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Abstract: This paper proposes a low-complexity algorithm for a reinforcement learning-based channel
estimator for multiple-input multiple-output systems. The proposed channel estimator utilizes
detected symbols to reduce the channel estimation error. However, the detected data symbols may
include errors at the receiver owing to the characteristics of the wireless channels. Thus, the detected
data symbols are selectively used as additional pilot symbols. To this end, a Markov decision process
(MDP) problem is defined to optimize the selection of the detected data symbols. Subsequently,
a reinforcement learning algorithm is developed to solve the MDP problem with computational
efficiency. The developed algorithm derives the optimal policy in a closed form by introducing backup
samples and data subblocks, to reduce latency and complexity. Simulations are conducted, and the
results show that the proposed channel estimator significantly reduces the minimum-mean square
error of the channel estimates, thus improving the block error rate compared to the conventional
channel estimation.

Keywords: multiple-input multiple-output; channel estimation; Markov decision process; reinforcement
learning

1. Introduction

Currently, multiple-input multiple-output (MIMO) is an essential technology in wire-
less communications [1–6]. Multiple antennas are easy to implement in wireless systems,
and their use significantly increases system reliability and capacity. However, to utilize
the advantages of multiple antennas, perfect channel information is required at both the
transmitter and receiver. Meeting this necessity is generally impossible because of the
characteristics of wireless channels.

Although perfect channel information is unavailable, many studies have been con-
ducted to improve the accuracy of channel estimation [7–21]. These investigations were
mostly based on the use of pilots whose information is shared by both the transmitter and
receiver and employed least-squares and linear minimum-mean square-error (LMMSE)
estimations [10–12]. This is because the two estimation methods reasonably perform with
affordable complexities for wireless systems. However, their performance strongly depends
on the number of pilots, which is generally limited in wireless systems because employing
several pilots as resources degrades the spectral efficiency.

This limitation can be overcome using data in channel estimation, i.e., conducting
data-aided channel estimation [13–21]. Its concept is to exploit a detected data symbol as
an additional pilot. Because a detected data symbol may have an error, the accuracy of the
channel estimation may be degraded by it. An iterative turbo approach is a good method
to address this degradation because the improved detection performance achieved using
an iterative turbo equalizer also increases the estimation accuracy of a channel [19–25].
However, the use of this iterative turbo approach is limited in wireless systems because of
its inherent high complexity and latency.
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Recently, a reinforcement learning (RL) approach was introduced in [26] for data-
aided channel estimation. In this approach, a Markov decision process (MDP) problem
is described to minimize the estimation error, and an RL algorithm is used to solve the
MDP problem. Without an iterative approach, the RL solution resulted in a significant
improvement compared to conventional channel estimations. However, this solution
is difficult to implement in practical systems because of its considerable complexity and
latency in computing the optimal policy. For example, using the approach in [26] to calculate
the optimal policy requires all a posteriori probabilities (APPs) in a data block. In addition,
its limitation is that the optimal policy is characterized by a specific discounting factor.

In this paper, a low-complexity channel estimator using an RL approach is proposed
for MIMO systems. The key concept of this estimator is the selection of the detected data
symbols obtained during data detection as additional pilot symbols. To achieve this, an
MDP problem is first defined to minimize the channel estimation error where the Q-value
function is generalized by a discounting factor. Subsequently, an RL solution is proposed
that can be easily implement in wireless systems. To this end, concepts of backup samples
and data subblocks are introduced, which significantly reduce the complexity and latency.
The main contributions of this study are summarized as follows:

• A data-aided channel estimator is developed to optimize the selection of detected sym-
bols for MIMO systems. An MDP problem is defined for this selection to minimize the
mean-square-error (MSE) of the channel estimates. Compared with [26], a discounting
factor is introduced in the Q-value function. The discounting factor adjusts the effects
of rewards after the current state.

• A low-complexity RL algorithm is proposed. To achieve this efficiently, a data block is
separated into multiple data subblocks and the optimal policy for the data subblocks is
characterized. In the characterization, only partial soft information obtained from data
detection is utilized to reduce the calculation latency. Unlike in [26], the optimal policy
is calculated using only this partially obtained information; the remaining rewards are
approximated under the assumption of perfect detection. Finally, the optimal policy is
obtained using a closed-form expression. Note that the conventional RL algorithm
in [26] can be employed after obtaining all soft information in a data block.

• The performance enhancement achieved for MIMO systems using the developed
RL algorithm is evaluated. Simulations are conducted, and the results demonstrate
that the proposed algorithm significantly reduces the performance degradation of
conventional channel estimation. Based on the simulations, the proposed channel
estimator using an approximate MDP presents a similar performance to that of the
original MDP. In addition, the proposed channel estimator provides robustness in
time-varying channels.

The remainder of this paper is organized as follows. Section 2 introduces a signal
model including the channel estimation and data detection considered in this study. In
Section 3, an MDP problem to select detected data symbols optimally to minimize the
channel estimation error is defined. A low-complexity RL algorithm is proposed in Section 4.
In Section 5, simulation results are discussed, to demonstrate the effectiveness of the
developed algorithm. Finally, conclusions are presented in Section 6.

