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processing in visual cortex when stimuli are behaviorally relevant
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Abstract Recent views of information processing in the

(human) brain emphasize the hierarchical structure of the

central nervous system, which is assumed to form the basis

of a functional hierarchy. Hierarchical predictive process-

ing refers to the notion that higher levels try to predict

activity in lower areas, while lower levels transmit a pre-

diction error up the hierarchy whenever the predictions fail.

The present study aims at testing hypothetical modulatory

effects of unpredictable visual motion on forward con-

nectivities within the visual cortex. Functional magnetic

resonance imaging was acquired from 35 healthy volun-

teers while viewing a moving ball under three different

levels of predictability. In two different runs subjects were

asked to attend to direction changes in the ball’s motion,

where a button-press was required in one of these runs

only. Dynamic causal modeling was applied to a network

comprising V1, V5 and posterior parietal cortex in the right

hemisphere. The winning model of a Bayesian model

selection indicated an enhanced strength in the forward

connection from V1 to V5 with decreasing predictability

for the run requiring motor response. These results support

the notion of hierarchical predictive processing in the sense

of an augmented bottom-up transmission of prediction

error with increasing uncertainty about motion direction.

This finding may be of importance for promoting our

understanding of trait characteristics in psychiatric

disorders, as an increased forward propagation of predic-

tion error is assumed to underlie schizophrenia and may be

observable at early stages of the disease.

Keywords Effective connectivity � Dynamic causal

modeling (DCM) � Predictive coding � Hierarchical

processing � Prediction error

Introduction

Current views about the general principle of the function-

ing of the brain emphasize the importance of predictions

that are generated by the central nervous system. Accord-

ing to these views the hierarchical organization of the

(human) brain plays a fundamental role in implementing

this predictive mode of operation (Rao and Ballard 1999;

Friston and Kiebel 2009; Friston 2010; Hohwy 2013; Clark

2013). Sensory information enters the system at low hier-

archical levels while predictions of these sensory inputs are

represented in higher levels. The architecture of the visual

system of primates, for example, accommodates such a

hierarchical structure in that ascending (or feed-forward)

pathways predominantly originate in superficial layers of

lower regions and terminate in layer IV of the hierarchi-

cally higher areas. Conversely, descending (or feedback)

projections from higher to lower regions generally origi-

nate in deep pyramidal cells of layer V of the higher region

while ending in layer I and VI of the lower area (Mumford

1992; Felleman and Van Essen 1991). Although recent

tracer studies were able to show that the hierarchy pro-

posed by Felleman and Van Essen is correct in most

aspects, some restrictions have to be made. First, quanti-

tative methods slightly rearranged the level of some visual

areas within the hierarchical order, for example the
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position of the frontal eye fields (FEF). Second, the defi-

nition of feed-forward and feedback pathways originating

mainly in the supra- and infragranular layers, respectively,

is less strict. But it is nevertheless an appropriate indicator

of the direction of connections (Barone et al. 2000; Vezoli

et al. 2004; Markov et al. 2014).

Hierarchical predictive coding has been proposed as an

explanation for extra-classical receptive-field effects in the

visual cortex (Rao and Ballard 1999). This scheme assumes

that redundancy in encoding sensory input is reduced by

modeling its statistical regularities. Instead of propagating

all inputs from one level to the next, only residuals or

errors containing the deviation of the input from the pre-

diction are passed up the hierarchy. Predictions provided

by higher regions are used to explain the input in lower

regions via their backward projections. The same concept

underlies the ‘‘Bayesian brain hypothesis’’ (Knill and

Pouget 2004) which emphasizes the probabilistic nature of

such iterative processes of sensing and predicting. Friston

(2010) has proposed a unified theory—the free-energy

principle—which states that self-organizing systems need

to minimize their free-energy to survive (Friston and Ste-

phan 2007). In the current context it is important to know

that under certain simplifying assumptions, minimizing

free-energy is equivalent to minimizing prediction error

with both leading to ‘‘Bayes optimal’’ results. In this way it

is assumed that generative models, which try to infer the

underlying causes in the (outside) world from sensory

inputs, are implemented, tested and updated in the brain by

hierarchical predictive processing (Clark 2013).

In a previous study we investigated the effective con-

nectivity of the cerebellum with visual areas during an

attention-to-motion task (Kellermann et al. 2012). The

pattern of modulatory inputs of attention to the uniform and

therefore, highly predictable motion fitted well with both

the presumed role of the cerebellum as a state estimator

(also) in perception (Paulin 2005; O’Reilly et al. 2008) and

the notion of hierarchical predictive processing. The pos-

terior parietal cortex (PPC) sent its outputs via crus I of the

cerebellum to the lower region V5, where the latter con-

nection, namely from crus I to V5, was enhanced during

attention to the predictable stimuli. Conversely, we found a

suppression of the feed-forward connection from V5 to

PPC at the same time, i.e., during attention to pre-

dictable motion. The present study aimed at testing specific

hypotheses derived from hierarchical predictive processing

during unpredictable visual motion by means of dynamic

causal modeling (DCM) for functional magnetic resonance

imaging (fMRI). Compared to our previous investigation,

in which top-down (or goal-directed) attention was

manipulated, the present study presumes attentional effects

as a result of stimulus-driven feed-forward effects, with

randomly behaving stimuli capturing more attention than

predictable ones. In contrast to predictable stimuli, unpre-

dictable visual motion would be associated with an

enhanced strength of feed-forward connections, e.g., from

V1 to V5 or from V5 to PPC. Goal-directed attention has

been associated with the optimization of expected precision

in the sense of an enhanced modulatory effect of attention

on the self-connections of higher order nodes (Feldman and

Friston 2010; Kok et al. 2012). This modulatory effect on

the self-connections was also tested at the level of V5 in the

present study with the distinction that attention was rather

stimulus-driven as compared to goal-directed. While this

enhancement of bottom-up processing reflects the message

passing of prediction error up the hierarchy, a simultaneous

down regulation of top-down influences might be con-

ceivable. This effect might reflect reduced top-down ‘‘ex-

planations’’ of sensory inputs in lower regions (e.g., V1) by

representations in higher areas (e.g., V5).

The main hypothesis pursued in this study states that a

Bayesian model selection procedure among a large space

of dynamic causal models would yield highest probability

for a model (or a family of models) in which stimulus

unpredictability positively modulates forward connectivity

and/or negatively modulates backward connectivity within

the visual hierarchy. The nodes whose hierarchical con-

nections we chose to examine were primary visual cortex

V1, motion-sensitive visual cortex V5 and posterior pari-

etal cortex (PPC).

Experimental methods

Subjects

The complete sample comprised 37 healthy, right-handed

subjects, two of whom were excluded due to excessive head

motion (translation of more than 3 mm). The remaining 35

participants (21 males, 14 females) had no history of neu-

rological or psychiatric illness and were aged between 18 and

41 years (mean 27.2 years, SD 4.7 years). All subjects gave

written informed consent prior to participation in the study.

The study adhered to the standards provided by the Decla-

ration of Helsinki regarding ethical principles for medical

research involving human subjects and the local Institutional

Review Board approved the protocol.

Stimuli and task

Visual stimuli were presented by means of an MR-com-

patible goggles system (Resonance Technology Company

Inc., Los Angeles, USA). The visible screen covered

approximately 25� 9 19� of the visual field of the subjects

with a resolution of 800 9 600 pixels. Controlling and

timing of stimuli was achieved using the Presentation
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software (Neurobehavioral Systems Inc., Berkeley, USA).

