced improvements in functional
recovery after brain injury, and the effects are largely attributed to
increased neuronal plasticity and proliferation of endogenous
NPCs in response to exercise-induced increases in brain-derived
neurotrophic factor68,69. While neurotrophic factors appear to
exert their effects on neuroblasts primarily through increasing
proliferation, implantation of acellular permissive substrates has
been employed to directly facilitate the migration of neuroblasts
into lesions. Several acellular scaffolds consisting of extracellular
matrix proteins often infused with neurotrophic factors have
demonstrated feasibility for redirecting migration of endogenous
neuroblasts away from the SVZ/RMS46,70,71. A series of studies
utilizing cryogenic cortical injury in mice has shown improved
neurological recovery with a laminin-based scaffold, with
refinements achieved through incorporating additional features
like N-cadherin that have been shown to play a role in neuroblast
migration in vivo48,72,73. In the current study, we observed
in vitro chain migration of immature cortical neurons through
the TE-RMS, whereas columns loaded with ECM only (1 mg/ml
collagen+ 1 mg/ml laminin) promoted neurite outgrowth of
these immature cells and did not promote migratory behavior.
This is distinct from previous research demonstrating neuroblast
migration along with planar laminin and collagen in 2D culture
in vitro73. This difference in cell behavior is likely due to differ-
ences in immature neuronal phenotype (SVZ-derived versus
cortical) as well as ECM preparation across in vitro studies
leading to differential binding of immature neurons to laminin.
Indeed, migration and maturation of neuroblasts along the RMS
relies on complex, dynamic signaling between astrocytes and
neuroblasts74–76. Unlike extracellular-matrix-based constructs
that offer a permissive, acellular substrate70,72,73, the TE-RMS
possesses a unique, living astrocytic microtissue makeup that can
provide directional, structural, and neurotrophic support, making
it capable of sending as well as responding to complex signals
with migrating neuroblasts and the local micro-environment.
Relying on an acellular substrate infused with a handful of sig-
naling molecules is akin to trying to coordinate a complex project
in a foreign language of which you speak only a few words and
cannot hear or respond to anything anyone else is saying, versus
the living microtissue TE-RMS that provides total fluency in the
language and engagement in dynamic, collaborative conversa-
tions. To test this hypothesis, future studies testing the efficacy of
the TE-RMS for facilitating regenerative rehabilitation after focal
brain injury will include direct comparisons to the most pro-
mising acellular biomaterial approaches.

Glial tube astrocytes possess several features that make them
unique among the widely heterogeneous astrocyte milieu. They
possess a bidirectional morphology, extending processes in
opposite directions along the glial tube in parallel with each other
to form a cord-like bundle. We have previously established that
these structural features are recapitulated in the TE-RMS56–58.
Glial tube astrocytes are also enriched in several proteins
important for facilitating neuroblast migration. Ezrin—a member
of the cytoskeleton-membrane linking ERM (Ezrin, radixin,
moesin) protein family—is enriched in the astrocytes of the glial
tubes, while its cousin radixin is enriched in migrating
neuroblasts15,77. In the endogenous RMS, astrocytic Robo2
receptors detect Slit1 protein released by neuroblasts, and this
signaling results in tunnel formation in the astrocytic meshwork
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of the glial tubes to facilitate neuroblast migration78. In this study,
we verified previous reports of enrichment of GFAP, Ezrin, and
Robo2 in the glial tube astrocytes of the endogenous rat RMS.
Using the same methods, we also expanded on our previous
morphological and structural analyses to report that the TE-RMS
—fabricated from either primary rat astrocytes or human GMSC-
derived astrocytes—is also enriched in GFAP, Ezrin, and Robo2.

Building on this concept, mimicking the RMS may also facil-
itate the maturation of neuroblasts during migration along the
TE-RMS, allowing the new neurons to functionally replace lost
neurons after degeneration has occurred instead of merely acting
as neurotrophic “factories” in the acute and sub-acute time per-
iods. This strategy to enable the replacement of lost neurons well
after acquired brain injury or neurodegeneration is highly unique
and presents an innovative approach to repairing currently
untreatable injuries affecting millions of patients. Moreover, their
miniature form factor allows for minimally invasive, stereotactic
delivery into the brain. In rat models, we have previously
demonstrated the ability to precisely microinject similar allo-
geneic neuronal microtissue constructs, which maintain their pre-
transplant architecture, survive, and integrate into the native
nervous system52–54,79,80, and our TE-RMS implant experiments
included in this study further demonstrate the surgical feasibility
of this strategy.