Notation

Matrices 0m and Im represent m×m all-zero and the m×m identity matrices, respec-
tively. The superscripts (·)T and (·)H denote the transpose and the conjugate transpose,
respectively. Operators E(·) and P(·) denote the expectation of a random variable and the
probability of an event, respectively. Operators | · | and ‖ · ‖2 denote the cardinality of a set
and the norm, respectively. Operators (·)−1, Tr(·), and CN denote the inverse, trace, and
complex normal distribution, respectively. Set C represents a set of complex numbers.
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2. Signal Model

This section describes the signal model for a MIMO system. Based on the signal model,
the channel estimator and data detector considered in this study are introduced.

2.1. Signal Model

A MIMO system is considered; in it, a transmitter with Nt antennas communicates
with a receiver with Nr antennas through a wireless channel. A wireless channel is denoted
as H ∈ CNt×Nr , where each channel element ht,r ∈ C between the t-th transmitter and r-th
receiver is modeled by Rayleigh fading ht,r ∼ CN (0, 1). The transmitter sends a frame
consisting of one pilot block and Nd data blocks, as shown in Figure 1. During the pilot
transmission, the transmitter sends a pilot symbol xp[n] ∈ CNt×1 for n ∈ Np = {1, . . . , Tp},
where Tp is the pilot length. When the pilot symbol xp[n] is transmitted to the receiver, the
received symbol yp[n] ∈ CNr×1 at time slot n is given as

yp[n] = HHxp[n] + zp[n], (1)

where zp[n] is an additive white Gaussian noise (AWGN) at time slot n whose distribution
follows CN (0Nr , N0INr). After the pilot transmission is completed, the transmitter sends
a data symbol xd[n] ∈ CNt×1 for n ∈ Nd = {(d− 1)Td + 1, . . . , dTd}, where Td is the data
length. Supposing X is a constellation set, the data symbol xd[n] ∈ X Nt . After the data
transmission, the received symbol yd[n] ∈ CNr×1 is expressed as

yd[n] = HHxd[n] + zd[n], (2)

where zd[n] is also an AWGN at time slot n.

Figure 1. Frame consisting of one pilot block with Tp symbols and Nd data blocks with Td symbols.

2.2. Channel Estimator and Data Detector

The LMMSE channel estimator is considered in this study because of its satisfactory
performance with low complexity. Using the received symbol in (1), the LMMSE channel
estimator, W ∈ CNt×Tp , is expressed as follows:

Ŵ = argmin
W

E
[
‖W(yp

r )
H − hr‖2

]
=
(

Xp(Xp)H + N0INt

)−1
Xp, (3)

where yp
r and Xp are sets of the received and pilot symbols and are defined as yp

r =
[yp

r [1], · · · , yp
r [Tp]] and Xp = [xp[1], · · · , xp[Tp]], respectively. Using the channel estimator

in (3), a channel estimate is expressed as

ĥr = Ŵ(yp
r )

H =
(

Xp(Xp)H + N0INt

)−1
Xp(yp

r )
H , (4)

where ĥr is the r-th row of the channel estimate matrix Ĥ.
A maximum a posteriori probability (MAP) data detector is considered in this study

to ensure the optimal detection performance. The APP from the MAP data detector is
computed as



Sensors 2022, 22, 4379 4 of 18

θk[n] = P
[
xd[n] = xk|yd[n]

]
=

P
[
yd[n]|xd[n] = xk

]
P
[
xd[n] = xk

]
∑

j∈K
P
[
yd[n]|xd[n] = xj

]
P
[
xd[n] = xj

] , (5)

where xk ∈ X Nt is the k-th possible symbol for k ∈ K = {1, . . . , |X |Nt}. In (5), the apriori
probability, P

[
xd[n] = xk

]
, is assumed to be equal for all possible symbols xk for k ∈ K,

i.e., P
[
xd[n] = xk

]
= 1
|X |Nt

. Concurrently, under the AWGN assumption, the likelihood

probability P
[
yd[n]|xd[n] = xk

]
in (5) can be expressed as

P
[
yd[n]|xd[n] = xk

]
=

1

(πN0)
Nr

e−
‖yd [n]−ĤH xk‖

2

N0 . (6)

The MAP data detector detects the data symbol x̂[n] that has the best APP value at
time slot n, and it is given by

x̂[n] = argmax
xk∈X Nt

θk[n] = argmax
xk∈X Nt

P
[
yd[n]|xd[n] = xk

]
. (7)

Note that the accuracy of the detected symbol x̂[n] depends on the accuracy of the
channel estimator, Ĥ. However, the accuracy of the channel estimator cannot be ensured
in practical systems where the pilot length, Tp, is limited. To address this limitation, this
study focused on improving the accuracy of the channel estimator.

3. Optimization Problem

This section defines the optimization problem for the channel estimator proposed
subsequently, which uses detected symbols to improve the MSE of the channel estimates.
Subsequently, to solve the optimization problem, the MDP problem and the optimal policy
are presented.

3.1. Optimization Problem

This study considers a channel estimator that uses the detected symbols in (7) as
additional pilot symbols. However, the data detector may generate detection errors at the
receiver. Consequently, the use of detected symbols with errors degrades the accuracy of the
channel estimator. To overcome this problem, the detected symbols should be selectively
exploited by the channel estimator.

Let a ∈ {0, 1}Td be the set of actions whose n-th component is the selection of a
detected symbol of the d-th data block for n ∈ Nd. Specifically, when a = 1, a detected
symbol is used as an additional pilot symbol; otherwise, it is not used. By exploiting a, the
LMMSE channel estimate in (4) can be updated as

ĥr(a) =
(

X(a)X(a)H + N0INt

)−1
X(a)ȳr(a)H , (8)

where ȳr(a) = [yp
r , yd

r [u1(a)], . . . , yd
r [u‖a‖0

(a)]] and X(a) = [Xp, x̂[u1(a)], . . . , x̂[u‖a‖0
(a)]].