The visual stimuli consisted of a white frame

(*24� 9 16�) on a black background containing a white

filled circle (*2� in diameter). During the baseline con-

dition the white circle (or ‘‘ball’’) was presented stationary

within the white frame where the starting point at the

beginning of each run was the center of the screen. In each

of the 30 experimental blocks the ball moved with a con-

stant speed of *6� per second for 20, 20.5 or 21.5 s

without leaving the frame. Between two subsequent

experimental blocks a baseline with a mean length of 10 s

was inserted in which the ball stopped moving and stayed

at the last position of the preceding block. The following

experimental block started with a jitter of 0, 0.5 or 1.5 s

and the ball began moving again starting from its last

position.

The 30 experimental blocks of one run were divided into

three different conditions, where the sequential order was

pseudo-randomized and the durations as well as the jitters

were counterbalanced. During the PREDICTABLE condition

the ball changed its direction of motion if and only if it touched

the border of the frame where the angle of dip corresponded to

the emergent angle. Thus, the trajectory of the ball was pre-

dictable because of its resemblance of a ball bouncing from a

cushion of a pool table. The RANDOM blocks were less

predictable than the aforementioned condition since the

emergent angle—when the ball rebounded from the cush-

ion—varied randomly and thus did not correspond to the

incident angle with the constraint that the ball stayed within

the frame. Finally, the ARBITRARY condition was the least

predictable because changes in direction of motion not only

occurred with contacts of the ball with the cushion but also in

random intervals in the middle of the frame (see Fig. 1).

Hence, the predictability of the motion decreased from the

PREDICTABLE over the RANDOM to the ARBITRARY

condition. It should be noted, however, that the ARBITRARY

condition differed from the other two conditions also in terms

of the number of motion direction changes which occurred

about 1.6 times more often than in one of the other two con-

ditions. On average, one session contained 184.8 (SD 3.6)

changes in the PREDICTABLE condition, 183.7 (SD 9.2)

changes in the RANDOM condition and 288.9 (SD 12.2)

changes in the ARBITRARY condition. This confounding

effect and its impact on the interpretability of the results will

be considered in the discussion of the data.

In each of the two runs per participant the subject was

instructed to keep track of the ball and to attend to its

changes in direction of motion. In other words subjects

were requested to pursue the moving ball overtly with their

eyes and to look out for motion direction changes. The two

runs differed from each other only in the response-mode

where the participant had to indicate each (perceived)

change in motion direction by a button-press with the right

index finger in the ‘‘active’’ run, whereas the subject just

had to keep track of the ball and attend to motion direction

changes (without any motor response) in the ‘‘passive’’ run.

To familiarize the subjects with the stimuli, the passive run

preceded the active one for most of the participants (21 of

the 35; 13 males, 8 females). To exclude, however, the

possibility that any (main or interaction) effects of the

response-mode (active vs. passive) might be due to their

mere sequential order, the remaining 14 subjects (8 males,

6 females) were measured with the reversed order.

Data acquisition

Functional magnetic resonance imaging (fMRI) was per-

formed using a Siemens Trio 3T MRI scanner. In each of

Fig. 1 Illustration of the exemplary trajectories of the visual motion. Each

panel depicts the movement of the white circle roughly during the first 10

seconds of a block. The different panels show exemplary trajectories of the

ball during the predictable a, random b and arbitrary c condition
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the two runs per subject 515 functional images were

acquired using a T2*-weighted echo-planar imaging (EPI)

sequence covering the whole brain with 33 axial slices

having a thickness of 3.4 mm (gap between slices

0.51 mm). Each slice had a resolution of 64 9 64 pixels

and a field of view of 200 9 200 mm2, resulting in a voxel

size of 3.125 9 3.125 9 3.4 mm3. The echo-time (TE)

was 30 ms, the flip-angle amounted to 75� and the repeti-

tion time (TR) was 1800 ms, which resulted in an acqui-

sition time of 15 min and 45 s per functional run. The first

three images of each run were discarded due to T1 stabi-

lization effects. After the two functional runs an anatomical

image was acquired with a T1-weighted magnetization

prepared rapid gradient echo (MPRAGE) sequence yield-

ing a resolution of 1 9 1 9 1 mm3 (TR: 1900 ms, TE:

2.52 ms, flip-angle: 9�).

Data preprocessing and general linear model

analyses

Preprocessing and analyses of fMRI data were performed

in SPM8 (Wellcome Trust Centre for Neuroimaging,

London) implemented in Matlab 8 (The MathWorks). The

remaining 512 functional images of each run were rea-

ligned using the two-pass procedure implemented in SPM.

Anatomical scans were aligned to the resulting mean EPI

of each run and normalization parameters were obtained

using the unified segmentation approach (Ashburner and

Friston 2005). The functional time-series were transformed

into the standard space defined by the Montreal Institute of

Neurology (MNI) by applying the normalization parame-

ters to the time-series. Normalized images were resampled

at a resolution of 2 9 2 9 2 mm3 and spatially smoothed

with an isotropic Gaussian kernel of 8 mm full width at

half-maximum.

The two runs per subject were modeled by convolving

the boxcar functions of the three conditions per run with

the canonical hemodynamic response function. The above

mentioned baseline during which the ball was presented

stationary served as implicit (i.e., not explicitly modeled)

low-level baseline (see ‘‘Stimuli and task’’). The resulting

six (2 runs by 3 conditions) predictors were used as

regressors in a general linear model (GLM), where the

realignment parameters and intercepts of each run served

as covariates of no interest. Low-frequency drifts were

removed by a high-pass filter with a cut-off period of 128 s

and temporal autocorrelations were accounted for by

removing the estimated first-order autoregressive effects of

the time-series. The resulting six volumes of interest with

the parameter estimates per participant were subjected to a

3 9 2 mixed-effects ANOVA at the group level with

predictability (PREDICTABLE, RANDOM and ARBI-

TRARY) and response-mode (ACTIVE and PASSIVE) as

fixed effects factors. Variance components were specified

to account for heteroscedasticity (between conditions and

subjects, where the latter was implemented as random-ef-

fects factor) and dependencies among within-subject

observations. The threshold for rejecting the null-hypoth-

esis was set to p\ 0.001, family-wise error corrected at the

voxel level for multiple comparisons per contrast with an

additional extent threshold of 100 continuous voxels.

Dynamic causal modeling

Dynamic causal modeling (DCM) was performed using

DCM10 as implemented in SPM8. In short, with DCM one

models observed data from coupled brain regions in terms

of their endogenous connectivity structure, driving inputs

of experimental conditions and modulatory inputs of these

conditions on the connectivities between nodes. The

observed fMRI data is modeled by an explicit forward

model specifying how the measured signal was caused at

the neuronal level (Friston et al. 2003). Most importantly,

the same data is then explained by a set of different com-

peting models all of which are based on the same forward

model but differ with respect to their connectivity struc-

ture. The interaction of the exogenous inputs (direct or

modulatory) to the system and the neuronal states is

modeled by means of a bilinear differential equation as

shown in the formula below. The variable x represents the

neuronal states in the n nodes (or regions). The n 9 n

matrix A contains the time-invariant coupling parameters

for the connections between nodes (if the respective con-

nection is present) as well as the self-connections. The

three-dimensional n 9 n 9 m matrix B entails the param-

eters of the modulatory inputs of the m experimental inputs

(denoted by u) on the connections between nodes as well as

on the self-connections. Finally, matrix C is of size n 9 m

and comprises the direct input parameters of the m exper-

imental conditions on the n nodes.

dx=dt ¼ Aþ
Xm

i¼1

uiB
ðiÞ

 !
xþ Cu ð1Þ

Different competing models can be specified by inclu-

sion (1) or omission (0) of one or more of the parameters in

the matrices A, B and C, resulting in an exhaustive model

space comprising 2(n 9 n) 9 (m ? 1) ? (m 9 n) models in the

case when all combinations of connections and inputs shall

be modeled. Usually only a substantially smaller subset of

‘‘plausible’’ models is considered in the model space to

keep inversion of all models in the space computationally

feasible. Inference made during Bayesian model selection

(BMS), however, refers only to the tested models within

the space and does not extend to any model of the

exhaustive space that is not included. The competing
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models can then be compared to each other based on their

log-evidence approximated with their variational free-en-

ergy, from which a posterior probability for each model

can be derived reflecting the relative evidence of that

model given the data.