In this study, we report the successful derivation of astrocyte-
like cells from adult human GMSCs, their suitability as starting
biomass for TE-RMS fabrication, and proof-of-concept evidence
that these human TE-RMSs facilitate neuroblast migration
in vitro and in vivo. Like iPSCs, the GMSCs offer minimally
invasive access to a patient-specific autologous starting biomass.
However, the one-week GMSC-to-astrocyte derivation process
takes only a fraction of the time of iPSC derivations, due in part
to the fact that dedifferentiation is unnecessary in the case of
GMSCs. That lack of a dedifferentiation step also means that
GMSCs do not carry risks associated with epigenetic memory66.
The appeal of a patient-specific starting biomass is primarily due
to avoiding the dangers of immune rejection. However, the
clinical application of a product with a de-centralized biomass
source could pose challenges. Human embryonic stem cells from
an established cell line could potentially offer a more streamlined
and centralized quality control process by virtue of having a
single source for the starting biomass. and they have also been
shown to elicit minimal immunoreactivity81. Though they would
likely require immunosuppression after transplantation, we will
consider human embryonic stem cell lines along with the auto-
logous GMSC source when evaluating potential translational
strategies.

While this study provides feasibility and proof-of-concept
evidence for the first human TE-RMS, future work will focus on
directly testing the effects of TE-RMS implantation on regen-
eration and functional recovery after brain injury. The TE-RMS
strategy is not intended for neuroprotection, but rather neuronal
replacement and functional regeneration; therefore, we will
implant after the acute period to allow the so-called “hostile”
environment—marked by dysregulated interstitial tissue, ongoing
cell death, and widespread inflammation—to dissipate. This
strategy is also intended to serve as a means for gradual, sustained
delivery of neuroblasts into injury sites, so long-term studies
assessing survival and maturity of redirected neuroblasts, mor-
phological changes in transplanted TE-RMS astrocytes, vascular
remodeling, and functional recovery will be pursued, which will
have the added benefit of investigating the long-term con-
sequences of a microtissue implant in the brain. Iterations
refining secondary encasement and even incorporating supple-
mental neurotrophic factors may be pursued. We are also inter-
ested in determining the potential spectrum of cell fates when

redirecting neuroblasts to various discrete brain areas, and we will
investigate both in vivo as well as in vitro by utilizing the TE-RMS
as a biofidelic testbed for efficient and precise mechanistic studies.
As we consider the discovery and translational paths now ahead
of us, the human TE-RMS has opened new avenues for potential
study, and a promising novel approach to leveraging the endo-
genous regenerative potential of the brain.

Methods
Cell culture. All procedures adhered to the National Institutes of Health Guide for
the Care and Use of Laboratory Animals and were approved by the Institutional
Animal Care and Use Committee at the University of Pennsylvania. For TE-RMS
fabrication, primary astrocytes were harvested from the cortices of postnatal day
0–1 Sprague-Dawley rat pups (Charles River, Wilmington, MA). Cells were
dissociated57 and cultured in DMEM/F12 medium supplemented with 10% FBS
and 1% Penicillin–Streptomycin in a 37 °C/5% CO2 cell culture incubator. Over
several weeks, astrocyte cultures were maintained in tissue culture flasks and
passaged at 80% confluency to purify the astrocyte population. Astrocytes between
passages 4–10 were utilized for all in vitro experiments. For in vitro migration of
immature neurons through the TE-RMS, primary rat neurons were dissociated
from cortices of embryonic day 18 (E18) rats57. Following tissue dissociation, with
trypsin–EDTA and DNAse I, a cell solution with a density of 1.0–2.0 × 106 cells/ml
was prepared. 12 µl of this solution was transferred to each well in the pyramidal
micro-well array. The plate containing these micro-wells was centrifuged to pro-
duce cell aggregates.