Here, ui(a) is the time slot index of the i-th nonzero element in a. Thus, the opti-
mization problem that maximizes the accuracy of the proposed channel estimator can be
expressed as

a? = argmax
a∈{0,1}Td

E{‖Ĥ(a)−H‖2}. (9)

Solving the optimization problem in (9) is difficult. First, the distribution of Ĥ(a)
requires information regarding the transmitted symbols. However, this information is
generally unknown to a receiver. In addition, the number of candidates for actions a
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exponentially increases with data length Td. Accordingly, an exhaustive search for these
actions is impractical because of the unsatisfactory complexity and latency for the receiver.

3.2. Markov Decision Process

To efficiently solve the problem in (9), an MDP was formulated in [26] that sequentially
selected detected symbols. In this formulation, a detected symbol is selected if the updated
channel estimator reduces the estimation error.

Similar to [26], for this study, the state set of the MDP at time slot n is expressed as

Sn =
{(

Xn, X̂n,Mn
) ∣∣∣Xn =

[
Xp, xkMn(1)

, · · · , xkMn(|Mn |)

]
, ki ∈ K,

X̂n = [Xp, x̂[Mn(1)], · · · , x̂[Mn(|Mn|)]],

Mn ⊂
{

Tp + 1, · · · , n− 1
}}

, (10)

where kn denotes the transmitted symbol index at time slot n. SetMn represents the set
of time slot indices of the data symbols to be utilized as additional pilot symbols.Mn(i)
is the i-th smallest element ofMn. Based on the above notations, the proposed channel
estimate at state Sn =

(
Xn, X̂n,Mn

)
∈ Sn is expressed as

ĥr(Sn) =
(

X̂nX̂H
n + N0INt

)−1
X̂nȳH

r (Sn), (11)

where ȳr(Sn) = [yp
r , yd

r [Mn(1)], . . . , yd
r [Mn(|Mn|)]].

The action set of the MDP is expressed as A = {0, 1}. An action is defined as whether
to utilize a current detected symbol as an additional pilot symbol. Specifically, when
a = 1 ∈ A, the current detected symbol is used as an additional pilot symbol.

Based on the state and action sets, the state transition function of the MDP for a ∈ A
and Sn ∈ Sn is expressed as follows:

T
(a,j)
n+1(Sn) = P

[
U
(a,j)
n+1(Sn)

∣∣∣ Sn, a
]
=

{
I
[
xd[n] = xj

]
, j ∈ Ja, a = 1,

1, j ∈ Ja, a = 0.
(12)

where J0 = {0} and J1 = {1, . . . , K}. State U
(a,j)
n+1(Sn) ∈ Sn+1 is the valid state from the

current state Sn =
(
Xn, X̂n,Mn

)
∈ Sn, and is expressed as

U
(a,j)
n+1(Sn) =

{(
[Xn, xj], [X̂n, x̂[n]], [Mn ∪ n]

)
, j ∈ Ja, a = 1,(

Xn, X̂n,Mn
)
, j ∈ Ja, a = 0.

(13)

The reward function of the MDP is obtained by the MSE improvement between the
channel estimates at the current state Sn and the next state Sn+1. Thus, the reward function
from Sn ∈ Sn to Sn+1 ∈ Sn+1 is defined as

R(Sn, Sn+1) = Er(Sn)− Er(Sn+1), (14)

where Er(Sn) is the MSE of the channel estimate for the r-th receive antenna at state Sn ∈ Sn,
which can be computed as

Er(Sn) = E
[
‖ĥr(Sn)− hr‖2

]
= Tr[Ce(Sn)], (15)

where the error covariance matrix Ce(Sn) is defined as E{(ĥr(Sn)− hr)(ĥr(Sn)− hr)H}.
Here, Ce(Sn) is independent of the receiver antenna index, r, because the channel and

noise distributions are the same for different receive antenna indices. Thus, the reward
function in (14) can be simplified as
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R(Sn, Sn+1) = Tr[Ce(Sn)− Ce(Sn+1)]. (16)

The optimal policy of the MDP at time slot n is defined as

π?(Sn) = argmax
a∈A

Q(Sn, a). (17)

where the Q-value function Q(Sn, a) is the optimal sum of the rewards. Based on the state
transition function in (12), the Q-value function can be expressed as

Q(Sn, a) = ∑
j∈Ja

T
(a,j)
n+1(Sn)

[
R
(

Sn,U(a,j)
n+1(Sn)

)
+ γV?

(
U
(a,j)
n+1(Sn)

)]
, (18)

where 0 ≤ γ ≤ 1 is a discounting factor whose value depends on the target of the optimiza-
tion problem. For example, a small value is desirable when the accuracy of the channel
estimator obtained at the current state is significant. In contrast, a larger value is preferred
when the accuracy of the channel estimator obtained at the ending state is significant.

V?
(
U
(a,j)
n+1(Sn)

)
is the optimal sum of the future rewards. The future value function

V?(Sm) at state Sm ∈ Sm for n + 1 ≤ m can be recursively computed, as follows:

V?(Sm) = ∑
a∈A

π(Sm, a) ∑
j∈Ja

T
(a,j)
m+1(Sm)

[
R
(

Sm,U(a,j)
m+1(Sm)

)
+ γV?

