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ABSTRACT: Configurational entropy change is a central constituent of the free
energy change in noncovalent interactions between biomolecules. Due to both
experimental and computational limitations, however, the impact of individual
contributions to configurational entropy change remains underexplored. Here,
we develop a novel, fully analytical framework to dissect the configurational
entropy change of binding into contributions coming from molecular internal
and external degrees of freedom. Importantly, this framework accounts for all
coupled and uncoupled contributions in the absence of an external field. We
employ our parallel implementation of the maximum information spanning tree
algorithm to provide a comprehensive numerical analysis of the importance of
the individual contributions to configurational entropy change on an extensive
set of molecular dynamics simulations of protein binding processes. Contrary to
commonly accepted assumptions, we show that different coupling terms
contribute significantly to the overall configurational entropy change. Finally, while the magnitude of individual terms may
be largely unpredictable a priori, the total configurational entropy change can be well approximated by rescaling the sum of
uncoupled contributions from internal degrees of freedom only, providing support for NMR-based approaches for
configurational entropy change estimation.

1. INTRODUCTION
Noncovalent interactions between macromolecules are funda-
mental to a large number of biological processes including
transcription, translation, cell signaling, and many other.1

Given an isothermal−isobaric ensemble with a constant
number of particles (NPT), the Gibbs free energy change
[see, e.g., ref 2]

Δ = Δ − ΔG H T Ssystem system system (1)

captures the likelihood for such a binding process to occur,
together with the equilibrium fractions of the species involved.
Importantly, the entropic term (−TΔSsystem) remains largely
underexplored when it comes to biological macromolecules.
This especially concerns the configurational entropy part of the
total entropy change, which stems from the solute degrees of
freedom only and is notoriously difficult to measure
experimentally3−5 or calculate from atomistic simulations.6−18

It has traditionally been assumed that the configurational
entropy change is negligible in comparison to the change in
solvent entropy.19 Recently, however, it was experimentally
demonstrated that the configurational entropy contribution in
the case of proteins can be of similar magnitude as the solvent
entropy contribution3−5 and can thus potentially have a strong
impact on the thermodynamics of protein interactions. In a
more applied context, deeper insight into configurational

entropy and the basic physical principles that govern its
response to changes in biomolecular dynamics could
significantly improve computational drug design by helping
to overcome enthalpy/entropy compensation.20−22 In the
present work, we analyze the individual contributions to
configurational entropy change of protein binding, stemming
from internal12,23−28 and external (rigid body rototransla-
tional) degrees of freedom. Going beyond the previous studies
of entropy change in protein−protein interactions, such as
those involving normal mode calculations,29,30 we investigate
here the importance and the relative magnitude of the often
ignored coupling (correlation) terms between internal and
external degrees of freedom in BAT coordinates. Following
previous work,31 we employ an entropy decomposition32

known as the mutual information expansion (MIE) in its
analytical form. There exists a well-developed theoretical
apparatus for the decomposition of such coupling terms (see,
e.g., refs 12 and 33 and references therein), mainly for liquids.
However, numerical application of MIE as an approximation of
the configurational entropy is rather novel in the case of
configurational entropy of biomolecules.12
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In the pioneering work by Gilson and co-workers,12 the MIE
expansion is taken at the level of single degrees of freedom as
opposed to sets of degrees of freedom, which, as mentioned
above, will be treated in this work. The obtained numerical
coupling terms can then be summed up to approximate the
analytical MIE coupling terms at the level of the sets of degrees
of freedom, e.g., external with internal or main-chain with side-
chain. In this context, Gilson and co-workers34 have recently
discussed and reviewed the general significance of coupling
corrections in configurational entropy estimation. Importantly,
they have applied a more recently developed variant of the
MIE approximation, the maximum information spanning tree
(MIST) approximation.10,35 However, MIST/MIE analysis of
the coupling terms in proteins resulting from the partitioning
into external and internal degrees of freedom is, to the best of
our knowledge, limited to a single case study,11 employing the
MIE approximation at pairwise order.
Here, by distilling the previous work31,32 to a compact form,