Fabrication of hydrogel micro-columns. Hydrogel micro-columns composed of
3% agarose were utilized to induce the alignment of astrocytes and create the TE-
RMS57. Agarose was dissolved and heated in Dulbecco’s phosphate-buffered saline
(DPBS). An acupuncture needle (diameter= 300 µm) was inserted into the bottom
opening of a bulb dispenser. A glass capillary tube (inner diameter= 701 µm) was
inserted over the needle external to the bulb and secured to the rubber section of
the bulb dispenser. Warm agarose was drawn into a capillary tube with the needle
in the center. After allowing the agarose to cool, the capillary tube was carefully
removed, and the micro-columns were gently pushed off the needle into DPBS and
sterilized by UV light for 30 min. Micro-columns had an outer diameter of 701 µm
and an inner diameter of 300 µm. Optimal micro-column dimensions for inducing
alignment and bundling of astrocytes were determined based on previous
experiments56.

Fabrication of tissue-engineered RMSs. Hydrogel micro-columns were cut with
angled forceps to a length of 4 mm. The inner lumen of the micro-columns was
loaded with 1 mg/ml rat tail type 1 collagen diluted in a cell culture medium. The
collagen-loaded constructs were incubated for 3 h at 37 °C/5% CO2 to allow for
collagen polymerization and dehydration yielding in a hollow microcolumn with
the surface of the inner lumen coated in collagen. After the complete collagen
polymerization, the inner lumen of the micro-columns was seeded with astrocytes
in serum-free co-culture media at a density of ~1 million cells/ml (optimal seeding
density confirmed by Winter et al., 201656). Co-culture media consisting of neu-
robasal medium supplemented with 2% B-27, 1% G-5, 0.25% L-glutamine, and 1%
penicillin–streptomycin induced the astrocytes into a process-bearing phenotype.
Columns were seeded twice with astrocytes to ensure that the entire interior of each
micro-column was filled with cells. Following astrocyte seeding, columns were
incubated at 37 °C/5% CO2 for one hour and subsequently reinforced with 1 mg/ml
collagen. Collagen reinforcement provided more ECM to the astrocytes, helping to
prevent collapse during astrocyte bundling. Following reinforcement, astrocyte-
loaded columns were incubated for another hour at 37 °C/5% CO2, flooded with
warm co-culture media, and returned to the cell culture incubator. Over a relatively
short time period of ~8 h, the astrocytes extend processes to gather collagen and
self-assemble into a bundled cord of longitudinally aligned astrocytes with bidir-
ectional processes, effectively forming TE-RMSs. For experimental purposes, TE-
RMSs were utilized 24 h after astrocyte seeding. Acellular collagen control columns
for in vitro migration assays were prepared as above but with no addition of cells.
For acellular collagen/laminin columns, a mixture of 1 mg/ml collagen and 1 mg/
ml mouse laminin diluted in cell culture medium was loaded into micro-columns.
Following extracellular matrix polymerization at 37 °C/5% CO2 (~3 h), columns
were flooded with warm co-culture media and returned to the cell culture
incubator.

TE-RMS extraction from microcolumns for ICC. Following overnight bundling of
astrocytes and formation of the TE-RMS, astrocytic bundles were extracted from
hydrogel micro-columns onto glass coverslips using surgical forceps and a ste-
reoscope for visual guidance. TE-RMSs were slowly drawn out of the micro-
columns into a bead of collagen diluted in culture media and left to dry for 15 min
at 37 °C/5% CO2 to facilitate coverslip adhesion prior to fixation. Extraction was
not performed with migration assay columns as it would disrupt the neuronal
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aggregate, and they were instead fixed, stained, and imaged within the micro-
columns to keep the assay system intact.

Astrocyte derivation from adult human GMSCs. Healthy human gingival tissues
were obtained as remnants of discarded tissues under the approved Institutional
Review Board (IRB) protocol at the University of Pennsylvania. All procedures and
methods were carried out in accordance with relevant guidelines and regulations.
Informed consent was obtained from all participating human subjects for the
collection of fresh tissues. Mesenchymal stem cells isolated from de-identified
human gingiva were run through a non-genetic process similar to a method pre-
viously applied to derive astrocytes from human oral mucosal stem cells59. The
derivation takes less than a week and was accomplished in collaboration with the
Le Laboratory at the University of Pennsylvania, with whom we have previously
developed techniques for deriving neural crest stem cells and Schwann cell-like
cells from GMSCs82–84. The derivation began with 72 h incubation in serum-free
low-glucose DMEM with 100 µg/ml streptomycin, 100 U/ml penicillin, 1250 U/ml
Nystatin, and 2 mM glutamine supplemented with 20 ng/ml N2 supplement
(Thermo Scientific), basic fibroblast growth factor 2 (PeproTech, Rocky Hill, NJ),
and epidermal growth factor (PeproTech). After 72 h the media was replaced with
serum-free low-glucose DMEM with 100 µg/ml streptomycin, 100 U/ml penicillin,
1250 U/ml Nystatin, and 2 mM glutamine supplemented with 1 mM dibutyryl
cyclic AMP (Sigma-Aldrich), 0.5 mM 3-isobutyl-1-methylxanthine (Sigma-
Aldrich), 50 ng/ml neuregulin (PeproTech), and 1 ng/ml platelet-derived growth
factor (PeproTech). After derivation, astrocyte-like cells were cultured in DMEM/
F12 medium supplemented with 10% FBS and 1% Penicillin–Streptomycin and
passaged at 80% confluency with mechanical perturbation prior to trypsinization to
purify the astrocyte population. Cells between passages 4 and 10 were utilized for
all in vitro and in vivo experiments.