(
U
(a,j)
m+1(Sm)

)]
, (19)

where π(Sm, a) is a state–action transition function, expressed as

π(Sm, a) = I{a = argmax
a′∈A

Q
(
Sm, a′

)
}, (20)

where Q(Sm, a) is the Q-value function that can be calculated as the sum of the rewards
obtained after taking action a ∈ A at state Sm ∈ Sm.

Using the MDP in (10), (12), and (13), the state–action diagram of the original MDP is
depicted in Figure 2a. In this figure, state Sn is transited to the next valid state, U(a,j)

n+1(Sn),

based on action a. Particularly, when a = 1, state Sn is transited to state U
(1,kn)
n+1 (Sn) by

utilizing the transmitted symbol index, kn. Based on the state and state–action transition
functions in (12) and (20), the state is transited to the next valid state until the end of a data
block. As previously mentioned, the original MDP, which is shown in Figure 2a, cannot be
solved by dynamic programming.

Figure 2. State–action diagrams of the original MDP (a) where kn is the transmitted symbol index,
and the approximate MDP (b) where k̂n is the detected symbol index for a ∈ A and Sn ∈ Sn.



Sensors 2022, 22, 4379 7 of 18

First, the state and state–action functions are unavailable to the receiver because the
information of the transmitted symbols, xkn , and the true channel information, H, are
unknown. In addition, the computational complexity and latency required to solve the
original MDP are extremely high because the number of states exponentially increases with
data length Td.

4. Proposed Rl-Based Channel Estimator

In this section, an RL-based channel estimator is proposed. To address the unknown
state and state–action functions, an RL algorithm is adopted because it provides a solu-
tion for the partially observable MDP [27,28]. Based on this algorithm, a computationally
efficient RL solution is also proposed. The key concept of the proposed solution is to approx-
imate the state–action transition functions to determine the optimal policy by separating
the cases using the APPs.

The overall procedure of the proposed RL-based channel estimator is illustrated in
Figure 3. The proposed channel estimator exploits the information of (x̂[m], θj[m]) obtained
from the MIMO detector. In the proposed channel estimator, the optimal policy is calculated
by using only N APPs (θj[n], . . . , θj[n + N]) for a computationally efficient algorithm. The
channel estimate is then updated according to the optimal policy. Details of the proposed
channel estimator, i.e., how to approximate the MDP and how to derive the optimal policy
in a closed form, are explained in this section.

Figure 3. System structure of the proposed data-aided channel estimator.

4.1. Statistical State Transition

In this section, the state transition function in (12) at time slot n is approximated using
the APP θj[n]. The basic concept was introduced in [26] by assuming the APP θj[n] as the
probability of the event, {x[n] = xj}. Thus, the state transition function in (12) at time slot
n is approximated as follows:

T̂
(a,j)
n+1(Sn) =

{
θj[n], j ∈ Ja, a = 1,
1, j ∈ Ja, a = 0.

(21)

where the detected symbol index at time slot n is denoted as k̂n. Note that APP θj[n] can
be interpreted as the probability of the event {x[n] = xj}; thus, it is called a statistical
transition. In addition, when the data detection performance is improved, i.e., θkn [n]→ 1,
the approximate state transition function in (21) approaches the true state transition function
in (12).

4.2. State–Action Transition Using Backup Samples

After time slot n + 1 ≤ m, the state in (20) is assumed to be transited to a virtual state
that mimics the possible next states by exploiting the expected transmitted symbol, x̃[m].
The expected transmitted symbol, x̃[m], is defined as
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x̃[m] =
K

∑
j=1

θj[m]xj. (22)

In this study, the use of the expected transmitted symbol is the same as in [26], except
its use is limited to N backup samples to reduce the complexity. A backup sample is
defined as APP θj[m] for n + 1 ≤ m ≤ n + N because the expected transmitted symbol
can be computed by θj[m]. Thus, the Q-value function can be calculated after all θj[m] for
n + 1 ≤ m ≤ n + N values are obtained. Using a backup sample of an APP, the state–action
transition is expressed as

π̂(Sm, a) = 1. (23)

Thus, the virtual state, Ũ(a,j)
m (Sn) ∈ Sm, that can be transited from Sn ∈ Sn is expressed as

Ũ
(a,j)
m (Sn) =

(
X(a,j)

m , X̂(a)
m ,M(a)

m

)
, (24)

where their components are

X(a,j)
m =

{[
Xn, xj, x̃[n + 1], · · · , x̃[n + N]

]
, a = 1,

[Xn, x̃[n + 1], · · · , x̃[n + N]], a = 0.

X̂(a)
m =

{[
X̂n, x̂[n], x̃[n + 1], · · · , x̃[n + N]

]
, a = 1,[

X̂n, x̃[n + 1], · · · , x̃[n + N]
]
, a = 0.

M(a)
m =

{
[Mn ∪ {n, . . . , n + N}], a = 1,
[Mn ∪ {n + 1, . . . , n + N}], a = 0.

Because a virtual state mimics the transitions to the candidate symbols, state Ũ(a,j)
m (Sn) ∈

Sm is always transited to a virtual state Ũ
(a,j)
m+1(Sn) ∈ Sm+1. Therefore, the corresponding

state transition function is written as

T̂
(a,j)
m+1

(
Ũ
(a,j)
m (Sn)

)
= 1, (25)

where n + 1 ≤ m ≤ n + N.

