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Abstract

Skeletal muscle health is a strong predictor of overall health and longevity. Pathologies affecting skeletal muscle
such as cancer cachexia, intensive care unit treatment, muscular dystrophies, and others are associated with
decreased quality of life and increased mortality. Recent research has begun to determine that these muscular
pathologies appear to present and develop differently between males and females. However, to our knowledge,
there has yet to be a comprehensive review on musculoskeletal differences between males and females and how
these differences may contribute to sex differences in muscle pathologies. Herein, we present a review of the
current literature on muscle phenotype and physiology between males and females and how these differences
may contribute to differential responses to atrophic stimuli. In general, females appear to be more susceptible to
disuse induced muscle wasting, yet protected from inflammation induced (such as cancer cachexia) muscle wasting
compared to males. These differences may be due in part to differences in muscle protein turnover, satellite cell
content and proliferation, hormonal interactions, and mitochondrial differences between males and females.
However, more works specifically examining muscle pathologies in females are necessary to more fully understand
the inherent sex-based differences in muscle pathologies between the sexes and how they may correspond to
different clinical treatments.
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Background
Muscle makes up ~ 47–60% of lean body mass in men
and women and is one of the greatest contributors to
whole body energy expenditure [1]. Therefore, maintain-
ing skeletal muscle health is critical to maintaining
health and longevity throughout the lifetime. Various
pathological conditions, such as prolonged periods of
disuse, cancer cachexia, burn injuries, and others cause
dramatic muscle atrophy, which in turn relates to a de-
crease in overall quality of life and increased mortality
[2]. Specifically, disuse atrophy, a common occurrence
with prolonged bed rest, casting, and space-flight, de-
velops rapidly and significantly increases mortality and
morbidity in these populations [2, 3]. For example,
muscle loss occurs rapidly in intensive care unit (ICU)
patients, and the degree of muscle loss is associated with
increased treatment time and mortality [4–7].

Interestingly, these disuse-induced pathologies appear
to discriminate between biological sexes, with females
tending to have faster onset of muscle loss compared to
males [8] which has been postulated to correspond to
increased mortality in females [9]. However, until re-
cently, investigations into disuse pathologies have pri-
marily been conducted in only one sex [10–20] despite
the influence of biological sex in many diseases [21–26].
However, the differences and similarities between males
and females during atrophic pathologies is not currently
codified. Therefore, the purpose of this review is to
examine the current literature on various physiological
processes between males and females potentially con-
tributing to muscle health, including general muscle
phenotype, response to catabolic and anabolic stimuli,
hormonal contributions to muscle health, as well as
mitochondrial profiles.

Muscle phenotypes between males and females
The maintenance of muscle size relies on a delicate
balance between protein synthesis and degradation,
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whereby an increased protein synthesis:degradation
ratio results in muscle hypertrophy and decreased syn-
thesis:degradation ratio results in muscle atrophy.
Many diseases are associated with reduced health out-
comes with muscle loss [27, 28]. Recent works have
established that mechanisms contributing to these
muscle pathologies are different depending on the
disease, making effective treatment options difficult.
For example, cancer is also known to cause marked
muscle and body fat loss, with body weight losses be-
ing strongly associated with mortality. However, this
particular form of atrophy appears to be related to the
inflammatory action of the tumor-host interactions
[29–32], whereas disuse atrophy does not typically
display this classical inflamed phenotype [33]. Until
recently, it was thought that processes contributing to
muscle loss were not sex specific. However, recent
works have begun to establish differences between
males and females on responsiveness to atrophic and
hypertrophic stimuli. In this section, we will specific-
ally focus on sex differences in overall muscle pheno-
type and how these differences may contribute to
differential sensitivity to catabolic and anabolic factors
as well as highlight areas for further research (Fig. 1).