Time-series were extracted for analyses of effective

connectivity from primary visual cortex (V1), motion-sen-

sitive extra-striate cortex (V5) and posterior parietal cortex

(PPC). Coordinates of the regions were based on the group

analysis of a contrast comparing all moving stimuli against

the low-level baseline (not reported). Individual coordinates

were then found by jumping to the nearest local maximum in

the respective first-level contrast. The first eigenvariate of all

suprathreshold voxels (p\ 0.01 uncorrected) within a

sphere of 5 mm radius was used to represent the time-series

of the respective region. High-pass filtering was applied to

these data as specified above and the variance explained by

the realignment parameters and the session intercepts was

removed. The direct inputs used in dynamic causal modeling

(DCM) were slightly modified compared to the GLM in the

sense that the first predictor included all moving visual

stimuli (i.e., PREDICTABLE, RANDOM and ARBI-

TRARY, henceforth MOTION), the second one contained

the two non-predictable conditions (RANDOM and ARBI-

TRARY, henceforth UNPREDICTABLE) and the last was

identical to the ARBITRARY regressor. Thus, the projection

space was identical to the GLM analysis, where this mod-

eling more directly reflects the additional effects of

decreasing predictability.

Bayesian model selection (BMS) was performed among a

set of models to test the hypothesis that increasing unpre-

dictability of visual motion positively modulates feed-for-

ward connections. This main BMS was preceded by pre-

selection of models which is described in detail with respect

to its rationale, procedure and results in the paragraphs

below. For the main BMS the endogenous connectivity

structure between the three nodes consisted of reciprocal

connections between V1 and V5 on the one hand and

between V5 and PPC on the other, i.e., two feed-forward

(V1 ? V5 and V5 ? PPC) and two backward (V5 ? V1

and PPC ? V5) connections. One family of models within

the model space had a driving input of MOTION on V1 and

another direct input of ARBITRARY stimuli on PPC

(Fig. 2a). One other family had an additional direct input of

MOTION on V5 (Rodman et al. 1989; Girard et al. 1992;

Sincich et al. 2004) (see Fig. 2b). Based on previous model

selection procedures concerning the effects of direct inputs

on the three nodes (see below) we also included a family of

models with the additional direct inputs of UNPREDICT-

ABLE on V5 and of ARBITRARY on V5 and PPC (see

Fig. 2c). Each family comprised 256 models reflecting the

2(294) possible modulatory effects of the two conditions

UNPREDICTABLE and ARBITRARY on the four con-

nections described above. Common to each single model was

the modulatory effect of MOTION on the V1 ? V5 con-

nection. Thus far, the model space consisted of 768 models

per subject and session. However, we also tested a change in

the synaptic gain of V5 due to either UNPREDICTABLE or

ARBITRARY stimuli, which tripled the number of models

in the model space to 2304. This is the model space which is

referred to in the results section.

In what follows we describe a two-step pre-selection

procedure that was performed prior to the main BMS

described above. Because the main BMS depended on the

results of this pre-selection, results of this procedure are

already included here, whereas the results of the main BMS

can be found in the results section. The first pre-selection

of dynamic causal models (DCMs) served the identification

of direct inputs of the three conditions (MOTION,

UNPREDICTABLE and ARBITRARY) on one or more of

the three nodes. The rationale for this procedure was the

negligence of other regions that may exert particularly top-

down effects on the modeled system, which may be asso-

ciated with enhanced salience or saccadic eye movements

Fig. 2 Different input structures of the three model families.

Overview of the different driving input structures of the three model

families examined in the Bayesian model selection. Each of the three

families contained 256 models with different combinations of the

modulatory inputs of unpredictable and/or arbitrary stimuli on the

connections between the nodes
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during the ARBITRARY condition. If such effects of non-

included regions (e.g., the frontal eye fields or superior

colliculi) exist, one way to model these in a reduced system

would be as direct inputs to one or more of the included

nodes. The sequential testing of subspaces of models was

necessary to keep the computational burden for the main

research question feasible. Although sequential testing

cannot equivalently replace a test of all combinations of

parameters, we pursued this suboptimal strategy to test

several different direct inputs while keeping the computa-

tional load manageable at the same time. Sequential testing

of several subspaces is rather unproblematic for fixed-ef-

fects (FFX) Bayesian model selection (BMS) as long as all

models in Occam’s window are considered in each selec-

tion. Random-effects (RFX) BMS, however, may yield

inconclusive results when used sequentially (Penny et al.

2010). It should be emphasized that sequential model

selection still bears the risk that there are models with a

combination of parameters not tested during one of the

BMS which are superior to the winning models of the

restricted spaces tested in this study. In other words, the

main BMS only tests for those models that are included in

that selection and it does not make any inference on models

outside that space. Therefore, the pre-selection can only be

regarded as some sparse evidence for the direct inputs.

In a first consideration we concentrated on the combina-

tions how UNPREDICTABLE and/or ARBITRARY might

perturb the system at V5 and/or at PPC, reducing the number

of possibilities to 2(292) = 16. Because the visual input to the

system did not change with respect to any other property than

motion (even the low-level baseline included a static view of

the visual stimuli), we also tested if MOTION exerted a

direct influence on V1. Theoretically, the input to V1 might

have been a constant across the entire time-series, where the

effect of MOTION, for example, is realized as an exclusively

modulatory input (e.g., on the connection from V1 to V5).

Therefore, complete model space of this first pre-selection

procedure included 2(2 9 2)?1 = 32 models reflecting all

possible combinations of direct inputs of MOTION on V1

and/or UNPREDICTABLE and/or ARBITRARY on V5

and/or PPC (see Table 1A where these 5 direct inputs are

indicated with an X).

The endogenous connectivity structure was the same as

for all models, namely reciprocal connections between V1

and V5 and reciprocal connections between V5 and PPC.

In addition, the models shared the modulatory input of

MOTION on the V1 ? V5 connection. With respect to the

modulatory inputs of UNPREDICTABLE and/or ARBI-

TRARY on any of the endogenous connectivities, we

included all parameters assuming that their inclusion ren-

dered the need for additional parameters reflecting direct

inputs rather improbable. BMS among these 32 models

using fixed effects for inference indicated strong evidence

in favor of the model with four simultaneous driving

inputs, namely MOTION ? V1, UNPREDICTA-

BLE ? V5, ARBITRARY ? V5 and ARBITRAR-

Y ? PPC with a posterior probability exceeding 99.99 %.

In a second step during pre-selection, we asked for the

plausibility of a direct input of MOTION on V5 and/or PPC,

keeping other direct inputs, endogenous connectivity and

modulatory inputs from the winning model in the first step.