4.3. State–Action Transition after Backup Samples

In this subsection, the virtual states after n + N that can be transited without the
information of the backup samples, θj[m], are described for n + N + 1 ≤ m. To achieve this,

the states, Û(a,j)
m+1(Sn), for n + N + 1 ≤ m are assumed to optimally act when all symbols

are correctly detected. By using the property of x[m] = x̂[m] after time slot n + N + 1, an
approximate virtual state is expressed as

Û
(a,j)
m (Sn) =

(
X(a,j)

m , X̂(a)
m ,M(a)

m

)
, (26)

where its components are defined as

X(a,j)
m =

[
X(a,j)

n+N+1, x̂[n + N + 1], · · · , x̂[m− 1]
]
,

X̂(a)
m =

[
X̃(a)

n+N+1, x̂[n + N + 1], · · · , x̂[m− 1]
]
,

M(a)
m =

[
M(a)

n+N+1 ∪ {n + N + 1, . . . , m− 1}
]
,

where
(

X(a,j)
n+N+1, X̂(a)

n+N+1,M(a)
n+N+1

)
are the components of Ũ(a,j)

n+N+1(Sn).
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In Figure 2b, a state–action diagram of the approximate MDP is depicted. The original
MDP requires information regarding the transmitted symbols for the state transition, as
shown in Figure 2a. In contrast, the approximate MDP utilizes virtual states Ũ

(a,j)
m (Sn)

and Û
(a,j)
m (Sn), which mimic the transitions to the candidate symbols for an unknown

transmitted symbol and action. Specifically, virtual state Ũ
(a,j)
m (Sn) is used at time slot

n + 1 ≤ m ≤ n + N and after time slot n + N, respectively. These two approximations
decrease the number of transitions to the next state transition, so the calculation to solve
the MDP is considerably reduced.

4.4. Proposed Optimal Policy

Using the approximations in (21), (23), and (24), the optimal policy can be determined.
However, the calculation latency is still considerable, because the optimal policy can be
computed at the end of a data block. To prevent this computational burden, the proposed
solution separates a data block into Nb data subblocks and subsequently characterizes the
optimal policy for each data subblock, as shown in Figure 4. Based on this characterization,
the state in (10) and the corresponding channel estimate using (11) are updated for a data
subblock. To realize this data subblock separation, the data subblock length is defined as Tb,
which satisfies Nb = Td/Tb. Thus, a set of time slot indices of the b-th data subblock in the d-
th data block,Nb,d, is defined as {Tp +(b− 1)Tb +(d− 1)Td + 1, . . . , Tp + bTb +(d− 1)Td},
for b ∈ {1, . . . , Nb} and d ∈ {1, . . . , Nd} (see Figure 4).

Figure 4. d-th data block consists of Nb data subblocks with Tb symbols.

Using the virtual states in (24) and (26), the Q-value function is written as

Q(Sn, a) = ∑
j∈Ja

T
(a,j)
n+1(Sn)

[
R
(

Sn, Ũ(a,j)
n+1(Sn)

)
+

n+N

∑
m=n+1

γm−nR
(
Ũ
(a,j)
m (Sn), Ũ

(a,j)
m+1(Sn)

)

+ γN+1V?
(
Û
(a,j)
n+N+1(Sn)

)]
, (27)

where the future value function, V?
(
Û
(a,j)
n+N+1(Sn)

)
, is obtained based on the approximation

of Û(a,j)
m (Sn) as follows:

V?
(
Û
(a,j)
n+N+1(Sn)

)
≈ R

(
Ũ
(a,j)
n+N+1(Sn), Û

(a,j)
n+N+2(Sn)

)
+
Nb,d(Tb)

∑
m=n+N+2

R
(
Û
(a,j)
m (Sn), Û

(a,j)
m+1(Sn)

)
. (28)

In the future reward in (28), the discounting factor is assumed to be 1 to reduce the
complexity by a simple calculation.

Based on (27) and (28), the optimal policy for each state is obtained as a closed-form
expression, as described in the following theorem:

Theorem 1. Under the virtual states and the use of backup samples, the optimal policy for the state
Sn =

(
Xn, X̂n,Mn

)
∈ Sn is
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π?(Sn) = I


n+N
∑

m=n
γm−n(1− γ)Um(Sn) + γN+1UNb,d(Tb)+1(Sn)

n+N
∑

m=n
γm−n(1− γ)Lm(Sn) + γN+1LNb,d(Tb)+1(Sn)

≥ 1

, (29)

where functions Um(Sn) and Lm(Sn) are respectively defined as

Um(Sn) = ‖tm‖2
(

N0 + N2
0‖tm‖2 + ‖vm‖2

)
Lm(Sn) = ‖tm‖2

(
2N2

0 βm + δm + ‖em − um + vm‖2
)

All components are defined as

Qm =

(
X̂nX̂H

n +
m

∑
l=n+1

x̃[l]x̃H [l] + N0INt

)−1

, Dm = X̂n
(
X̂n − Xn

)H
+

m

∑
l=n+1

x̂[l](x̂[l]− x̃[l])H + N0INr ,

tm =
1√

1 + αm
Qmx̂[n], em =

1√
1 + αm

(x̂[n]− x̃[n]), um = DH
m tm, vm =

DH
m Qmtm

‖tm‖2 ,

αm = x̂H [n]Qmx̂[n], βm =
tH
m Qmtm

‖tm‖2 , δm =
1

1 + αm

(
K

∑
j=1

θj[n]‖x̂[n]− xj‖2 − ‖x̂[n]− x̃[n]‖2

)

QNb,d(Tb)+1 =
(

Q−1
n+N + (Nb,d(Tb)− (n + N − 1))INt

)−1
, DNb,d(Tb)+1 = Dn+N . (30)

Proof. See Appendix A.