In vitro migration assay. Following overnight bundling of astrocytes and for-
mation of human GMSC-derived TE-RMSs, immature rat cortical neuronal
aggregates were placed into one end of the micro-columns using surgical forceps
and a stereoscope for visual guidance. Aggregates were placed such that they
contacted one end of the fully formed TE-RMS within the column and placed in
the same relative position in the acellular collagen and collagen/laminin columns.
Columns loaded with aggregates were returned to the 37 °C/5% CO2 cell culture
incubator and were fixed 72 h following neuronal aggregate seeding.

In vivo implantation. Athymic (immunodeficient) adult male rats (Strain RNU
316 homozygous; Charles River, Wilmington, MA) were maintained under iso-
flurane anesthesia and mounted in a stereotaxic frame. Subjects were sub-
cutaneously administered bupivacaine (2.0 mg/kg) for local analgesia. Bilateral
craniotomies were performed +2.5 mm anterior to bregma and +1 mm from the
midline on either side. Immediately prior to implantation, a 4 mm human GMSC-
derived TE-RMS or acellular collagen control microcolumn was drawn into a thin-
walled 21XX-gauge (813 µm outer diameter, 737 µm inner diameter) needle in
warm DPBS. The needle was centered over the craniotomy and lowered at a rate of
2 mm/min. The column was delivered into the brain, and the needle was slowly
retracted at a rate of 1 mm/min while the plunger was fixed in place to deliver the
column without expulsive force. Subjects (n= 6) were implanted bilaterally with a
human GMSC-derived TE-RMS construct in the right hemisphere and an acellular
collagen control microcolumn in the left. Stereotaxic coordinates (AP+ 2.5; ML+
1; DV −5 mm relative to bregma) provided consistent implantation of all columns
spanning from the RMS to the cortex. Following column delivery, the craniotomies
were covered with a thin sterile PDMS disc and bone wax and the scalp was
sutured. Subjects were administered slow-release meloxicam (4.0 mg/kg) for sus-
tained post-surgical analgesia.

Immunocytochemistry and immunohistochemistry. The endogenous RMS was
analyzed via IHC in sagittal brain sections from five archival formalin-fixed par-
affin-embedded (FFPE) adult Sprague Dawley rat brains. Brain blocks near midline
were sliced into 8 µm sections and mounted on slides. Slides likely to contain RMS
were deparaffinized, rehydrated, and underwent heat-induced epitope retrieval in
Tris–EDTA. Slides were then blocked in horse serum for 30 min. Primary anti-
bodies were applied in 1× Optimax buffer overnight at 4 °C including mouse anti-
Ezrin (1:50) (Sigma-Aldrich Cat # E8897, RRID: AB_476955), goat anti-glial
fibrillary acidic protein (GFAP) (1:1000) (Abcam Cat # ab53554, RRID:
AB_880202), and rabbit anti-Robo2 (1:50) (Novus Cat # NBP1-81399, RRID:
AB_11013687). Slides were then rinsed in PBS/Tween and incubated in Alexa
secondary antibodies (1:500) in 1× Optimax buffer for 1 h at room temperature.
Secondary antibodies included donkey anti-mouse 488 (1:500) (Thermo Fisher
Scientific Cat#: A-21202, RRID: AB_141607), donkey anti-goat 568 (1:500)
(Thermo Fisher Scientific Cat#: A-11057, RRID: AB_2534104), and donkey anti-
rabbit 647 (1:500). Slides were then rinsed and Hoechst solution (1:10,000)
(Invitrogen H3570) was applied for 5 min to label nuclei. Finally, slides were rinsed,
coverslipped with fluoromount G, sealed with nail polish, and stored at 4 °C.