Fiber type differences between males and females and
susceptibility for disuse atrophy
Data have begun to demonstrate muscle composition
differences between males and females. Females tend to

rely more on oxidative metabolism compared to males
[34]; correspondingly, females also have greater relative
content of type I muscle fibers compared to males
within the same muscle [35, 36]. Works have previously
established that different muscle pathologies differently
affect different muscle fibers [37], with cancer cachexia
more strongly influencing glycolytic fibers compared to
oxidative [38–40] and disuse atrophy preferentially
selecting for oxidative fibers [14, 33, 41]. Although it is
not completely understood why disuse atrophy more
radically impacts oxidative fibers, the differential content
of fibers between males and females may be an import-
ant consideration for future research investigating sex as
a biological variable with muscle atrophies.

Disuse muscle loss between males and females
While muscle loss occurs in both males and females across
a variety of pathologies, different pathologies appear to dif-
ferentially affect males and females [8, 9, 42–46]. For ex-
ample, during aging-induced atrophy, females experience a
greater shift toward smaller fibers compared to males [47].
However, during inflammation-based muscle pathologies,
such as cancer cachexia, males tend to have greater muscle
losses and subsequent side effects compared to females
[43–45, 48]. Overall, these works suggest that males and fe-
males exhibit differing muscle atrophy responses depending
on the precise stimuli. Specific to disuse atrophy, female
mice have been shown to exhibit a greater percent loss of
soleus mass compared to males during hindlimb unloading

Fig. 1 Summary of current literature of sex differences and similarities of muscle phenotype in males and females
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[49], suggesting females may be particularly susceptible to
disuse atrophy compared to males. However, it is not cur-
rently clear if this is due to a higher percentage of disuse-
susceptible type I fibers in females or innate differences in
muscle physiology. Clinically, recent works suggest that fe-
males are more likely to succumb to intensive care unit
(ICU)-associated muscle weakness [8], potentially leading
to more ICU-associated deaths [9]. Taken together, these
data clearly suggest different responses to atrophic stimuli
between males and females and highlight the need for fur-
ther research investigating mechanisms for muscle wasting
across a variety of pathologies.

Sex difference in anabolic and catabolic factors
As the maintenance of muscle mass depends on the bal-
ance of anabolic and catabolic factors, here we will briefly
describe known differences between males and females on
mediators of protein synthesis and degradation. Briefly, one
of the major mediators of protein synthesis is the mamma-
lian target of rapamycin (mTOR). Activation of mTOR by
anabolic stimuli (resistance exercise, insulin, amino acids,
etc.) results in phosphorylation of 4EBP-1 and S6K1
proteins, allowing for mRNA translation and subsequent
protein synthesis [50]. In general, most studies have found
that males and females have similar mTOR activation and
subsequent protein synthesis with anabolic stimuli such as
food consumption or resistance exercise [51–55]. However,
there still remains some controversy on sex differences with
regards to anabolic processes. For example, some literature
has suggested increased protein synthesis measured by frac-
tional myofibrillar synthesis rates in females compared to
males with whey ingestion [56], whereas others have found
males to have greater increases in muscle protein synthesis
compared to females after weeks of sprint interval training
[57]. Regardless, the current literature tends to favor no
sex-mediated differences on mTOR activation and subse-
quent protein synthesis [51–55].
Conversely, recent evidence suggests potential sex

differences in satellite cell activation and proliferation.
Briefly, satellite cells are myogenic stem cells, acti-
vated during regenerative stimuli, such as resistance
exercise or muscle damage [58]. Once activated, satel-
lite cells proliferate to form new myonuclei and facili-
tate muscle hypertrophy or regeneration, depending
on the specific stimuli [58]. A more through overview
of satellite cell activation and proliferation has been
reviewed elsewhere [58]. Male satellite cells appear to
have more mRNA related to differentiation and hyper-
trophy such as myogenin and MyoD compared to
females [59] and appear to also have greater prolifera-
tive capacity compared to females [60, 61]. For ex-
ample, it was recently found that young male mice
tend to have greater numbers of satellite cells com-
pared to female mice [61], satellite cells derived from