Therefore, we tested the winning model of the BMS above

against the three other models that allowed MOTION to

drive either V5 or PPC or both V5 and PPC (Table 1B). The

winning model of this BMS (again using fixed-effects)

clearly outperformed the competing three models with a

posterior probability exceeding 99.99 % and indicated that

MOTION had a driving input in V1 and V5, UNPRE-

DICTABLE had a direct input in V5 and ARBITRARY had a

direct input in V5 and PPC (see Table 1C; Fig. 2c). The

result of this pre-selection was the reason for inclusion of a

whole model family in the main BMS with this rather com-

plicated input structure which is depicted in Fig. 2c.

Results

Descriptive results of the behavioral data

During the response-mode session subjects pressed the

button on average 183.4 times (SD 7.5) in the PRE-

DICTABLE condition. In the RANDOM condition sub-

jects gave on average 173.7 responses (SD 12.0), whereas

the average number of button presses in the ARBITRARY

condition yielded 235.2 events (SD 24.5). Due to the fre-

quent number of motion direction changes particularly in

Table 1 A denotes the direct inputs that were switched on and off

with an ‘X’ for a first pre-selection. This resulted in an input structure

denoted with a ‘1’ in B. Then another selection was performed using

this input structure while switching those inputs denoted with an ‘X’

in B. C shows the winning input structure of this pre-selection

MOTION UNPREDICTABLE ARBITRARY

A

V1 X 0 0

V5 0 X X

PPC 0 X X

B

V1 1 0 0

V5 X 1 1

PPC X 0 1

C

V1 1 0 0

V5 1 1 1

PPC 0 0 1
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the ARBITRARY condition (but also occasionally in the

RANDOM condition when the ball was located near one of

the edges) a distinct accuracy assignment was not possible.

Two-way ANOVA predictability 3 response-mode

Activation of the dorsal visual stream of all moving visual

stimuli against baseline (MOTION contrast) covered the

whole dorsal visual stream as well as the supposed human

homologue to the frontal eye fields (FEF) and a large part

of the cerebellum (results not shown). The main effect of

predictability is confined to the one-tailed t contrasts

RANDOM[ PREDICTABLE and ARBITRARY[
RANDOM and their conjunction (see Fig. 3) which was

performed as test against the conjunction null-hypothesis

(Nichols et al. 2005).

The former of the two comparisons yielded a slightly

right lateralized network as indicated by a negative later-

alization index of -0.39. This index was assessed by sub-

tracting the number of suprathreshold voxels in the right

hemisphere from those in the left hemisphere and dividing

this difference by the total number of suprathreshold voxels.

This network comprised bilateral extra-striate cortices (V5

and middle occipital gyrus), bilateral frontal eye fields

(FEF), right inferior frontal gyrus and left inferior precen-

tral gyrus. The large cluster in the right hemisphere com-

prising V5 extended dorsally to superior temporal gyrus

(STG) and the supramarginal gyrus, thus also covering the

temporo-parietal junction (TPJ). The homologue areas in

the left hemisphere of the last cluster corresponded to iso-

lated activations in V5 and supramarginal gyrus. In addi-

tion, lobule VIIa of the left cerebellar hemisphere was more

active during the RANDOM as compared to the PRE-

DICTABLE condition (see Table 2).

The comparison of ARBITRARY to RANDOM stimuli

exhibited both similarities as well as differences to the

aforementioned contrast. In general, the activation pattern

was a bit more symmetrical (lateralization index -0.26),

the common activated areas were spatially larger and other

regions were recruited in addition, particularly dorsomedial

prefrontal cortex (dmPFC) and subcortical nuclei in the

thalamus and brain stem (a complete list of activated

clusters is summarized in Table 3). The above mentioned

large right hemispherical activation containing V5, STG

and the supramarginal gyrus survived the statistical

threshold again, where the cluster extended to more inferior

Fig. 3 Depiction of activation differences between the levels of

predictability. a Maximum intensity plots of the contrast Random[
Predictable motion (upper panel) and Arbitrary [ Random motion

(lower panel). b Selected sections of the Arbitrary (Arb)[ Random

(Rnd) contrast showing clusters inter alia in the dorsomedial

prefrontal cortex, the thalamus and brain stem. The sagittal section

in the upper right panel shows significant activations at the level of

x = 8 mm, whereas the axial slices at the bottom show those at the

level of z = -6 mm (left) and z = 2 mm (right). c Sagittal slices

from the right hemisphere showing the conjunction of the two

contrasts depicted in a. Numerals above the slices indicate the

distance in millimeters (z-coordinates) from the midline. The blue

lines on the coronal slice on the right illustrate the levels of the

sagittal slices. All images were thresholded at p\ 0.001 corrected at

the voxel level and an extent threshold of 100 contiguous voxels
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brain areas comprising the fusiform gyrus (FFG) and even

bestriding a local maximum within crus I of the right

cerebellar lobule VIIa. The corresponding activation in the

left hemisphere was fragmented into smaller clusters, but—

apart from V5—also included crus I, FFG, STG and the

supramarginal gyrus. A huge activation cluster comprised

of more than 7000 voxels was likely the result of a merging

of several smaller clusters as indicated by several local

maxima (see Table 3). This large cluster in the (right)

prefrontal cortex stretched inferiorly from the anterior

insula over the inferior frontal and precentral gyri to the

superior frontal gyrus, bilateral supplementary motor area

(SMA) including dmPFC and the dorsal anterior cingulate

cortex (dACC), sometimes referred to as mid-cingulate

cortex (see Fig. 3b). The homologue areas in the left pre-

frontal cortex were constrained to the lateral parts but also

comprised the anterior insula and inferior frontal and

precentral gyri. Two more clusters were found more

anterior at the cortical level, namely in bilateral middle

frontal gyrus. At the subcortical level there was one supra-

threshold cluster covering most of the bilateral thalamus as

well as part of the tectum, particularly the colliculi supe-

rior. The test against the conjunction null-hypothesis of the

two contrasts RANDOM[PREDICTABLE and ARBI-

TRARY[RANDOM (see Fig. 3c) yielded the highest

absolute lateralization index of -0.61 indicating a lateral-

ization to the right hemisphere.

With respect to the predictability 9 response-mode

interaction, it must be noted that 82.5 % of the suprathreshold

voxels of this interaction are a subset of the main effect pre-

dictability (see Fig. 4). In other words, nearly all regions

exhibiting an interaction effect differed also profoundly with

respect to their responses to the predictability of visual

motion, where less predictability was associated with more

Table 2 Activation clusters for the comparison random versus predictable motion

Anatomical label Anatomy toolbox Cluster size t score MNI coordinates

x y z

Right supramarginal gyrus IPC (PF) 5612 10.37 60 -28 32

Right middle temporal gyrus hOC5 (V5) 9.94 54 -64 2

Right inferior temporal gyrus 9.67 48 -54 -14

Right middle temporal gyrus IPC (PGp) 9.17 42 -72 22

Right inferior temporal gyrus 9.08 54 -68 -10

Right middle occipital gyrus IPC (PGp) 9.07 40 -76 24

Right middle temporal gyrus 8.96 48 -54 4

Right middle temporal gyrus 8.76 56 -56 -2

Right superior temporal gyrus 8.50 58 -40 12

Right inferior parietal lobule 7.70 56 -32 56

Right supramarginal gyrus Area 2 7.41 40 -36 44

Right inferior frontal gyrus

(p. Opercularis)