we arrive at a decomposition of entropy into sets of external
and internal degrees of freedom in the form of a general
framework, which takes advantage of separable terms in the
underlying potential energy. We compute these contributions
to configurational entropy change at pairwise order for a large
set of typical protein complexes (Figure 1 and Table 1). The
isolated binding partners and their binary complexes are
captured using microsecond-level classical molecular dynamics
simulations (for methodological details and a full description
of the simulated set, please see refs 36−38). The simulated set
exhibits a wide range of physical sizes and secondary- and
tertiary-structure classes of individual binding partners as well
as a variety of the total configurational entropy changes and the
uncoupled configurational entropy changes of individual
binding partners. Note that five of the simulated complexes
involve ubiquitin as one of the binding partners (Figure 1a), a
well-folded, biologically important protein frequently used in
biophysical studies; we highlight these complexes for clarity in
all of our analyses. This large-scale investigation is made
possible by our recent parallel implementation36 of MIE/
MIST. For three representative complexes, we carry out an
extensive analysis of configurational entropy convergence,
leading to several notable results. Additionally, as there exists a
certain fundamental arbitrariness31,39,40 in decomposing the
entropy over external and internal degrees of freedom, we
provide an analysis of the impact of different decomposition
choices (Figure 5). We demonstrate that several coupling
terms contribute significantly to the overall configurational
entropy change across different proteins, contrary to
commonly accepted assumptions. Finally, we provide a
justification for the experimental estimation of the total
entropy change from the leading internal uncoupled entropy
terms even under these circumstances.

2. THEORY
2.1. Configurational Entropy of the Binding Process.

An expression for the configurational entropy of a single
molecule or complex can be derived from the quasi-classical
entropy integral43,44

∫ ρ ρ= − ⃗ ⃗ ⃗ ⃗ [ ⃗ ⃗ ]S R q p q p h q pd d ( , ) ln ( , )N
solute

3
(2)

where R represents the universal gas constant, h the Planck
constant, N the number of atoms in the molecule, and ρ the
classical phase-space probability density function (pdf). q⃗ and p⃗

denote, respectively, the spatial degrees of freedom and the
canonically conjugate momenta in Cartesian coordinates. Note
that due to the factor h3N this integral cannot be split into
momentum and spatial parts while preserving physically
correct dimensions for both quantities.38,43 As in this work
we are concerned with the spatial part of the entropy (labeled
just S to simplify the notation), a convenient choice for
separating off the momentum entropy Sm is

∫
∫

ρ ρ

ρ ρ

= +

= − ⃗ ⃗ [ ⃗ ]

= − ⃗ ⃗ [ ⃗ ]

S S S

S R q q p

S R p p h p

d ( ) ln ( )

d ( ) ln ( )N

solute m

m
3

(3)

The momentum entropy then evaluates to38,43
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Figure 1. Structures of the simulated protein complexes together with
the computed configurational entropy contributions to the Gibb’s free
energy change of binding of the whole complexes (−TΔStotal) or
binding partners alone [−TΔS1D(A) and − TΔS1D(B)]. The latter
values stem from the internal degrees of freedom of individual binding
partners without any coupling (mutual information) contributions
included. On the x-axis, we give the PDB code41,42 of each complex
together with the number of amino acids in each partner (in
parentheses). In (a), the second binding partner B (colored red) is
always ubiquitin. Please see Table 1 for further details concerning the
simulated complexes.
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Here, mi denotes the mass vector of the solute, and kB is the
Boltzmann constant. Note that this expression is constant if the
temperature and atomic composition remain fixed. Under the
assumption of a vanishing external field and a concentration C°
associated with a container of volume V° = 1/C° for a single
molecule (or complex), the spatial part of eq 2 can be
evaluated to11,12,43

∫π ρ ρ= ° − ⃗ ⃗ ⃗ [ ⃗ ]

≡ +

S R V R q J q q q

S S

ln(8 ) d ( ) ( ) ln ( )2
int int int int

conf
ext

conf
int

(5)

where J(q⃗int) denotes the Jacobian of the chosen molecule
internal coordinates (such as anchored Cartesian23,24 or
BAT12,23−28 coordinates). Thus, the second term on the
right-hand side captures the integration over the chosen 3N −
6 internal degrees of freedom q⃗int. The term R ln(8π2V°) in eq
5 results from integration over the 6 external degrees of
freedom, which in the absence of an external field can be
carried out analytically.26 Here, following a common practice,
we choose a standard concentration of C° = 1/V° = 1 mol L−3.
As this term as well as the momentum entropy at fixed
temperature and atomic composition is constant,38,43 the
second term on the right-hand side of eq 5 alone is often
referred to as configurational entropy. Therefore, for a single
molecule, sampling the internal, spatial pdfs is sufficient to
calculate the total entropy contribution to the Gibbs free
energy change from the solute. Importantly, while neither the

momentum entropy (eq 4) nor the spatial entropy (eq 5), as
mentioned above, exhibit physically correct dimensions, the
problematic terms cancel for entropy differences.38,43 Thus,
differences (and differences only) of these quantities bear
physically valid dimensions of entropy.
We now begin our analysis of the configurational entropy

change of a binary binding process by deriving the configura-
tional entropy of the unbound state (including external degrees
of freedom), followed by the derivation of the configurational
entropy of the bound state. As mentioned in the introduction,
both derivations follow a previously discussed strategy,31

making extensive use of the analytical MIE.32 The configura-
tional entropy change upon binding is then obtained by
subtraction. As no other approximations are made apart from
the assumption of a vanishing external field, the end result as
well as all intermediate results are analytically exact in the
classical limit.