4.5. Summary: The Proposed Algorithm

The proposed channel estimator is summarized in Algorithm 1. First, the receiver
initializes the state during pilot transmission. In this algorithm, the current state is
updated and transited to the next state according to the optimal action obtained us-
ing (29). For example, the most probable state transition is used when α? = 1 for
the unknown transmitted symbol index. This transition ensures a true state transition
as θj[n] approaches 1 in reliable communication. At the end of a data subblock, the
proposed channel estimator updates the channel estimate using the current state, Sn.

Algorithm 1: The proposed channel estimator.

1 Set H← Ĥ =
[
ĥ1, · · · , ĥNr

]
from (4)

2 Initialize S1 = (Xp, Xp, φ).
3 for d = 1 to Nd do
4 for b = 1 to Nb do
5 for n ∈ Nb,d do
6 Obtain x̂[n] from (8) and {θj[n], · · · , θj[n + N]} from (5) for j ∈ K
7 Compute a? = π?(Sn) from (29).
8 Set j? = 0 for a? = 0 and xj? = x̂[n] for a? = 1.

9 Update Sn+1 ← U
(a? ,j?)
n+1 (Sn) from (13).

10 end

11 Set H← Ĥ =
[
ĥ1(Sn), · · · , ĥNr(Sn)

]
from (11).

12 end
13 end

4.6. Complexity Analysis

In this subsection, the complexity of both the proposed channel estimator and that
in [26] is discussed based on the number of states visited in the calculation of the optimal
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policy. This is because the rewards in the optimal policy are computed based on the states,
and the calculation in (29) is similar to that in [26]. First, when the current state is Sn ∈ Sn
in the d-th data block, the number of visiting states in [26] is exactly dTd − n. By contrast,
the number of visiting states using the proposed channel estimator in the b-th data subblock
is exactly (b− 1)Tb + 1 + (d− 1)Td − n. Thus, the number of states (Td − (b− 1)Tb − 1)
is not used in the policy calculation on introducing the data subblocks. In addition to
the complexity, the proposed optimal policy can be calculated after obtaining N backup
samples, whereas in the approach in [26], this is possible at the end of a data block. Thus,
the latency of the optimal policy by the approach in [26] is much longer than that of the
proposed optimal policy.

5. Simulation Results

This section discusses the performance of the proposed channel estimator. The number
of antennas in MIMO systems is (Nt, Nr) = (4, 4). A rate 1/2 turbo code is adopted for
channel coding, and 4-quadrature amplitude modulation (QAM) is adopted for symbol
mapping. The frame consists of (Tp, Td, Nd) = (8, 64, 20), and the proposed channel
estimator utilizes a data subblock as (Tb, Nb) = (16, 4). In addition, the parameters of the
proposed channel estimator are (N, γ) = (1, 0.5), unless specified otherwise. The per-bit
signal-to-noise ratio (SNR) is defined as Eb/N0 = 1

log2 |X |N0
.

In all figures, the performance with perfect and imperfect channel estimates using the
LMMSE method are denoted as PCSI and CE, respectively. For performance benchmark-
ing, the optimal cases of the proposed channel estimator and the expected-symbol-based
channel estimator utilizing perfect knowledge of the transmitted symbol and the expected
symbol in (22) as an additional pilot symbol, respectively, are compared. The performance
is measured in terms of the block error rate (BLER) and the normalized MSE (NMSE). In
Figure 5, the proposed channel estimator is compared with other channel estimators, and
the conventional RL method used in [26] is also depicted. It shows that the BLER of the
proposed estimator is better than those of the conventional and expected-symbol-based
estimators regardless of the per-bit SNR. Moreover, the proposed channel estimator outper-
forms the conventional estimator of [26]. This is because the proposed channel estimator
updates a channel estimate by Nb in a data block, whereas the method in [26] updates it
once at the end of a data block.

-8 -7 -6 -5 -4 -3 -2 -1 0 1

10
-2

10
-1

10
0

Figure 5. BLERs of conventional and proposed channel estimators for the different estimations.

Figure 6 compares the BLERs of the conventional and proposed channel estimators for
different modulations. For 16-QAM, a MIMO system with (Nt, Nr) = (2, 4) is considered
because of the SNR range. The proposed channel estimator achieves an improved BLER
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compared to the conventional LMMSE channel estimators. This result demonstrates the
effectiveness of the proposed channel estimator, which optimizes the selection of detected
symbols. The improvements to achieve a BLER of 10−1 are approximately 1.2 dB and 0.7 dB
for the 4- and 16-QAM, respectively. The BLER for the 16-QAM is more improved than
that of the PCSI, which is better than that of the 4-QAM. This is because in 16-QAM, the
number of reliable detected symbols that can be used as additional pilot symbols is larger
than in 4-QAM.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

10
-2

10
-1

10
0

Figure 6. BLERs of conventional and proposed channel estimators for different modulations.

The NMSEs of the proposed channel estimator for different data subblock lengths are
shown in Figure 7. The NMSE improves as Nb decreases. This is because the approximate
MDP using data subblocks approaches the original MDP as Nb decreases. However,
as shown in Figure 7, the NMSE improvement is insignificant, whereas the complexity
exponentially increases with Tb. Thus, (Tb, Nb) = (16, 4) is considered in this study for
the simulations.