Area 44 1678 10.12 48 8 24

Right middle frontal gyrus 8.38 28 6 54

Right middle frontal gyrus Area 6 7.43 38 0 52

Right precentral gyrus 7.33 34 -2 50

Left supramarginal gyrus IPC (PF) 904 8.45 -64 -22 36

Left inferior parietal lobule 6.69 -44 -38 42

6.49 -20 -56 42

hIP1 6.45 -36 -40 38

6.13 -26 -48 38

Left precuneus SPL (7A) 5.97 -12 -62 48

Left cuneus 5.78 -18 -72 36

Left middle temporal gyrus hOC5 (V5) 865 9.09 -50 -68 2

Left inferior occipital gyrus hOC5 (V5) 7.62 -46 -74 -12

Left precentral gyrus 464 10.49 -44 2 26

Left cerebellum Lobule VIIb 347 10.63 -12 -76 -46

Left middle occipital gyrus IPC (PGp) 263 7.48 -38 -82 20

Left middle frontal gyrus 105 7.09 -26 2 54
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Table 3 Activation clusters of the comparison arbitrary versus random motion

Anatomical label Anatomy toolbox Cluster size t score MNI coordinates

x y z

Right middle temporal gyrus 7149 10.78 58 -40 10

Right superior temporal gyrus IPC (PF) 10.35 66 -34 18

Right supramarginal gyrus IPC (PFt) 9.84 54 -32 44

Right supramarginal gyrus IPC (PF) 9.73 56 -32 50

Right middle temporal gyrus hOC5 (V5) 9.07 52 -66 2

Right middle temporal gyrus 8.95 50 -52 0

Right inferior temporal gyrus 8.92 52 -66 -8

Right supramarginal gyrus IPC (PF) 8.72 62 -28 32

Right fusiform gyrus 8.54 46 -50 -20

Right supramarginal gyrus IPC (PFop) 8.50 60 -16 24

Right cerebellum Lobule VIIa Crus I 8.19 38 -56 -30

Right SMA Area 6 6332 12.18 4 16 48

Right insula lobe 11.79 32 26 4

Right insula lobe Area 45 10.91 44 22 0

Right precentral gyrus 10.15 46 4 50

Right inferior frontal gyrus

(p. Opercularis)

9.90 48 16 20

Right inferior frontal gyrus

(p. Opercularis)

Area 44 9.90 50 12 20

Right precentral gyrus Area 6 9.48 38 -2 50

Right inferior frontal gyrus

(p. Opercularis)

8.92 42 10 32

Left SMA Area 6 8.88 -12 6 64

Right superior frontal gyrus 6.94 24 12 60

Left middle cingulate cortex 6.04 -10 24 34

Left middle temporal gyrus 2717 10.20 -50 -44 10

Left superior temporal gyrus 9.47 -62 -44 12

Left inferior parietal lobule hIP2 8.51 -50 -40 42

Left SUPRAMARGINAL Gyrus IPC (PFcm) 8.28 -54 -40 24

Left supramarginal gyrus IPC (PFcm) 8.27 -52 -44 30

Left supramarginal gyrus IPC (PF) 8.24 -58 -38 24

Left supramarginal gyrus IPC (PF) 8.12 -52 -38 34

Left superior temporal gyrus IPC (PFcm) 7.51 -46 -32 20

Left supramarginal gyrus IPC (PFop) 7.05 -58 -22 24

Left inferior parietal lobule hIP1 6.24 -32 -46 38

Left inferior parietal lobule 6.14 -28 -52 44

Left cerebellum Lobule VIIb (Hem) 2289 8.95 -16 -76 -46

Left cerebellum Lobule VIIa Crus I 8.83 -32 -60 -32

Left cerebellum Lobule VIIa Crus I 8.57 -40 -58 -32

Left cerebellum Lobule VIIa Crus I 8.04 -34 -68 -26

Left cerebellum Lobule VIIa Crus I 7.71 -44 -62 -24

Left inferior occipital gyrus hOC4v (V4) 7.59 -42 -78 -14

Left inferior occipital gyrus hOC4v (V4) 7.55 -40 -86 -12

Cerebellar vermis Lobule VIIIa (Vermis) 7.02 0 -70 -34

Cerebellar vermis Lobule VI (Hem) 6.66 6 -74 -22

Left cerebellum Lobule VI (Hem) 6.56 -6 -78 -22

Cerebellar vermis Lobule VIIIb 5.93 0 -60 -38
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activity. More precisely, this interaction occurred in bilateral

dmPFC (close to pre-SMA), bilateral thalamus and bilateral

inferior frontal gyrus as well as insula.

Moreover, two clusters were located symmetrically at

the border between FFG and crus I of the cerebellum,

where local maxima were found in both of these structures.

The pattern of this interaction was similar across the

reported supra-threshold areas with similar activation

levels during the predictable and random conditions and

slightly more response in the arbitrary block under the no-

response session. In the session with overt motor response,

however, a quite strong increase in activation was observed

with decreasing predictability (see Fig. 5 lower right panel

showing the dmPFC as example). Because the interactions

reported above were thresholded quite conservatively, we

specifically looked for uncorrected effects of response-

mode (either as interaction or as main effect) in the three

regions of interest for the DCM analyses by extracting the

test statistic for the interaction at the local maximum of the

motion contrast (V1: x = 8, y = -90, z = 2; V5: x = 48,

y = -66, z = 2; PPC: x = 20, y = -58, z = 62). Signif-

icant interaction effects were found for V1 (F2,204 = 3.07,

p = 0.049) and V5 (F2,204 = 8.87, p = 0.003). For the

PPC the interaction was not significant (F2,204 = 0.78,

p = 0.461), whereas the main effect of response-mode was

(F1,204 = 6.45, p = 0.012). The main effect of response-

mode did not reach significance for V1 (F1,204 = 1.96,

p = 0.164) nor for V5 (F1,204 = 3.44, p = 0.065). Finally,

it should be noted that when rearranging the data, so that

the interaction reflects the chronological sequence of the

runs rather than the response-mode, then the respective

predictability 9 sequence interaction yielded no

suprathreshold voxels even when lowering the p threshold

to 0.05 corrected with no extent threshold.

Bayesian model selection among dynamic causal

models

Since the present study investigates a comparatively

simple, perceptual task there is no need to expect, for

example, different cognitive strategies between subjects.

Hence, for the Bayesian model selection (BMS) procedure

we assume that the subjects do not differ with respect to

the model structure that caused the data, so that we based

the inference method on fixed-effects. Due to the inter-

action effect on the selected regions—at least to a mod-

erate extent—the two sessions varying the response-mode

were not treated as being replications of each other, for

which reason the BMS was performed separately for each

mode. For the ACTIVE session the BMS resulted in a

single model being clearly superior to all other ones as

indicated by its posterior probability which was close to 1.

Table 3 continued

Anatomical label Anatomy toolbox Cluster size t score MNI coordinates

x y z

Left precentral gyrus Area 6 2044 10.40 -42 -2 46

Left inferior frontal gyrus

(p. Opercularis)

Area 44 10.33 -44 6 28

Left insula lobe 10.17 -32 22 2

Left insula lobe 10.15 -30 24 4

Left temporal pole 7.15 -50 14 -4

1188 8.92 8 -26 -10

Right thalamus Th-prefrontal 8.51 10 -12 4

Left thalamus Th-prefrontal 7.97 -10 -14 0

Left thalamus Th-prefrontal 7.88 -8 -16 -2

Left thalamus Th-prefrontal 7.54 -12 -12 4

Right thalamus Th-parietal 7.12 16 -18 12

7.07 -4 -30 -6

6.88 -6 -26 -8

6.29 16 2 12

Right middle frontal gyrus 516 7.82 40 54 16

Right middle frontal gyrus 7.34 40 44 24

Right middle frontal gyrus 7.00 38 44 34

Left middle frontal gyrus 192 6.93 -34 50 12

Left middle frontal gyrus 6.29 -42 44 20
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The structure of this model was characterized by driving

inputs of MOTION on V1 and V5 and a perturbation of

PPC by the ABRITRARY condition. As common to all

models the V1 ? V5 connection was modulated by

MOTION, although the negative sign for this parameter

was not expected. Moreover, both the UNPREDICT-

ABLE stimuli and the ARBITRARY ones exerted an

enhancing modulatory effect on the connection from V1

to V5 (see Fig. 6a).