male poultry also have greater proliferation in vitro
[60]. These differences may in part be due to differ-
ences in testosterone-mediated satellite cell prolifera-
tion [62]. For example, in vitro culture of satellite cells
treated with serum from castrated males demonstrate
reduced proliferation compared to serum from uncas-
trated males [63]. In vivo loss of testosterone in
various mammalian species results in reduced satellite
cell content and reduced muscle size [64, 65]. Further-
more, adding supplemental testosterone in males miti-
gates these aberrations and can result in greater
overall satellite cell content compared to control
animals [64–66]. This hypothesis of testosterone-
mediated satellite cell proliferation is further corrobo-
rated by research finding testosterone treatment in
female mice produced an increase in the number of
myonuclei [67]. Taken together, the aggregate of these
studies strongly suggest that testosterone mediates
greater satellite cell content in males, possibly allow-
ing for greater muscle size. However, we should note
that there has been recent controversy on the neces-
sity of satellite cells for maintenance of muscle mass
and hypertrophy [68–70]. Such controversies are
beyond the scope of this review article; for further in-
formation, the reader is directed to excellent reviews
on this topic [58, 71]. Overall based on the current
literature, females and males do not appear to have
clinically meaningful differences in mTOR activation
and subsequent protein synthesis in response to
anabolic stimuli; however, males do appear to have
greater satellite cell content and proliferative capacity
compared to females.
Catabolic factors and signaling mechanisms also play

a large role in the overall muscle size. Broadly speaking,
the two primary protein degradative pathways include
ubiquitin-proteasome and autophagy pathways [72].
Briefly, the ubiquitin-proteasome system involves tag-
ging old or misfolded proteins with small ubiquitin
proteins; these ubiquitin-tagged proteins are then trans-
ferred to the proteome for degradation [73]. This sys-
tem is regulated by various ligases (referred to as E1,
E2, and E3 ligases) that facilitate activation of the ubi-
quitin, transfer of the ubiquitin to the target protein,
and finally the attachment of ubiquitin to the target
protein respectively [73].The ubiquitin-tagged protein
is then shuttled to the proteasome for degradation and
recycling of amino acids [73]. MuRF1 and Atrogin1 are
important E3 ligases within the ubiquitin-proteasome
pathway and are activated across a variety of catabolic
muscle pathologies [73–75]. Similarly, the autophagic
degradative pathway serves to remove damaged or old
proteins [76]. Autophagy-related genes (Atgs) are the
primary regulators of this pathway. Broadly speaking,
catabolic stimuli signal to ULK1 protein to initiate
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autophagosomal formation, which is initiated by the
Beclin (Atg6) protein [77]. Autophagosomal formation
is facilitated by the activation of the LC3I to LC3II con-
versation induced by Atg4 [77]. Concurrently, the p62
(SQSTM1) cargo protein brings the proteins tagged for
autophagosomal degradation to the autophagosome.
Finally, the autophagosome binds with a lysosome for
lysosomal degradation of the protein [77]. A more
through overview of these process has been reviewed
elsewhere [73, 77].
Recent works have begun to tease out the nuances in

possible differences of these pathways between males and
females. In general, it appears that both of these processes
are at least partially mediated by biological sex, as prior
works have found mRNAs related to these processes are
differentially expressed between males and females [78].
Specifically females overall tend to have lower basal
ubiquitin-proteasome activity compared to males, which
is thought to be partially mediated by estrogen signaling
[79, 80]. This lowered ubiquitin-proteasome activity ap-
pears to result in differential FOXO3a-Ubiquitin signaling
during disuse atrophy, with females showing less FOXO3a
content compared to males, yet greater ubiquitinated
protein content [49]. Potential reasons or mechanism for
this differential signaling during disuse have yet to be
elucidated. While females tend to have less ubiquitin-
proteasome activity compared to males, females tend to
have greater autophagy-related protein degradation com-
pared to males [81, 82]. Current literature suggests greater
protein content of autophagy regulators of autophagy ini-
tiation and resolution compared to males [81, 82], overall
suggesting that males and females may preferentially favor
different protein catabolic pathways.
Specific to disuse atrophy, both males and females