2.2. Configurational Entropy of the Unbound State
from a Statistical-Mechanical Perspective. In the un-
bound state, the molecules are assumed to be infinitely far
apart, and we assume no external fields. The notation used for
describing different terms is given in Table 2. Note that from

now on we drop the vector symbol for a more convenient
notation. With these assumptions and notation, the potential
energy separates as

= + + +

= +

U q q q q U q U q U q U q

U q U q

( , , , ) ( ) ( ) ( ) ( )

( ) ( )

X A Y B X A Y B

A B
(6)

Here, without a loss of generality, the external potential
constants are set to zero. Analogously, the pdf factorizes into

ρ ρ ρ ρ ρ

π
ρ

π
ρ

=

=
° °

q q q q q q q q

V
q

V
q

( , , , ) ( ) ( ) ( ) ( )

1
8

( )
1

8
( )

X A Y B X A Y B

A B2 2 (7)

The factor 8π2V° results from the homogeneous probability
distribution with respect to the position in the container
volume, the full solid angle, as well as the external torsional

Table 1. Simulated Protein Set

name # atomsa
PDB
codeb complexc −TΔS1Dd

Tsg101 protein 1480 1KPP 1S1Q 190.0
ubiquitin 760 1UBQ 1S1Q 248.3
gGGA3 Gat domaine 949 1YD8* 1YD8 44.0
ubiquitin 760 1UBQ 1YD8 420.4
ESCRT-I complex subunit
VPS23

1493 3R3Q 1UZX 131.6

ubiquitin 760 1UBQ 1UZX 187.5
E3 ubiquitin−protein ligase
CBL-B

457 2OOA 2OOB 2.4

ubiquitin 760 1UBQ 2OOB 213.5
polymerase iota ubiquitin-
binding motif

457 2L0G 2KTF 85.5

ubiquitin 760 1UBQ 2KTF 215.1
subtilisin Carlsberg 2433 1SCD 1R0R 527.4
ovomucoid 498 2GKR 1R0R 106.6
uracil−DNA glycosylase 2333 1AKZ 1UGH −65.7
uracil−DNA glycosylase
inhibitor

788 1UGI 1UGH 503.8

PPIase A 1641 1W8V 1AK4 −1.4
PR160Gag-Pol 1408 2PXR 1AK4 367.4
micronemal protein 1 1226 2BVB 2K2S 54.5
micronemal protein 6 496 2K2T 2K2S 145.0
alkaline protease 4503 1AKL 1JIW 173.1
alkaline protease inhibitor 997 2RN4 1JIW 40.0
aNumber of force field atoms of individual proteins. bPDB codes41,42

of individual proteins. cPDB codes of complexes. dEntropy change
from internal degrees of freedom of individual binding partners upon
complex formation without any coupling (mutual information)
contributions, given in kJ mol−1, as in Figure 1. eThe constituent
GGA3 Gat domain was extracted from the PDB structure of the 1YD8
complex and named 1YD8* accordingly.

Table 2. Nomenclature of the Degrees of Freedom

qX external degrees of freedom molecule 1
qY external degrees of freedom molecule 2a

qA internal degrees of freedom molecule 1
qB internal degrees of freedom molecule 2
X random variables from qX
Y random variables from qY
A random variables from qA
B random variables from qB
∼ a quantity associated with the bound state
S1D entropy from marginal 1D probability density functions only (within a

given subsystem)
I2D mutual information of 2D and higher probability density functions

(within a given subsystemb)
I2 pairwise mutual information of 2D and higher probability density

functions (shared between two subsystemsb)
I3 triplet mutual information of 3D and higher probability density

functions (shared between three subsystemsc)
aIn the reference frame of molecule 1. bNumerically approximated by
2D probability density functions in this work. cNot treated
numerically in this work.
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degree of freedom of the molecules. Finally, using the
corresponding external entropy terms R ln(8π2V°) from eq 5
and the notation of Table 2, the spatial entropy of the
unbound state is given as

π

= + + +

= + + °

S X A Y B S X S A S Y S B

S A S B R V

( , , , ) ( ) ( ) ( ) ( )

( ) ( ) 2 ln(8 )2
(8)

2.3. Configurational Entropy of the Unbound State
from an Information-Theoretic Perspective. The same
result from the previous subsection can be derived in an
information-theoretic framework. First, the MIE is denoted
as32