Posterior Probabilities of the PASSIVE session did not

support a single model. Instead two models have been found

to be in Occam’s window with posteriors of 80.79 % and

19.15 %, respectively. The model with the higher probabil-

ity neither had a modulatory input for UNPREDICTABLE

nor one for ARBITRARY (the modulatory effect of

MOTION on the V1 ? V5 connection was common to all

models). The other, less likely model showed a slightly

suppressing modulatory effect of the UNPREDICTABLE

conditions on the backward connection from V5 to V1. Both

models had all driving inputs in common with MOTION

entering in V1 and V5, UNPREDICTABLE driving V5 only,

and ARBITRARY perturbing V5 and PPC (see Fig. 6b). The

mean coupling parameters along with their standard errors as

calculated by Bayesian parameter averaging are listed in

Tables 4 and 5 for the ACTIVE and PASSIVE response-

mode, respectively.

A closer inspection of the parameters revealed that the

corrected confidence intervals for most parameters did not

contain zero. The correction was performed according to

the 13 parameters that were tested for each response-mode

and was based on the respective quantiles of the sampling

from the DCM posteriors as implemented in Bayesian

model averaging in SPM. There were three parameters that

did not differ significantly from zero in the above men-

tioned sense which all belonged to the model for the no-

response mode: the average coupling parameter from V1 to

V5, the direct input of the motion condition on V1 and the

modulatory input of the unpredictable condition on the

V5 ? V1 connection.

Discussion

The present study was designed to test hypotheses about

hierarchical predictive processing in the visual system

according to pertinent theoretical assertions. These specific

predictions within a small and circumscribed network are

discussed in the following section, whereas the results

Fig. 4 Maximum intensity pots of the predictable 9 response-mode

interaction and its conjunction with the main effect predictability.

Illustration of the similarity of the maximum intensity plots (MIP) of the

predictable 9 response-mode interaction (a) and the conjunction of the

same interaction with the main effect of predictability (b). Both MIPs were

thresholded at p\0.001 corrected at the voxel level and an extent

threshold of 100 contiguous voxels
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obtained at the level of the whole brain are reconsidered

afterwards.

Hierarchical predictive processing in the visual

cortex

According to the model of hierarchical predictive pro-

cessing in the brain, the information flow from lower

hierarchical regions to higher ones should be pronounced

with decreasing predictability, because of a larger pre-

diction error for unpredictable stimuli that is passed up

the hierarchy (e.g., Clark 2013; Friston 2005). The present

study tested this hypothesis using DCM for fMRI in a

quite large sample of healthy volunteers performing a

predictability of visual motion task. Bayesian model

selection indicated quite strong support in favor of the

predictive processing hypothesis in that the winning

model of the condition requiring motor responses exhib-

ited enhancing modulatory inputs of unpredictable and

arbitrary stimulus types on the forward connection from

V1 to V5. This effect may reflect increased bottom-up

information processing from V1 to V5 during unpre-

dictable visual motion, which is probably due to an

enhanced transmission of prediction error. It should be

emphasized that the modulatory input of unpre-

dictable stimuli included both random and arbitrary

motion. Hence, the modulatory effects of unpre-

dictable (random and arbitrary) as well as arbitrary

motion constitute an increase in this forward connection

according to the three levels of increasing

unpredictability.

The BMS for the passive condition, however, did not

corroborate this pattern, although the resulting connectivity

structure did not contradict the idea of predictive process-

ing. Instead of an enhancement of the forward connection,

we observed a slightly suppressing input of unpre-

dictable stimuli on the backward connection from V5 to

V1. Assuming that backward connections originate in

‘‘representation units’’ in deep cortical layers of the hier-

archically higher region and terminate mainly in ‘‘error

units’’ in superficial layers of lower regions (Mumford

1991), the observed backward suppression might reflect the

Fig. 5 Parameter estimate plots of the three regions of interest (V1,

V5 and PPC) and the dmPFC. Bars indicate the parameters for each

condition (implicitly compared to low-level baseline) and error bars

indicate the standard error. The three conditions (predictable, random

and arbitrary) are shown separately for the run without motor

response (dark gray) and for the run with overt motor response (light

gray). PPC posterior parietal cortex; dmPFC dorsomedial prefrontal

cortex
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inability of representation units in V5 to explain away the

prediction error that is generated by error units in V1.

Nonetheless, it must be noted that the (Bayesian averaged)

coupling parameter in question was close to zero because

the more parsimonious model without that modulatory

input had a far higher posterior (approx. 80 %) as com-

pared to the second model within Occam’s window which

comprised this input (approx. 19 %).

Now the question arises why the two response-modes

of the same task yielded so different results. One reason

for this might be that at least some of the subjects readily

digress from the actual task when behavioral performance

seems less important for task completion. This implies a

diminished compliance of the subjects (be it intentional or

not) to stay on track when their effort is not directly

observable. In the free-energy formulation of attention

Fig. 6 Winning models according to the Bayesian model selection

for the two response modes. The left panel shows the structure of the

winning model for the run with overt motor response and the right

panel illustrates the structure of the winning model for the run without

motor response. Note that the modulatory input of UNPREDICT-

ABLE on the connection from V5 to V1 results from the suboptimal

model within Occam’s window and is not significantly different from

zero. PPC posterior parietal cortex

Table 4 Coupling parameters of the winning model for the active

response-mode

To\from V1 V5 PPC

Average connectivities

V1 -0.61 (±0.02) 0.62 (±0.04) –

V5 -0.43 (±0.12) -0.24 (±0.03) -0.59 (±0.08)

PPC – 1.05 (±0.04) -0.69 (±0.02)

To\from Motion Unpredictable Arbitrary

Driving inputs

V1 0.09 (±0.02) – –

V5 1.02 (±0.05) – –

PPC – – -0.10 (±0.01)

Modulatory inputs

Motion V1 ? V5 -0.51 (±0.09)

Unpredictable V1 ? V5 0.28 (±0.04)

Arbitrary V1 ? V5 0.16 (±0.05)

Numbers indicate the mean of the respective parameter and numbers

in brackets refer to their standard deviation

Table 5 Coupling parameters of the winning model for the passive

response-mode

To\from V1 V5 PPC

Average connectivities

V1 -0.60 (±0.02) 0.69 (±0.11) –

V5 -0.36 (±0.16) -0.28 (±0.03) -0.72 (±0.18)

PPC – 0.95 (±0.06) -0.65 (±0.03)

To\from Motion Unpredictable Arbitrary

Driving inputs

V1 0.03 (±0.04) – –

V5 1.05 (±0.06) 0.11 (±0.04) 0.15 (±0.03)

PPC – – -0.11 (±0.01)

Modulatory inputs

Motion V1 ? V5 -0.40 (±0.11)

Unpredictable V5 ? V1 -0.03 (±0.07)

Numbers indicate the mean of the respective parameter and numbers

in brackets refer to their standard deviation
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this is equivalent to a reduction of precision at the sensory

level, which would result in less propagation of prediction

error, because of increased uncertainty and hence reduced

sensitivity to sensory signals (Feldman and Friston 2010).

This is exactly what we observed in the DCM analyses of

the no-response run. Another view on this effect, which

can be regarded as complementary to the above men-

tioned argument, assumes additional networks to be

involved for the same task when an overt motor response

is required.