have potent inductions of degradative pathways with
disuse [83, 84] [10, 12, 85–93]. However, these re-
sponses may be partially mediated by biological sex. For
example, male rats and mice undergoing hindlimb
unloading have increased Atrogin1 and MuRF1 induc-
tion in the early stages of disuse (~ 2–10-fold depend-
ing on length of unloading and tissue) [10, 12, 85–90].
Comparatively, females potentially have an augmented
response compared to males, with some studies report-
ing as much as 20–40-fold increases in MuRF1 and
Atrogin1 respectively [83, 84], though others have
noted only 2–4-fold greater Atrogin1 and MuRF1
mRNA in hindlimb casted females [91]. Taken together,
these studies may suggest similar degradative pathways
in males and females during disuse atrophy; however,
in females, degradative pathways such as ubiquitin-
proteasome may be relatively greater compared to
males. However, to our knowledge, this hypothesis has
not been directly tested and may warrant further study.
Similarly, autophagy is also known to be activated

during disuse atrophies in both human and animal
models [91, 92, 94]. However, potential sex differences
in autophagy induction during disuse atrophy have not
been directly evaluated between sexes.
Finally, males and females may differ in regulators of

protein catabolism, specifically myostatin sensitivity.
Myostatin, a protein within the TGF-β family, can greatly
impact muscle size, with increased myostatin activity con-
tributing to reduced muscle size in multiple models of
muscle catabolism [95–97]. While myostatin will affect
both sexes, females appear to be more responsive to
myostatin withdrawal, with inhibition of myostatin caus-
ing greater muscle hypertrophy in females compare to
males [98]. However, myostatin action in both sexes still
remains perplexing as recent works have found disuse at-
rophy to increase myostatin content in females but not
males [49]. This may be partially due to myostatin-
androgen receptor reciprocity. Prior works have found
myostatin translation and secretion moderated by andro-
gen receptor translocation to the nucleus with androgen
binding [99, 100]. Speculatively, this interaction between
androgen receptor activity and myostatin synthesis may
serve to counter balance androgen hypertrophic action.
This hypothesis would align with noted differences in
myostatin content between males and females during
disuse atrophy; however, more works are needed to fully
elucidate these complicated interactions.
Overall, the current literature appears to suggest

multiple differences in muscle physiology between
males and females, as well as a few similarities be-
tween the biological sexes. Males and females appear
to have similar inductions of protein synthetic
pathways with anabolic stimuli and both have large
inductions of catabolic pathways with disuses; how-
ever, the relative strength of these inductions may
warrant further research. Females tend to have more
oxidative type I fibers compared to males [34–36],
which may predispose females to greater muscle
losses with disuse atrophy. Females tend to have less
satellite cells [60, 61], which may be partially
mediated by testosterone-activation of ARs on the
satellite cells [64–66]. Females also tend to have less
basal ubiquitin-proteasome activity and greater au-
tophagy activity compared to males [79–82]. Finally,
females appear to have differential regulation of
myostatin activity and subsequent alterations to
muscle physiology [49, 98]. Taken together, the
aggregate of these data suggest differential interac-
tions between muscle pathologies and biological sex,
strongly suggesting the need for research investigat-
ing treatment interventions that optimize specific
cellular mechanisms that differ between males and
females in order to optimize therapies for musculo-
skeletal pathologies based on biological sex.
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Hormonal interactions
One significant difference between males and females
that likely contributes to dimorphic responses between
sexes during muscle pathologies is differing circulating
hormones. The process of synthesizing these hormones
begins at the gonadotropic cells in the anterior pituitary
gland of the brain. Gonadotropes facilitate signaling to
sex organs for the synthesis of sex hormones. Different
genetic expression within the gonadotropes at the an-
terior pituitary gland vary in mammals depending on
age and menstrual/estrous cycling status. Among fe-
males, greater activation of gonadotrope signaling to
sex organs is present during proestrus (corresponding
to increased estrogen and progesterone synthesis) com-
pared to diestrus [101]. In general, sex hormones exert
beneficial effects on muscle mass maintenance and
function [102–104]; however, their specific impacts on
skeletal muscle may have specificity to the sex of the
organism. While it is unlikely that hormones solely
mediate differences in muscle health, it is likely that
hormonal interactions have at least some influence on
muscle quality and health. For the purpose of this
review, we will focus primarily on the three primary
sex-related hormones: testosterone, estrogen, and pro-
gesterone (Fig. 2).