∑ ∑= −
=

+

<···<

S X X I X X( , ..., ) ( 1) ( , ..., )n
k

n
k

i i
k i i1

1

1

k

k

1

1
(9)

where

∑ ∑= −
=

+

<···<

I X X S X X( , ..., ) ( 1) ( , ..., )n n
k

n
k

i i
i i1

1

1

k

k

1

1
(10)

are the so-called higher-order mutual information (MI) terms
of order n. Note however that I1(Xi) = S(Xi). For further
derivation, it will be convenient to first prove the following
summary of the previous work32 in a general form

= +

⇒ = ∀ ≥
−

U q q U q U q q

I X X X k

( , ..., ) ( ) ( , ..., )

( , , ..., ) 0 2
N N

k i i

1 1 2

1 k1 1 (11)

Here, for every set of degrees of freedom qi, Xi denotes the
corresponding random variable. This equation states that, if a
given set of degrees of freedom can be separated out in the
energy function, all (higher-order) MI terms describing the
coupling of this set to any possible subset (including the full
set) of the remaining degrees of freedom vanishes simulta-
neously. The proof then proceeds as follows. Analogously to
eqs 6−8, we have

ρ ρ ρ

= +

⇒ = +

⇒ = +

U q q U q U q q

q q q q q

S X X S X S X X

( , ..., ) ( ) ( , ..., )

( , ..., ) ( ) ( , ..., )

( , ..., ) ( ) ( , ..., )

N N

N N

N N

1 1 2

1 1 2

1 1 2 (12)

Then, from eq 10, it follows for the pairwise MI

= + −
=

I X X X

S X S X X S X X

( , ... )

( ) ( , ..., ) ( , ..., )

0

N

N N

2 1 2

1 2 1

(13)

As for pairwise MI, we have45

≤ ≤− +I X X X X X I X X X0 ( , ... ) ( , ... )k k N N2 1 2 1 1 2 1 2 (14)

All pairwise combinations involving X1 vanish simultaneously.
Furthermore, all higher-order MI terms can be expanded
recursively as a sum of such vanishing pairwise MI
combinations with X1 using

32

=
+
−

− − −

− −

− − −

I X X I X X X
I X X X
I X X X X

( , ..., ) ( , ..., , )
( , ..., , )
( , ..., , )

n n n n n

n n n

n n n n

1 1 1 2 1

1 1 2

1 1 2 1 (15)

This completes the proof of eq 11. Now, applying the MIE (eq
9) for the subsystems treated in this work yields the expansion

= + + +

− − − −

− − + +

+ + −

S X A Y B S X S A S Y S B

I X A I X Y I X B I A Y

I A B I Y B I X A Y I X A B

I X Y B I A Y B I X A Y B

( , , , ) ( ) ( ) ( ) ( )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , , )

2 2 2 2

2 2 3 3

3 3 4 (16)

As, according to eq 6, we have U(qX,qA,qY,qB) = U(qX) + U(qA)
+ U(qY) + U(qB), all MI terms vanish for the unbound state.
Then, in accordance with eq 8, one obtains

π

= + + +

= + + °

S X A Y B S X S A S Y S B

S A S B R V

( , , , ) ( ) ( ) ( ) ( )

( ) ( ) 2 ln(8 )2
(17)

2.4. Configurational Entropy of the Bound State. In
the bound state, the two molecules are close together, and
therefore, the orientation of molecule 2 with respect to
molecule 1 contributes to the potential energy. Because in the
bound state the internal degrees of freedom between the
molecules also influence each other, only the external degrees
of freedom of the first molecule remain separable (as they
anchor the whole complex and we assume no external field).
Thus, denoting the degrees of freedom in the bound state with
a tilde, one can write

= +̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃U q q q q U q U q q q( , , , ) ( ) ( , , )X A Y B X A Y B (18)

Then, using eq 11 for the vanishing MI terms and the MIE for
the present subsystems (see eq 16), together with the fact that
as before S(X̃) = R ln(8π2V°), the configurational entropy in
the bound state can be written as

π̃ ̃ ̃ ̃ = ° + ̃ + ̃ + ̃

− ̃ ̃ − ̃ ̃ − ̃ ̃ + ̃ ̃ ̃
S X A Y B R V S A S Y S B

I A Y I A B I Y B I A Y B

( , , , ) ln(8 ) ( ) ( ) ( )

( , ) ( , ) ( , ) ( , , )

2

2 2 2 3
(19)

Note that the same result could be derived by using S(X̃,Ã,Ỹ,B̃)
= S(X̃) + S(Ã,Ỹ,B̃) from the statistical mechanical framework
due to eq 18 and then applying the MIE (eq 9) just to
S(Ã,Ỹ,B̃).