Cultures and columns were fixed with 4% formaldehyde for 35 min at room
temperature, rinsed with PBS, permeabilized with 0.3% Triton X-100 at room
temperature for 20 min, blocked with 4% normal horse serum at room temperature

for one hour, and again rinsed with PBS. Cultures were then incubated in primary
antibody solutions at 4 °C for 16 h. All cultures and columns were incubated in
Hoechst solution (1:1000) (Invitrogen Cat #: H3570) during primary incubation.
Subsequently, cultures were rinsed and incubated in appropriate Alexa secondary
antibodies (1:500) in the dark at 37 °C for 2 h. Rat cortical astrocyte planar cultures,
extracted rat cortical astrocyte TE-RMSs, human gingiva stem cell-derived planar
cultures, and extracted human gingiva stem cell-derived TE-RMSs were incubated
in mouse anti-Ezrin (1:100) (Sigma-Aldrich Cat # E8897, RRID: AB_476955), goat
anti-GFAP (1:1000) (Abcam Cat # ab53554, RRID: AB_880202), and rabbit anti-
Robo2 (1:50) (Novus Cat # NBP1-81399, RRID: AB_11013687) followed by
secondary antibodies donkey anti-mouse 488 (Thermo Fisher Scientific Cat#: A-
21202, RRID: AB_141607), donkey anti-goat 568 (Thermo Fisher Scientific Cat#:
A-11057, RRID: AB_2534104), and donkey anti-rabbit 647 (Thermo Fisher
Scientific Cat#: A-31573, RRID: AB_2536183). To verify astrocytic phenotype,
human gingiva stem cell-derived astrocyte-like planar cultures were incubated in
mouse anti-CD31 (1:100) (Bio-Rad Cat#: MCA1746GA, RRID: AB_2832958) to
label endothelial cells, and guinea pig anti-S100B (1:200) (Synaptic systems Cat #:
287 004, RRID: AB_2620025), chicken anti-GFAP (1:1000) (Abcam Cat #: ab4674,
RRID: AB_304558), rabbit anti-GLAST (EAAT1) (Abcam Cat #: ab41751, RRID:
AB_955879), and mouse anti-glutamine synthetase (Abcam Cat #: ab64613, RRID:
AB_1140869) to label astrocytes; secondary antibodies were donkey anti-mouse
488 (Thermo Fisher Scientific Cat#: A-21202, RRID: AB_141607), donkey anti-
guinea pig 568 (Sigma Cat#: SAB4600469, RRID: AB_2832959), donkey anti-rabbit
568 (Thermo Fisher Scientific Cat #: A10042, RRID: AB_2534017), and donkey
anti-chicken 647 (Jackson Immunoresearch Cat#: 703-605-155, RRID:
AB_2340379). Fixed human GMSC-derived TE-RMSs loaded with cortical
neuronal aggregates were incubated in mouse anti-human nuclei (1:200) (Millipore
Cat #: MAB1281, RRID: AB_94090) to label human astrocytes, rabbit anti-beta III
tubulin (TuJ1) (1:500) (Abcam Cat#: ab18207, RRID: AB_444319) to label
immature migrating neurons, and goat anti-GFAP (Abcam Cat # ab53554, RRID:
AB_880202)) to label astrocytes in TE-RMSs; followed by secondary antibodies
donkey anti-mouse 488 (Thermo Fisher Scientific Cat#: A-21202, RRID:
AB_141607), donkey anti-rabbit 568 (Thermo Fisher Scientific Cat #: A10042,
RRID: AB_2534017), and donkey anti-goat 647 (Thermo Fisher Scientific Cat# A-
21447, RRID: AB_2535864). ECM-only columns were stained with rabbit anti-
collagen (1:100) (Abcam Cat#: ab34710, RRID: AB_731684) or rabbit anti-laminin
(1:500) (Abcam Cat#: ab11575, RRID: AB_298179) followed by secondary staining
with donkey anti-mouse 488 (Thermo Fisher Scientific Cat#: A-21202, RRID:
AB_141607) and donkey anti-rabbit 568 (Thermo Fisher Scientific Cat #: A10042,
RRID: AB_2534017). All cultures and constructs were rinsed following secondary
antibody staining. Cultures and constructs in columns were stored in PBS at 4 °C.
Coverslips containing extracted TE-RMSs were rinsed once in deionized water and
mounted onto glass slides with fluoromount G. The edges of the slides were sealed
with nail polish and stored at 4 °C.