2 4 6 8 10 12 14 16 18 20

-36

-34

-32

-30

-28

-26

-24

Figure 7. NMSEs of the proposed channel estimator for different Tb and Nb.

The NMSE of the proposed channel estimator based on the number of backup samples
is shown in Figure 8. Noticeably, the NMSE is improved as the number of backup samples
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increases. This is because the accuracy of the state–action diagram model improves as the
number of backup samples increases. In addition, with a small value of N, the proposed
channel estimator achieves a sufficient NMSE performance. It should be noted that the
complexity and latency required to determine the optimal policy increase with the number
of backup samples.

4 6 8 10 12 14 16 18 20

-36

-35

-34

-33

-32

-31

-30

-29

-28

Figure 8. NMSE of the proposed channel estimator based on the number of backup samples N.

Figures 9 and 10 are the results obtained using the proposed channel estimator in time-
varying channels. Specifically, a first-order Gaussian–Markov process used in [29,30] was
adopted.In this process, the channel matrix at time slot n is defined as

H(n) =
√

1− ε2H(n−1) + εe(n), (31)

where n ∈ Nb,d for b ∈ {1, 2, . . . , Nb} and d ∈ {1, 2, . . . , Nd}. ε ∈ [0, 1] is a temporal
correlation coefficient depending on the velocity, and H(0) is an initial channel estimate.
Each element in e(n) ∈ CNr×Nt is assumed to follow CN (0, 1). Temporal correlation
coefficients ε = 5× 10−3 and ε = 10−2 are used for the simulations.

1 2 3 4 5 6 7 8 9 10

-32

-30

-28

-26

-24

-22

-20

-18

6 7 8

-20.5

-20

-19.5

6 7 8

-31

-30.5

-30

Figure 9. NMSEs of the proposed channel estimator for different discounting factors.
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Figure 10. BLERs of the proposed channel estimators in time-varying channels.

Figure 9 shows the variation in the NMSE of the proposed channel estimator with
the discounting factor. When a channel varies over time as ε = 5× 10−3, an NMSE with
γ = 0.1 is better than it is with γ = 0.9. This is because the rewards at the future states
in the time-varying channels are insignificant; therefore, a small value of the discounting
factor is preferable. By contrast, when the channels are time-invariant, the rewards at the
future states as well as those at the current state are important. Thus, the large value of
γ = 0.9 improves the NMSE compared to γ = 0.1. Figure 10 compares the BLERs of the
proposed and conventional channel estimators. When ε = 10−2, the BLERs of the CE are
severely degraded because the CE method cannot capture the channel variation. However,
the proposed channel estimator shows robustness in time-varying channels because the
channel variation can be tracked efficiently by selecting the detected symbols.

6. Conclusions

In this paper, a low-complexity algorithm for an RL-based channel estimator for
MIMO systems was proposed. The proposed channel estimator adaptively selects detected
symbols as additional pilot symbols to minimize the channel estimation error. In this study,
an MDP problem was introduced, and a practical algorithm to solve it was developed using
backup samples and data subblocks. Simulation results showed that the proposed channel
estimator significantly improves the BLER and the NMSE compared to the conventional
channel estimator.

A future direction of this study is to develop the RL approach for a realistic channel.
The proposed method was derived based on the Rayleigh fading channel, but the realistic
channel may have a line of sight. Thus, the MDP under the Rician fading channel should
be investigated. Another important direction is to develop the RL approach for frequency-
selective channels. In frequency-selective channels, the use of multiple sub-carriers can
increase computational complexity considerably. Thus, a low-complexity algorithm in
frequency-selective channels is necessary. Lastly, the RL approach can also be extended to
other advanced channel estimators, such as the iterative method. In this method, the MDP
should be reformulated according to the channel estimator.
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Appendix A. Proof of Theorem 1

Although the basic derivation of the optimal policy is based on [26], two additional
factors are considered, which are presented in this appendix. The first is that the proposed
derivation considers a discounting factor in the Q-value; thus, the intermediate rewards
do not disappear, unlike in [26]. Second, a finite number of backup samples are used in
the derivation; thus, the rewards that do not exploit the APPs are approximated differently
compared to [26].

Under the assumption that the discounting factor is 1, the future value function at
state Ũ

(a,j)
n+N+1(Sn) ∈ Sn+N+1 is expressed by substituting (14) in (28), as follows:

V?
(
Ũ
(a,j)
n+N+1(Sn)

)
= Tr

[
Ce

(
Ũ
(a,j)
n+N+1(Sn)

)
− Ce

(
Û
(a,j)
n+N+2(Sn)

)
+
Nb,d(Tb)

∑
m=n+N+2

Ce

(
Û
(a,j)
m (Sn)

)
− Ce

(
Û
(a,j)
m+1(Sn)

)]
= Tr

[
Ce

(
Ũ
(a,j)
n+N+1(Sn)

)
− Ce

(
Û
(a,j)
Nb,d(Tb)+1(Sn)

)]
. (A1)

By substituting (14) and (A1) into (27), the Q-value function can be obtained as follows:

Q(Sn, a) = ∑
j∈Ja

T
(a,j)
n+1(Sn)Tr

[
Ce(Sn) +

n+N

∑
m=n

γm−n(γ− 1)Ce

(
Ũ
(a,j)
m+1(Sn)

)
− γN+1Ce

(
Û
(a,j)
Nb,d(Tb)+1(Sn)

)]
. (A2)

Thus, the optimal policy in (17) is expressed as

π?(Sn) = argmax
a∈{0,1}

Q(Sn, a)