Testosterone as a mediator of muscle growth
Testosterone is currently one of the most popular
supplements in the USA, with sales of testosterone
supplements increasing 500% between 1993 and 2000
[105], and continuing to grow. Men tend to have greater

testosterone than women, with a normative range of ~
82–257 ng/dL for young men and 0.8–10 ng/dL for
young women [106]. Testosterone is an androgenic
hormone that works through the action of androgen
receptors (AR) on various tissues to facilitate protein
anabolism. Specifically, part of this anabolic response in-
volves AR translocation to the nucleus to act as a tran-
scription factor to increase myotube and muscle protein
synthesis [107, 108]. Previous work has demonstrated
that testosterone can work specifically through ARs to
contribute to increased protein synthesis [107, 108]. In
human primary myotubes from men, recent work has
clarified the pathways for testosterone action [107].
Specifically, it has been demonstrated that testosterone
action can activate mTOR through androgen-mediated
action of androgen receptor to activate PI3k/Akt signal-
ing [107]. AR receptor content varies based on the type
of tissue, and in muscle by the fiber type [109]. Interest-
ingly, AR activation seems to favor a shift toward slow
twitch fibers, with AR-knockout mice demonstrating a
shift toward type II fibers [99]. In animal models, remov-
ing testosterone in male mice by castration induces a
noted decrease in muscle size [99, 110, 111]. Whereas,
when testosterone is given to those with low levels of
testosterone, such as men with hypogonadism or older
male mice, there appears to be increased muscle mass
[110, 112]. In females, testosterone also appears to have
anabolic effects, for example postmenopausal women
given an acute treatment with testosterone exhibit
increased fractional protein synthesis rates [113].
However, that same study found greater FSR in older

Fig. 2 Summary of the current literature of classical sex hormones and their influence on muscle size.
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females compared to young [113] as such, it is unclear if
increasing protein synthesis rates alone necessitates a
phenotypic change in the muscle in this population.
Whereas AR content appears necessary for appropriate

muscle fiber size, it does not appear sufficient to induce
muscle hypertrophy; for example, resistance exercise
training does not appear to impact the number of AR
[114]. Additionally, free testosterone in the blood has lit-
tle relationship to changes in lean body mass or strength
[114, 115]. Finally, there does not appear to be sex dif-
ferences in the number of ARs or sensitivity to anabolic
stimuli [63, 116], suggesting that sex differences in an-
drogenic activity are likely due to higher concentrations
of androgens in the blood.
During multiple muscle pathologies, hypogonadism