The fact that the predictability 9 response-mode inter-

action yielded a network, whose nodes also manifest a

main effect of predictability, corroborates this notion.

Although the subjects in the present study only reacted in

response to—as opposed to act on—the stimuli, the dif-

ferential processing of the same stimuli in the brain may be

related to a resonating effect of (any kind of) motor output

that presumably underlies active inference (Friston 2010;

Limanowski and Blankenburg 2013). This interpretation

implies that, regardless of the ability to manipulate the

external world, any motor response has a non-negligible

impact on the processing of external stimuli. Most likely, a

more comprehensive picture of the observed differences

requires an extensive modeling of other important nodes on

the one hand, e.g., the dorsomedial prefrontal cortex (Re-

genbogen et al. 2013), the thalamus (Saalmann and Kastner

2011), or the cerebellum (Kellermann et al. 2012). On the

other hand, refinements of experimental manipulation of

response-modes need to be devised to differentiate poten-

tial effects that any diverse motor outputs might have (e.g.,

Warbrick et al. 2013). In conclusion, the BMS results of the

no-response run should be considered with caution because

the interim winning models do not seem to be quite plau-

sible. This finding either suggests that our model space did

not include a useful model for this session or that fixed-

effects BMS might be untenable for this task because

lacking behavioral relevance leads to the above mentioned

decline in the subjects’ compliance.

The concepts of behavioral relevance (as differentially

induced by the response-modes) and predictability may

share a key effect that both exert on the nervous system,

namely attention. The idea that attention should be rather

regarded as an effect rather than a cause has been elabo-

rated by Anderson (2011). Accordingly, (goal-directed)

attention can be regarded as a consequence of behavioral

relevance which is implemented in a top-down fashion,

whereas unpredictability gives rise to (stimulus-driven)

attention due to the salience of the stimulus in a bottom-up

manner. In this sense stimulus-driven attention seems to be

confounded in the present study, because more attentional

resources are presumably allocated to processing unpre-

dictable stimuli. Although the decision between cause or

effect of attention cannot yet be made, the notion of

attention as being rather an effect seems reasonable when

unpredicted or salient stimuli are presented. Therefore, we

argue that a decline in predictability inevitably goes along

with more salience and stimulus-driven attention. An

amalgamated representation of priority was proposed by

Fecteau and Munoz (2006) to combine bottom-up effects

induced by salience and top-down effects that determine

the relevance of stimuli. The authors conclude that the

combined representation of an object’s distinctiveness and

its relevance to observers in so called priority maps is

likely instantiated in the oculomotor system (Fecteau and

Munoz 2006), underscoring the need for an extension of

the relevant network.

Nevertheless, Kok et al. (2012) recently demonstrated

that goal-directed attention can be manipulated orthogo-

nally to predictability. Beyond that, the study has shown

that directed spatial attention can reverse the attenuating

effects of predictability on sensory processing (Kok et al.

2012). The present study, however, was designed to

investigate the effects of predictability of perceptual

properties with goal-directed attention held constant

(although the response-mode may have implicitly changed

goal-directed attention via behavioral relevance or prior-

ity). In its free-energy formulation attention is considered

to be the process of optimizing the synaptic gain to rep-

resent sensory precision (Feldman and Friston 2010).

Although this phrasing rather emphasizes a top-down

control of attention the net effect with respect to hierar-

chical predictive processing is the same in relation to

processing unpredicted or salient stimuli. Whereas goal-

directed attention increases the synaptic gain of represen-

tation units to inputs from error units, salience directly

increases the input from lower to higher regions, both

leading to an amplification of prediction errors. This dis-

tinction between these two complementary processes may

be the reason for the fact that—contrary to Kok et al.

(2012)—we did not find evidence for a modulation of the

self-connection of V5 for unpredictable stimuli. Moreover,

it is important to note that a modulation of this self-con-

nection is ambiguous with respect to hierarchical process-

ing because an increase of the synaptic gain of V5 in our

models can be associated with enhanced responsiveness to

both forward inputs from V1 as well as backward projec-

tions from PPC.

Apart from explaining perceptual and cognitive phe-

nomena on a neuronal level, one of the central claims of the

theory of hierarchical predictive processing is its ability to

provide neuronal mechanisms able to describe phenomena

observed in pathological and particular psychiatric cir-

cumstances. For instance, an aberrant prediction error has

been associated with schizophrenia (Adams et al. 2013).

According to this view, a reduction in the precision of prior

beliefs (or top-down predictions), relative to sensory
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evidence (or bottom-up prediction error) may lead to

abnormalities observed in schizophrenia, e.g., psychotic

symptoms, cognitive deficits or negative symptomatology.

Another psychiatric disease which has been tried to

understand in terms of hierarchical processing is autism

spectrum disorder (ASD). Two former theories—namely

weak central coherence (WCC; Happé and Frith 2006) and

enhanced perceptual functioning (EPF; Mottron et al.

2006)—separately emphasized reduced global processing

(in case of WCC) or enhanced local processing (in case of

EPF) observed in ASD. A predictive coding perspective

may unify these accounts in the sense that an overemphasis

of the prediction error or overly high precision expectation

in sensory input may explain both of these observed effects

(Van de Cruys et al. 2014; Lawson et al. 2014; Palmer et al.

2015a, b).

We envisage an application of the task presented in this

study to patients with schizophrenia and ASD. Although

both disease patterns are associated with an enhanced

forward passing of prediction errors, there are differential

hypotheses according to the predictive coding perspective.

Because in schizophrenia prior beliefs are assumed to be

reduced, one would expect enhanced forward coupling of

different sensory levels (V1 and V5) for all conditions with

a diminished differentiation according to predictability.

Contrariwise, ASD is rather associated with an excessively

high precision expectation of sensory input which

hypothesizes an augmented differential response in the

coupling from lower to higher visual regions as a function

of predictability of visual motion.

Whole brain GLM analyses

The results for the main effect predictability exhibited a

large distributed network that bore at least some resem-

blance to the goal-directed and stimulus-driven attention

network, which is associated with dorsal and ventral

fronto-parietal areas, respectively (Corbetta and Shulman

2002). While our data lend only partial support for the

goal-directed attention stream with dorsal engagement in

the parietal lobe (e.g. in PPC) and in the FEF, the activation

pattern of the main effect of predictability provides quite

strong evidence in favor of the rather right-lateralized

involvement of the ventral fronto-parietal network assumed

to underlie stimulus-driven attention. The right inferior

frontal gyrus has repeatedly been linked to novelty detec-

tion (e.g., Dobbins and Wagner 2005; Gur et al. 2007) and

might play an important role—together with the (TPJ)—as

a circuit-breaker during reorienting to spatially unexpected

targets (Corbetta and Shulman 2002).

The conjunction of the two contrasts indicates that

both regions, right inferior frontal gyrus and right TPJ,

are more or less parametrically linked to (un-)

predictability in the present study. The contrast ARBI-

TRARY[RANDOM revealed additional cortical acti-

vation in the dmPFC as well as subcortical clusters in

the thalamus and brainstem. Although the limited spatial

resolution of fMRI scans prohibits a definite assignment

of activations to distinct subcortical nuclei, the peak

activity in the brainstem may be attributed to the supe-

rior colliculi, whereas the thalamic engagement may

originate from the pulvinar (Petersen et al. 1987), the

reticular nucleus (Sturm et al. 1999; Kellermann et al.

2011), and/or the intralaminar nuclei (Yeo et al. 2013).