2.5. Configurational entropy change upon binding.
Using the results from the previous subsections, the configura-
tional entropy change upon binding can be obtained by
subtracting eq 17 (or equivalently eq 8) from eq 19 as

π

Δ = [ ̃ − ] + [ ̃ − ]

+ [ ̃ − ° ] − ̃ ̃ − ̃ ̃

− ̃ ̃ + ̃ ̃ ̃

≡ Δ + Δ + Δ − ̃ ̃ − ̃ ̃

− ̃ ̃ + ̃ ̃ ̃

S S A S A S B S B

S Y V I A Y I A B

I Y B I A Y B

S A S B S Y I A Y I A B

I Y B I A Y B

( ) ( ) ( ) ( )

( ) ln(8 ) ( , ) ( , )

( , ) ( , , )

( ) ( ) ( ) ( , ) ( , )

( , ) ( , , )

2
2 2

2 3

2 2

2 3 (20)

This final result describes the fully analytical configurational
entropy change in the absence of an external field expressed in
terms of contributions from external and internal degrees of
freedom of the molecules involved. It follows from the singular
assumption of the form of the potential energy function in eqs
6 and 18 in the classical limit without any further
approximations. For the external degrees of freedom of the
second molecule, the term ΔS(Y) = S(Ỹ) − ln(8π2V°)
expresses the rototranslational restriction upon binding to the
first molecule, in contrast to the motional freedom in the
unbound state. Note also that the only contributions that
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reflect the coupling between the four subsystems stem from
the MI in the bound state.

3. RESULTS AND DISCUSSION

Using the above analytical framework, we analyzed the relative
importance of the individual contributions to configurational
entropy change in the case of 10 protein complexes shown in
Figure 1. As a consequence of the limitations of in silico
sampling, application of the MIST approximation at an order
higher than pairwise is currently not possible for proteins of
biologically relevant sizes. However, one can further dissect eq
20 by separating the uncoupled configurational entropy from
the mutual information terms within a given subsystem. Here,
note that while, e.g., S(A) appears as a one-dimensional term at
the level of individual subsystems, when it comes to degrees of
freedom, it stems from a high-dimensional probability density
function, which one can expand via eq 9. The same holds for I2
terms: while at the level of individual subsystems they appear
as pairwise mutual information terms, at the level of degrees of
freedom they are described by higher-order mutual informa-
tion terms as in eq 9. Separating off the coupling terms within
one subsystem leads then to

Δ = Δ + Δ + Δ

− Δ − Δ − ̃ ̃

− ̃ ̃ − ̃ ̃ − ̃ ̃ + ̃ ̃ ̃

S S A S B S Y

I A A I B B I Y Y

I A Y I A B I Y B I A Y B

( ) ( ) ( )

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , , )

1D 1D 1D

2D 2D 2D

2 2 2 3
(21)

Here, as denoted in Table 2, S1D refers to the sum of the I1
terms in eq 9 and I2D to the sum of all terms Ik with k > 1, both
referring to the equation expressed at the level of degrees of
freedom and within one subsystem. While our analysis
approximates all I2D and I2 terms in eq 21 from 2D pdfs
over the degrees of freedom, the triplet term I3 inherently has
dimensions ≥ 3 and is, thus, difficult to sample properly. Note
that the term I2D(Ỹ,Ỹ) is zero for the unbound state,
corresponding to the total motional freedom of the molecules.
Thus, I2D(Ỹ,Ỹ) enters the equation directly without making a
difference in the case of the unbound state.

3.1. Convergence Analysis. Before analyzing and
comparing individual contributions to the configurational
entropy change, we would first like to discuss the convergence
of our computational estimates. The uncertainty in configura-
tional entropy calculations stems, in principle, from two main
sources. First, the underlying simulations need to accurately
and exhaustively sample the configurational space explored by
a given molecule. While the question of force field accuracy is
an important one, its adequate treatment is beyond the scope
of the present study. On the other hand, the question of how