= I[(Q(Sn, 1)−Q(Sn, 0)) ≥ 0]

= I
[

Tr
[ n+N

∑
m=n

γm−n(γ− 1)
( K

∑
j=1

θj[n]Ce

(
Ũ
(1,j)
m+1(Sn)

)
− Ce

(
Ũ
(0,0)
m+1(Sn)

))

− γN+1
( K

∑
j=1

θj[n]Ce

(
Û
(1,j)
Nb,d(Tb)+1(Sn)

)
− Ce

(
Û
(0,0)
Nb,d(Tb)+1(Sn)

))]
≥ 0

]
. (A3)

In (17), the optimal policy is determined by the difference between the error covariance
matrices with a = 0 and a = 1. The error covariance matrices for virtual states Ũ

(a,j)
m (Sn)

and Û
(a,j)
m (Sn) are derived as described below.

Appendix A.1. Error Covariance Calculation for Ũ(a,j)
m (Sn)

To obtain the error covariance matrix, the distribution of the received symbols,
ȳH

r

(
Ũ
(a,j)
m (Sn)

)
, in (2) is required, which is given by
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ȳH
r

(
Ũ
(a,j)
m (Sn)

)
∼ CN

(
0
|M(a)

m |
,
(

X(a,j)
m

)H
X(a,j)

m + N0I
|M(a)

m |

)
, (A4)

for j ∈ Ja and a ∈ A. Thus, the error covariance matrix in (A3) is computed using the
result in [26], as follows:

Ce

(
Ũ
(a,j)
m (Sn)

)
= N0Q(a)

m − N2
0

(
Q(a)

m

)2
+ Q(a)

m D(a,j)
m

(
D(a,j)

m

)H
Q(a)

m , (A5)

where

Q(a)
m =

(
X̂(a)

m

(
X̂(a)

m

)H
+ N0INt

)−1
(a)
=


(

X̂nX̂H
n +

m−1
∑

l=n+1
x̃[l]x̃H [l] + N0INt

)−1

, a = 0,((
Q(0)

m

)−1
+ x̂[n]x̂H [n]

)−1
, a = 1.

D(a,j)
m = X̂(a)

m

(
X̂(a)

m − X(a,j)
m

)H
+ N0INt

(b)
=

X̂n
(
X̂n − Xn

)H
+

m−1
∑

l=n+1
x̂[l](x̂[l]− x̃[l])H + N0INt , j ∈ Ja, a = 0,

D(0,0)
m + x̂[n]

(
x̂[n]− xj

)H , j ∈ Ja, a = 1.

Thus, the matrix Q(1)
m is re-expressed as

Q(1)
m = Q(0)

m −
Q(0)

m x̂[n]x̂H [n]Q(0)
m

1 + x̂H [n]Q(0)
m x̂[n]

. (A6)

In addition, D(1,j)
m

(
D(1,j)

m

)H
can be computed as

D(1,j)
m

(
D(1,j)

m

)H
=
(

D(0,0)
m + d̂n

)(
D(0,0)

m + d̂n

)H
+ δ̂nx̂[n]x̂H [n], (A7)

where d̂n = x̂[n](x̂[n]− x̃[n])H , and

δ̂n =
K

∑
j=1

θj[n]‖x̂[n]− xj‖2 − ‖x̂[n]− x̃[n]‖2. (A8)

Appendix A.2. Error Covariance Calculation for Û(a,j)
m (Sn)

Similar to the description in Appendix A.1, the error covariance matrix for Û(a,j)
m (Sn)

can be obtained as

Ce

(
Û
(a,j)
Nb,d(Tb)+1(Sn)

)
= N0Q(a)

Nb,d(Tb)+1 − N2
0

(
Q(a)
Nb,d(Tb)+1

)2

+ Q(a)
Nb,d(Tb)+1D(a,j)

Nb,d(Tb)+1

(
D(a,j)
Nb,d(Tb)+1

)H
Q(a)
Nb,d(Tb)+1, (A9)

where Q(0)
Nb,d(Tb)+1 and D(0,0)

Nb,d(Tb)+1 can be obtained from (26) as

Q(0)
Nb,d(Tb)+1 =

(
X̂nX̂H

n +
n+N

∑
l=n+1

x̃[l]x̃H [l] +
Nb,d(TB)

∑
l=n+N+1

x̂[l]x̂H [l] + N0INt

)−1

D(0,0)
Nb,d(Tb)+1 = D(0,0)

n+N+1.
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To resolve the detected symbols after n+ N + 1 in (A9), Q(0)
Nb,d(Tb)+1 is further approximated.

To this end, the expectation value of Q(0)
Nb,d(Tb)+1 is used with Jensen’s inequality in (A9), yielding

Q(0)
Nb,d(Tb)+1 ≈ E

{(
X̂nX̂H

n +
n+N

∑
l=n+1

x̃[l]x̃H [l] +
Nb,d(Tb)

∑
l=n+N+1

x̂[l]x̂H [l] + N0INt

)−1
}

≥
(

X̂nX̂H
n +

n+N

∑
l=n+1

x̃[l]x̃H [l] + (Nb,d(Tb)− (n + N − 1) + N0)INt

)−1

, (A10)

where E{x̂[n]x̂H [n]} ≈ E{x[n]xH [n]} = INt . Thus, by substituting (A5) and (A9) into (A3),

a result in (29) is obtained where Qm = Q(0)
m+1 and Dm = D(0,0)

m+1.
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