and associated testosterone concentrations are known to
be lowered and hypothesized to partially contribute to
muscle loss [117–121]. For example, men with spinal
cord injury demonstrate generally lower testosterone
levels compared to non-injured controls [122]. However,
testosterone supplementation in these populations has
shown promise for mitigating this muscle loss in men
[119, 120]. Hypogonadism also commonly accompanies
cancer cachexia [117, 118], and recent works have begun
to evaluate the sufficiency of drugs with androgen-like
binding and testosterone itself as pharmacological agents
for the treatment of cancer cachexia in men [123, 124].
Finally, testosterone supplementation appears to limit
glucocorticoid-induced muscle atrophies in male mice
[121]. However, despite these promising findings in
other muscle pathologies, testosterone status does not
appear to influence muscle mass recovery from hindlimb
unloading, in that androgen supplementation in these
populations does not mitigate muscle losses [125, 126].
Therefore, while the presence of testosterone appears to
be a necessary component for muscle mass and quality
in males, the precise relationships between testosterone
status and muscle quality appear dependent on the spe-
cific muscle pathology. Overall, it does not appear that
testosterone treatment is necessarily effective for miti-
gating disuse-induced muscle loss in males. However,
mechanisms for these discrepancies between different
muscle pathologies remain under investigated and war-
rant further research.

Estrogen as a mediator of muscle growth
Estrogen (also sometimes referred to as estradiol) is primar-
ily associated as a female sex hormone whose concentration
varies throughout the course of the menstrual (human) or
estrous (murine) cycle. Specifically, women tend to have in-
creased estradiol and progesterone during the luteal phase
of menstrual cycle (300 pg/ml estradiol/day and 10 ng/ml
progesterone/day during the luteal phase vs. 50 pg/ml
estradiol/day and 1 ng/ml progesterone/day during the

follicular phase, respectively) [127]. In female mice, estra-
diol and progesterone appear to peak at 40–60 pg/ml and
25–30 ng/ml respectively during proestrus and 7–10 pg/ml
and 5 ng/ml during diestrus [128–132]. Each of these
phases affects energy utilization and bioenergetics [133].
Estrogen overall appears to exert a hypertrophic effect
[134], which is at least partially mediated by increased sen-
sitivity of IGF-1 in satellite cells [135]. Estrogen also affects
mitochondrial health [136, 137], whereby estrogen removal
in ovariectomized rats decreases mitochondrial O2 con-
sumption and efficiency [136, 138], overall suggesting that
estrogen plays an important role for cellular and likely mus-
cular health in females.
While the specific role of estrogen on muscle size

and quality is still controversial, in general, deficiency
of estrogen is likely detrimental to muscle function in
both males and females [1]. Generally, ovariectomized
young mice and postmenopausal women have smaller
muscles compared to functional uterus controls [1],
suggesting that estrogen plays a role in muscle size, at
least in females. Estrogen also may be important for
protection from atrophic stimuli. For example, during
inflammation-induced atrophy, estrogen diminishes
IL-6 secretion from the liver and appears to blunt at-
rophy [139]. This finding strongly suggests protective
effects of estrogen and may partially account for dif-
ferences seen between males and females during path-
ologies such as cancer cachexia, whereby cycling
females do not experience cachexia compared to acyc-
lic females who do undergo cachexia [140]. Estrogen-
based treatments have begun to be investigated for
various muscular dystrophies [141–144], specifically
the use of tamoxifen, a drug developed for estrogen-
dependent breast cancer. Finally, loss of estrogen re-
ceptors delays muscle regeneration and differentiation
after injury [145]. Overall, the aggregate of the litera-
ture appears to suggest that estrogen is a necessary
component of muscle size, with reduction or elimin-
ation of estrogen causing reduced muscle size and
regenerative capacity. However, it should be noted
that one study suggested activation of estrogen recep-
tors in males to cause muscle atrophy through
increased ubiquitin-specific peptidase 19 content and
potential augmented activation of the ubiquitin-
protease system [80], and recent work suggests that
estrogen treatment in males can alter MHC gene ex-
pression as measured through microarray analysis in
cardiac tissue [146]. Therefore, more research may be
necessary to understand the intricacies of estrogen’s
precise effects on muscle in both males and females.
Specific to disuse muscle atrophy, estrogen treatment