Figure 2. Dependence of the calculated configurational entropy change and its components on simulated time for three representative complexes.
For each complex and contribution, we give values based on simulated samples with a 1 ps output frequency whose total size increases
incrementally in steps of 80 ns. For visualization purposes, the curves have been shifted to converge to zero when reaching their final value at the
total simulation length of 800 ns. The reference to binding partners A and B in different complexes as denoted by their PDB codes is the same as
that in Figure 1 and Table 1.
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exhaustively the phase space is sampled may be addressed by
monitoring the convergence of the configurational entropy
change and its components as a function of simulated time.
Second, uncertainty is also influenced by the intrinsic
properties of different configurational entropy components
and their dependence on sufficient sample size. This question
may be addressed by analyzing samples of different size coming
from a shuffled trajectory in which the ordering of individual
snapshots is randomized, thus removing the physical sources of
uncertainty. We have carried out both of these types of analysis
for three representative complexes in our set: the smallest one
(PDB code 2KTF), the largest one (PDB code 1JIW), and a
medium-size one involving S1D terms with noteworthy
properties, as further discussed below (PDB code 1UGH).
When it comes to total entropy change and its convergence

as a function of physical time, the complexes converge to
within 9, 7, and 25 kJ/mol from the final value for the 2KTF,
1UGH, and 1JIW complexes, respectively, already 80 ns before
the end of the simulated trajectories (Figure 2). Considering
the configurational entropy components, for 1JIW, the
principal determinant of convergence is the TΔS1D term of
its larger protein 1AKZ, making up 4503 of its total 5500
atoms. The corresponding mutual information term −TΔI2D,
in fact, converges considerably better (Figure 2): for example,
over the last 80 ns, TΔS1D rises by about 46 kJ mol−1, while
−ΔI2D drops by only 5 kJ mol−1. In fact, an analogues
statement can be made for all six proteins analyzed: −TΔI2D
does not constitute the limiting factor for convergence. It is
rather the TΔS1D terms that are more problematic to converge.
Another noteworthy observation can be made for 1UGH: the
larger protein 1AKZ, constituting 2333 of the 3121 atoms,
converges surprisingly well in all of its components (Figure 2).
The TΔS1D terms of the smaller protein 1UGI, on the other
hand, still drop by 35 kJ mol−1 over the last 160 ns. The reason
for this is likely the magnitude of the respective TΔS1D values,
which is −66 kJ mol−1 for 1AKZ and a considerable 504 kJ
mol−1 for 1UGI after the full 800 ns of the simulations. This
suggests that physical size is not necessarily the deciding factor
in convergence.
The other terms considered in this study, TΔS1D(Y),

−TI2D(Ỹ,Ỹ), −TI2(Ã,B̃), −TI2(Ã,Ỹ), and −TI2(B̃,Ỹ), show
rather satisfactory convergence properties for all complexes
analyzed, with their values coming to within approximately 2,
2, 5, 2, and 2 kJ mol−1, respectively, of the final values already
in a few 80 ns steps.
What is left to discuss are the convergence properties of

1UBQ in the 2KTF complex. While ubiquitin is a stable, well-
folded protein, its configurational entropy converges rather
slowly, especially in its TΔS1D terms, which still drop by about
27 kJ mol−1 over the last 160 ns. The reason for this likely
stems from the fact that, while well-folded, ubiquitin explores
different conformational substates on a time scale that is slow
compared to the simulation length of 800 ns. Indeed, the
excellent convergence of configurational entropy changes and
their components for all three complexes in the analysis of
shuffled trajectories, with all terms converging to within 6 kJ/
mol or less from the final value already within the first 80 ns
(Figure SI 1), strongly suggests that the key determinant for
convergence is not the sheer number of frames used for the
configurational entropy calculation, but rather the quality of
the underlying coverage of the phase space. In fact, the initial
convergence in the analysis of shuffled trajectories turned out
to be so rapid for all six proteins of the three complexes studied

that we had to fine-grain the first 80 ns to steps of 8 ns to
produce SI Figure 1.
Putting the convergence issues aside, the final configura-

tional entropy change values, as calculated here, may seem
relatively high. There are three separate issues that need to be
mentioned in this regard. First, the MIST approximation is by
definition an upper bound on the absolute configurational
entropy and, if the underlying absolute values are too high, it is
likely that the corresponding differences will show the same
trend. Note, however, that when compared to the values
obtained by the quasi-harmonic approximation the MIST
configurational entropy differences are actually lower by a
factor of approximately 3.38 Next, a large change in entropy is
frequently accompanied by a large change in enthalpy,
resulting in a moderate value for the relevant free energy
change.3 In this sense, our results could very much be
physically meaningful. Finally, the main experimental estimates
of configurational entropy changes in protein interactions are
derived from the changes in the NMR methyl order parameters
by using a linear relationship between the two.38,46 While the
proteins in our set indeed exhibit somewhat higher values of
configurational entropy change as compared to the proteins
that have been studied experimentally,46 they also explore a
significantly larger range of order parameter changes (a factor
of ∼3). Taking this into the account, one could claim that our
results are approximately consistent with the experimentally
measured magnitude of configurational entropy change.