Six days after TE-RMS and control column implantation subjects were
anesthetized with Euthasol and fixed via transcardial perfusion with 0.1%
heparinized saline followed by 4% paraformaldehyde. Brains were extracted and
submerged in formalin for 24 h. Brains were sagittally blocked, embedded in
paraffin, sliced into 8 µm sections, and mounted on slides. Slides were
deparaffinized, rehydrated, and underwent heat-induced epitope retrieval in
Tris–EDTA. Slides were then blocked in horse serum for 30 min. Primary
antibodies were applied in 1× Optimax buffer overnight at 4 °C: mouse anti-human
nuclei (1:500) (Millipore Cat #: MAB1281, RRID: AB_94090) to label human
astrocytes, goat anti-doublecortin (DCX) (1:500) (Novus Cat#: NBP1-72042, RRID:
AB_11019667) to label immature migrating neurons, and either chicken anti-
GFAP (1:1000) (Abcam Cat #: ab4674, RRID: AB_304558) or rabbit anti-collagen
(1:100) (Abcam Cat#: ab34710, RRID: AB_731684). Slides were then rinsed in PBS/
Tween and incubated in Alexa secondary antibodies (1:500) in 1× Optimax buffer
for 1 h at room temperature: donkey anti-mouse 488 (Thermo Fisher Scientific
Cat#: A-21202, RRID: AB_141607), donkey anti-goat 568 (Thermo Fisher
Scientific Cat#: A-11057, RRID: AB_2534104), donkey anti-chicken 647 (Jackson
Immunoresearch Cat#: 703-605-155, RRID: AB_2340379), or donkey anti-rabbit
647 (Thermo Fisher Scientific Cat#: A-31573, RRID: AB_2536183). Slides were
rinsed and Hoechst solution (1:10,000) (Invitrogen H3570) was applied for 5 min.
Slides were rinsed, coverslipped with fluoromount G, sealed with nail polish, and
stored at 4 °C.

Western blot analysis. Planar-cultured GMSCs or astrocytes induced from
GMSCs were harvested and whole-cell lysates were prepared by incubation with
radioimmunoprecipitation assay (RIPA) buffer (Santa Cruz) supplemented with a
cocktail of protease inhibitors (Santa Cruz) and the total protein concentrations
were determined using bicinchoninic acid (BCA) method (BioVision). Then 30 µg
of proteins per well were subjected to SDS–polyacrylamide gel electrophoresis
before being electroblotted onto a 0.2 μm nitrocellulose membrane (GE Health-
care). After blocking with 5% nonfat dry milk in TBST (25 mmol/L Tris, pH, 7.4,
137 mmol/L NaCl, 0.5% Tween20), membranes were incubated overnight at 4 °C
with following primary antibodies: GFAP (1:1000, ab53554, Abcam), glutamine
synthetase (1:1000, ab64613, Abcam), or GAPDH (1:2000, #5174, Cell Signaling) as
loading control. After extensively washing, membranes were incubated with
horseradish peroxidase (HRP)-conjugated secondary antibodies (Santa Cruz) and
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blot signals were developed with ECLTM Western Blotting Detect Reagents (GE
Health Care) and scanned using Amersham Imager 680.

Imaging. Cultures and constructs were routinely imaged for observation using
phase contrast and epifluorescence microscopy on a Nikon Inverted Eclipse Ti–S
microscope with digital image acquisition using a QiClick camera interfaced with
Nikon Elements Basic Research software (4.10.01). Epifluorescence images for
analysis were captured using a Nikon Eclipse Ti–S inverted epi-fluorescent scope
outfitted with an Andor Zyla sCMOS 5.5 megapixel camera interfaced with Nikon
Elements Basic Research software (4.10.01) with either a ×10 (Plan Apo Lambda
×10, n.a. 0.45) or ×20 (Plan Apo Lambda ×10, n.a. 0.75) objective. All images
acquired for comparative analyses were captured with identical acquisition settings.
Samples were also fluorescently imaged using a Nikon A1Rsi Laser Scanning
Confocal microscope with a ×10, ×20, or ×60 objective (CFI Plan Apo Lambda ×10,
n.a. 0.45; ×20, n.a. 0.75; or ×60 Oil, n.a. 1.40).