The superior colliculus is part of the oculomotor network

and has been—like the pulvinar—associated with sal-

ience (Robinson and Petersen 1992; Fecteau and Munoz

2006). However, the role of the superior colliculus has

been ramified because of its relation to inhibition of

return. Inputs of bottom-up salience and top-down rele-

vance seem to converge in the superior colliculus (albeit

during different stages of processing) for which reason

Fectau and Munoz (2006) proposed the term priority-

map to merge the two. A recent study suggests that the

superior colliculi are indeed influenced by top-down

signals from lateral prefrontal cortex (Everling and

Johnston 2013).

Even though we anticipated differences in activations

between the two response-modes in motor related areas

(not reported), we did not expect to find noteworthy

effects of the response-mode on different levels of the

predictability factor. Yet such differences between

response-modes have been reported in a recent study,

where subjects also performed a session in which they

counted the number of targets in addition to a passive and

a response condition (Warbrick et al. 2013). In general,

stronger activation of the dmPFC (extending to SMA) is

associated with tasks requiring overt motor as opposed to

non-motor responses (Langner and Eickhoff 2013). This

structure has been proposed to serve as brake to maintain

a preparatory motor-set which is inhibited at the same

time so as to avoid premature responses. Gradually

releasing this break would trigger the prepared response

when a certain threshold is exceeded (Eichele et al. 2008;

Danielmeier et al. 2011; Langner and Eickhoff 2013).

Based on this we assume that the arbitrary condition

activates a preparatory motor-set which is inhibited by the

dmPFC.

Because of the (relative) anticipatory certainty of

upcoming targets (i.e., movement changes) in the pre-

dictable but also in the random condition, the response-set

is not pre-activated to the same extent as compared to the

arbitrary blocks where targets occur any time. The tem-

poral control of motor responses might be arranged more

efficiently in predictable blocks without simultaneous

motor preparation and inhibition. Crus I of the cerebellum
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may provide timing information of perceptual events

(O’Reilly et al. 2008; Kellermann et al. 2012), which might

be enhanced during the session requiring motor responses.

The involvement of the inferior frontal gyrus (close to the

inferior frontal junction) in the interaction is in line with its

presumed role in setting up stimulus–response mappings

(Hartstra et al. 2011; Langner and Eickhoff 2013). The

thalamus is a key structure in the ascending reticular

activating system (Yeo et al. 2013) as relay from the

reticular formation to the cortex so as to generate and

maintain an adequate arousal level (Hasselmo and Sarter

2011). It is conceivable that unpredictable and therefore,

salient stimuli in the arbitrary blocks generate a high

arousal which is even facilitated by response requirements.

In summary, the present study is not designed to sepa-

rate different stages of processing by a mere cognitive

subtraction strategy. Nevertheless, we hope to have shown

that the task yields robust activations in almost all well-

known areas assumed to support (visual) attention,

including the dorsal and ventral parietal network as well as

subcortical structures like the thalamus and superior colli-

culi. Importantly, an overt motor response seems to have an

amplifying and/or modifying effect on processing in other

regions, even if these are indirectly or not at all related to

motor output. Therefore, this task seems to be well suited

to characterize the functional integration of circumscribed

attentional networks with dynamic causal modeling.

Unfortunately, this characterization is beyond the scope of

the present study, because we aimed at testing specific

hypotheses regarding hierarchical predictive processing

considered above.

Limitations

Besides aforementioned constraints regarding, for exam-

ple, overt motor output there are other limitations of the

present study that merit consideration for future work.

The most severe constriction of the stimuli at hand is the

number of changes in motion direction, which differs

substantially between the arbitrary condition [with a

mean (M) of 28.9 changes per block and standard devi-

ation (STD) of 3.9] and the other two experimental

manipulations [predictable (M = 18.5, STD = 1.0) and

random (M = 18.3, STD = 2.6)]. There are three possi-

bilities to overcome this limitation, although each one

has other drawbacks which we judged more severe in

relation to the compromise we made: Two possibilities

comprise either a reduction of the duration of the stimuli

or a deceleration of motion during the arbitrary motion

condition to adapt the number of direction changes. A

third option would be downsizing the frame in the other

two conditions such that predictable and random changes

in motion direction occur more often. These differences

in motion direction changes are accompanied by differ-

ences in motor reaction regarding button presses (when a

reaction was required) as well as saccadic eye move-

ments. The latter will likely be associated with activa-

tions of the superior colliculi and frontal eye fields,

where particularly the latter have an influence on the

visual cortex (Heinen et al. 2014). As described in the

methods (‘‘Dynamic causal modeling’’) we assumed that

putative top-down effects from other regions (e.g., those

mentioned above) may be captured as direct inputs of

unpredictable or arbitrary stimuli on either V5 or PPC.

The strong evidence which we found during the pre-se-

lection for a direct input of the arbitrary condition on

PPC may reflect an effect that is mediated by structures

like the frontal eye fields. However, we did not find

evidence for a direct effect of the arbitrary condition on

V1 or V5, indicating that the above mentioned effects are

mediated by the PPC at least in the present study. Nev-

ertheless, this interpretation remains speculative unless

the respective candidate regions like the frontal eye fields

or superior colliculi are not included in the models under

consideration. Moreover, the confounding effects of eye

movements and number of motion direction changes in

the arbitrary condition remain a limiting concern of the

present study which should be addressed in future studies

by changes in the stimuli as mentioned above.

Although we already broached the issue of the limited

number of nodes included in the DCM analysis, it must

be pointed out that any change in the system may result

in systemic effects on the whole network, i.e., coupling

parameters depend on the structure of the whole model.

We surmise that such an effect may have occurred to the

endogenous connectivity from V1 to V5, which turned

out to be negative for the winning models. If our

assumption is correct, the direct input of motion to V5

(via the lateral geniculate body) is possibly overesti-

mated because we did not constrain this input with any

prior weights. Such a weighting, however, may yield

physiologically more plausible results since the propor-

tion of cells projecting from the lateral geniculate

nucleus to V5 is only about 10 % of those compared to

the population in V1 that innervates V5 (Sincich et al.

2004).

Whereas questions regarding the absence or presence of

connections between nodes or the impact of direct or

modulatory inputs can be addressed by extending the

model space for a Bayesian model selection accordingly,

the question of including a node or not cannot be addressed

by model selection (at least for fMRI data). The reason is

that a comparison of different models requires the same

data to be subjected to each model and inclusion or

exclusion of a region is equivalent to adding or removing

the data of that node, respectively.
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Conclusions and outlook

The present study was designed to test specific hypotheses

about enhanced feed-forward connectivity in the visual

cortex in response to unpredictable visual motion. These

predictions rest upon the notion of hierarchical predictive

processing, which forms the basis of the Bayesian brain

hypothesis (e.g., Clark 2013; Friston 2010). Importantly, the

patterns of effective connectivity strongly supported these

predictions when the stimuli were behaviorally relevant.

Hence, the quite simple visual task presented in this study

seems to be well suited to further investigate hierarchical

predictive processing in and beyond the visual cortex so as to

include other regions related to motor planning and execu-

tion as well. Moreover, the present task may be indicative of

trait abnormalities in patients suffering from psychiatric

disorders or yet even in their relatives. A recent review

suggested that psychotic symptoms may be the result of an

imbalance (in the precision) of feed-forward and backward

connections between hierarchical levels of processing, pre-

sumably underlying known effects like an attenuated mis-

match negativity, impaired smooth pursuit eye movements

or a weaker force-matching illusion (Adams et al. 2013). In

conclusion, the present study lends empirical support for

hierarchical predictive processing in accord with the pre-

dictability of visual motion, for which reason the present task

seems to be well suited to shed light on putatively disturbed

effective connectivity in psychiatric disorders.
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