3.2. Evaluation of Contributions to Configurational
Entropy Change. Acknowledging the uncertainties discussed
in the previous section, we now turn back to the numerical
investigation of eq 21. In Figure 3a, we evaluate this
breakdown on our simulated set, each captured by one point
in every column, as calculated from the pairwise order MIST
approximation. The percentage values given in the graph
capture the span of the values in reference to the span of the
column ΔStotal. Thus, these values can be interpreted as the
numerical measure of the importance of a given contribution.
We have opted for such a means of comparing different terms
because taking the ratios between individual components for
the same binding process, while seemingly more natural,
results in some cases in misleadingly extreme values. As
expected, the 1D terms of the internal degrees of freedom
contribute the most, followed by the coupling within the
molecules. The coupling between the internal degrees of
freedom of the two molecules makes up 11% of the total
variation. Note that, in absolute terms, this corresponds to a
variation of 40 kJ mol−1. The smallest variation stems from
arguably the most exotic term: the coupling of the external
degrees of freedom of molecule 2 with respect to molecule 1
with themselves. However, although fractionally minor, this 1%
percent of the span still makes up for 3.6 kJ mol−1, a value that
could have physical and biological significance.
It is of interest, especially in the context of rational drug

design, to assess whether the above results hold if smaller
molecules are involved. To investigate this, we have analyzed
the relationship between different configurational entropy
contributions normalized by the number of degrees of freedom
(3N − 6, where N is the total number of atoms) for each
binding process (Figure 3b). This normalization down-weights
the binding contributions of larger complexes or, i.e., up-
weights those of the smaller complexes. For this reason, Y,
which is comprised of a small but constant number of six
external degrees of freedom regardless of the size of the
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complex, gains in importance. This is reflected in ΔS1D(Y)
almost doubling. Also, the other terms involving Y tend to
rather increase their impact [with the minor outlier
−I2D(B̃,Ỹ)]. The fact that the smallest complex in this study
is comprised of 1094 atoms together with the fact that the span
of ΔS1D(Y) increases already by a factor of 2 demonstrates the
importance of these external degrees of freedom as well as all
of their couplings when investigating small systems. Thus, from
an entropic point of view, retaining as much rotational and
translational freedom as possible at the binding site should turn
out especially beneficial for small ligands such as many drug
compounds. However, due to the enthalpy/entropy compen-
sation,20−22 one should also consider the impact on the
enthalpic component of any practical optimization in this
direction.
Note that there exists a fundamental arbitrariness in

separating external from internal contributions, as already
discussed by Gilson and co-workers.31,39,40 In the BAT
coordinate system,12,23−28 this is reflected in the choice of
root atoms from which the construction of the coordinate
system is initiated. Accordingly, in the bound state, a
nonphysical pseudobond is introduced connecting to the
root atoms of the second molecule in order to form a complete
coordinate system. For this reason, we numerically explore the
impact of this largely arbitrary choice by performing our

calculations for 5 different sets of root atoms in the second
molecule for each of the 10 protein complexes. While Figure 3a
illustrates the values chosen from the root atoms that minimize
ΔS1D(Y), as proposed in ref 31, Figure 5 shows the changes of

the values with respect to the maximization of such terms. The
spans relative to the total entropy change in Figure 3a suggest
that the global importance of the individual terms is hardly
affected by this fundamental arbitrariness. However, individual
terms can exhibit quite a drastic change for certain proteins.
Generally, the footprint of a given molecule does not follow

a readily discernible pattern, which is illustrated in the case of
the 1S1Q and 1UGH complexes in Figure 4a (see Figure 1 and
Table 1 for further details). While the two complexes exhibit
almost the same total entropy change ΔStotal, the contribution
of the leading uncoupled terms ΔS1D is vastly different. For
1S1Q, the two binding partners contribute similarly when it
comes to ΔS1D. In 1UGH, however, a small ΔS1D contribution
of the larger binding partner 1AKZ is accompanied by a large
ΔS1D contribution of the smaller binding partner 1UGI.
Surprisingly, however, the rest of the terms are virtually the
same, which is noteworthy especially when it comes to the
internal coupling terms. Remarkably, however, the sum of the
internal uncoupled terms ΔS1D(A) + ΔS1D(B) exhibits an
excellent linear correlation with the total entropy change for
both the ubiquitin-containing and the non-ubiquitin-contain-
ing complexes (Figure 4b). This fact provides fundamental

Figure 3. Contributions to configurational entropy change upon
protein binding. Every column represents one of the contributions in
eq 21, and every binding process contributes one data point in every
column. The percentage values represent the span in the given
column in relation to the span of the first column describing the total
configurational entropy change. Green points denote complexes
involving ubiquitin (Figure 1a), while blue points denote complexes
not involving ubiquitin (Figure 1b). (b) Same as (a) but normalized
by the number of degrees of freedom of the complex for each binding
process, thus illustrating size dependence.