Imaging analyses, statistics, and reproducibility. Image processing and analyses
were performed using the freely available FIJI (Fiji Is Just ImageJ) software
platform85. Values reported in the Results section are mean ± SEM unless other-
wise noted. Statistical testing was performed in GraphPad Prism 8 for Windows 64
bit. Due to the obvious differences between protoplasmic and TE-RMS astrocytes,
blinding was not possible. Therefore, we minimized potential bias by maximizing
automation via the design and application of macros for automated image pro-
cessing and analyses. All Nikon nd2 files were imported into FIJI via the Bio-
formats function and each channel was split into an individual grayscale Tiff.
Background subtraction was applied to all images using the rolling ball method
with a diameter of 100 pixels.

To compare endogenous rat RMS glial tube and protoplasmic astrocytes as
summarized in Fig. 2, we utilized a standardized 75 µm × 75 µm square region of
interest (ROI) to isolate an RMS field and a protoplasmic astrocyte field for each
brain analyzed (n= 5). To isolate reliably astrocytic signal in each channel, we first
created binary masks from the GFAP channel using the Max Entropy thresholding
method followed by the Analyze Particles function to remove noisy particles
smaller than 0.1 µm2. For each ROI, we used the Image Calculator “AND” function
to create a new image containing signal only where there was signal in both the
binary GFAP mask “AND” the raw image from another channel. This effectively
uses the GFAP binary mask to cut out astrocyte-shaped areas from each channel of
the ROI for analysis of astrocytic signal for each protein. We then measured the
mean intensity for the astrocytic signal in each channel of each ROI. Since each
brain produced an RMS and Protoplasmic ROI pair, mean intensities of RMS and
protoplasmic astrocytes were compared by two-tailed paired Student’s t-tests for
each channel.

To compare TE-RMS astrocytes and astrocytes from planar sister cultures as
summarized in Fig. 3 (rat; TE-RMS n= 9, sister n= 6) and Fig. 5 (human; TE-
RMS n= 5, sister n= 6), masking to isolate astrocytic signal was not necessary
since the experiments utilized astrocytes in culture. Instead, mean intensities were
measured for the entire field of view (standardized due to identical acquisition
settings for all comparisons) for each channel of each image. Those mean
intensities were then normalized to the amount of cells in each image. The Hoechst
channel for each image was converted to a binary mask using the MaxEntropy
thresholding method followed by the analyze particles function to remove noisy
particles smaller than 0.1 µm2, and the total nuclear area was then measured and
used for normalization as the total “amount of cells” in each field of view. Mean
intensities of TE-RMS and planar culture astrocytes were compared by two-tailed
Student’s t-tests for each channel.

To compare migrating neurons in our in vitro migration assay, the Hoechst
channel for each image was first converted to a binary mask in FIJI. For the TE-
RMS group, the human nuclei channel was also converted to a binary mask and
then subtracted from the corresponding Hoechst channel using the Image
Calculator “Subtract” function in FIJI to remove TE-RMS nuclei and isolate signals
from migrating rat neurons. Partially removed human nuclei still present after the
subtraction function (evident as open circles) were removed via the Binary>Open
function in FIJI. Particle counts were unreliable due to inconsistencies resolving
adjacent and overlapping nuclei, therefore the total nuclear area was measured via
the “Analyze Particles” function in FIJI. For each assay, measurements were taken
from two ROIs spanning the width of the inner lumen of the microcolumns (300
µm). The first ROI extended 1 mm from the edge of the neuronal aggregate, and
the second ROI extended an additional 2.5 mm from the end of the first (extending
from 1 to 3.5 mm from the edge of the aggregate). Mean nuclear areas were
compared via one-way ANOVA with Bonferroni adjustment for multiple
comparisons. We performed a Log transform for all values to meet assumptions of
normality and equal variance. Neurite extension from neuronal aggregates in
collagen and collagen/laminin columns was measured from the edge of the
aggregate to the end of the longest Tuj1-positive neurite using the line segment
measuring tool in FIJI. The analyst was blinded to ECM composition. Statistical
comparisons were not performed after removing the blind because collagen-only
columns did not exhibit any measurable neurite outgrowth.

Data availability
Data supporting the conclusions of this paper are available from the corresponding
author upon reasonable request and have been included as supplementary materials with
this publication.
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