Figure 4. Relationship between different configurational entropy
contributions. (a) Footprint of configurational entropy contributions
for two specific complexes demonstrating the nonpredictable
relationship between different terms. (b) The sum of the leading
internal uncoupled terms is an excellent linear predictor of the total
entropy change.
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support for the recently developed NMR-based methods for
measuring the configurational entropy change of protein
interactions,4,5,46,47 which critically rely on such linear
behavior. Nevertheless, although the external as well as the
coupling terms obviously average out to a constant fraction
rather well, given the ranges in Figure 3a, a customized
recalibration for the system of interest (as done by the NMR
methods), may likely be required for improved accuracy.

4. CONCLUSIONS
In summary, we have presented here a comprehensive
theoretical framework for analyzing different contributions to
configurational entropy change over internal and external
degrees of freedom. Moreover, we have provided a quantitative
assessment of the individual contributions to configurational
entropy change in the case of a large set of MD simulations of
biomolecular binding processes. While the analytical parts of
our study are exact, the latter analysis was subject to different
sources of uncertainty, including force field errors and
convergence issues, and its results should be treated as such.
We hope that these efforts will help to complete the theoretical
foundation used for treating the configurational entropy in
biomolecular systems. With recent methodological advances
on both experimental and computational fronts, it is our firm
conviction that such a foundation will be instrumental in
numerous fundamental and applied contexts alike.

5. METHODS
MD simulations were performed as described previously36−38

using the GROMACS 4.0.7 simulation package,48,49 the
GROMOS 45A3 force field,50 and the SPC water model.51

Proteins were placed in water boxes, together with the
necessary number of sodium or chloride counterions to
reach neutrality, and subjected to energy minimization,
followed by heating to 300 K for 100 ps and subsequent
unconstrained MD simulations. The length of each MD
trajectory was 1 μs, with the first 200 ns treated as an
equilibration period and the remaining 800 ns analyzed.

Simulations were carried out with a time step of 2 fs using 3D
periodic boundary conditions, in the isothermal−isobaric
(NPT) ensemble with an isotropic pressure of 1 bar and a
constant temperature of 300 K, while system coordinates were
output every 1 ps. The pressure and the temperature were
controlled using the Berendsen thermostat and barostat52 with
1.0 and 0.1 ps relaxation parameters, respectively, and a
compressibility of 4.5 × 10−5 bar−1 for the barostat. Bond
lengths were constrained using LINCS.53 The van der Waals
interactions were treated using a cutoff of 14 Å. Electrostatic
interactions were evaluated using the reaction-field method,54

with a direct sum cutoff of 14 Å and relative permittivity of 61.
For the complex 1YD8, due to the lack of a separate structure,
the ubiquitin binding partner (human GGA3 GAT domain)
was extracted from the PDB structure of the complex and
equilibrated for an additional 500 ns. The PARENT36 program
suite, a configurational entropy package in parallel architecture,
was used for entropy calculations by applying the MIST
approximation.10,35 For sampling probability densities, 50 bins
were used in one-dimensional cases and 50 × 50 = 2500 in
two-dimensional cases.
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Hess, B.; Lindahl, E. GROMACS: High performance molecular

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b01254
J. Chem. Theory Comput. 2019, 15, 3844−3853

3852

http://dx.doi.org/10.1021/acs.jctc.8b01254


simulations through multi-level parallelism from laptops to super-
computers. SoftwareX 2015, 1−2, 19−25.
(50) Schuler, L. D.; Daura, X.; van Gunsteren, W. F. An improved
GROMOS96 force field for aliphatic hydrocarbons in the condensed
phase. J. Comput. Chem. 2001, 22, 1205−1218.
(51) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.;
Hermans, J. Intermolecular Forces; The Jerusalem Symposia on Quantum
Chemistry and Biochemistry; Springer: Dordrecht, The Netherlands,
1981; pp 331−342.
(52) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.;
DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an
external bath. J. Chem. Phys. 1984, 81, 3684.
(53) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M.
LINCS: A linear constraint solver for molecular simulations. J.
Comput. Chem. 1997, 18, 1463−1472.
(54) Tironi, I. G.; Sperb, R.; Smith, P. E.; van Gunsteren, W. F. A
generalized reaction field method for molecular dynamics simulations.
J. Chem. Phys. 1995, 102, 5451.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b01254
J. Chem. Theory Comput. 2019, 15, 3844−3853

3853

http://dx.doi.org/10.1021/acs.jctc.8b01254