and/or supplementation has shown mixed efficacy on pro-
tections against disuse-induced muscle pathologies. For
example, ovariectomized mice showed delayed recovery
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from disuse-induced atrophy, and greater muscle loss
(measured by cross sectional area) compared to ovariecto-
mized mice with estrogen replacement [104], suggesting
that estrogen may be a necessary component to mitigate
the intensity of muscle atrophy. However, other work
shows estrogen treatment in female mice to have little
effect on muscular deteriorations with disuse [147], sug-
gesting that estrogen treatment in females is not sufficient
to counteract disuse atrophy. Contrastingly, estrogen-
based treatments (including both estrogen and estrogen-
receptor agonists) have shown some protections against
disuse atrophy in male mice and rats [148–151]. Further
demonstrating the necessity to investigate potential treat-
ments against muscle pathologies in both male and female
models.
Overall, the current literature appears to suggest that

estrogen is a major mediator of muscle quality, with loss
of estrogen associated with decreases in muscle quality.
Supplementation of estrogen may increase muscle size
in animals; however, more research using both male and
female models are necessary to understand the full influ-
ence of estrogen on muscle quality and size.

Progesterone and muscle health
Similar to estrogen, progesterone also is associated as a
female sex hormone, with massive increases in proges-
terone concentrations during the luteal phase of the
menstrual cycle. However, compared to estrogen, pro-
gesterone has not been studied as extensively in relation
to muscle quality.
One of the early investigations of progesterone found

progesterone treatment on myotubes increased hydrogen
peroxide (ROS) emission from the mitochondria [152],
which the authors interpreted as pathological. However,
based on this study, it is not clear whether this emission
is necessarily pathological, as small amounts of ROS pro-
duction may benefit mitochondrial and muscle health as
seen in exercise studies where blunting ROS response
blunts exercise adaptations [153]. Recently, is has been
suggested that mitochondria contain a progesterone re-
ceptor that can directly mediate and increase mitochon-
drial respiration and efficiency [154, 155]. This increased
respiration in the muscle may allow for the increased
ATP production necessary to develop and maintain
muscle mass. However, to our knowledge, this relation-
ship has not been directly tested in mammalian species.
With specific regard to muscle hypertrophy, high feed

efficiency broiler chickens have been found to have
higher mitochondrial efficiency which appears to be me-
diated by progesterone action [156]. This work adds to
the growing body of literature that mitochondrial health
is a major mediator of muscle quality and this quality is
at least partially mediated by progesterone action. Add-
itionally, in cattle, feed efficiency can be increased ~ 20%

by supplementation with progesterone [157], and pro-
gesterone treatment in mice and humans can stimulate
cardiac and skeletal muscle protein synthesis [108, 158].
However, to our knowledge, no work has directly inves-
tigated the role of progesterone on disuse or other
muscle atrophies. Based on works demonstrating proges-
terone’s hypertrophic capacity, progesterone treatment
may be an additional treatment target for pharmaco-
logical interventions for the prevention of muscle atro-
phies. However, more works are needed to thoroughly
understand progesterone’s mechanism of action for
regulation of muscle quality.

Estrous cycle in relation to muscle pathologies
Recent literature is beginning to examine the influence
of estrous/menstrual cycle on various pathologies and
treatments in females. Currently, the aggregation of lit-
erature suggests that estrous cycle can influence some
pathologies. For example, female mice are more sensi-
tive to the effects of antidepressants during proestrus
[159, 160] and other pathologies such as autoimmune
diseases are thought to be mediated by estrogen and
the estrous/menstrual cycle [161, 162], suggesting that
hormonal status may influence some disease patholo-
gies. Specific to muscle pathologies, recent work has
strongly suggested that estrous cycle may influence de-
velopment of cancer cachexia in female mice, whereby
it is hypothesized that cancer cachexia may influence
estrous cycling and result in muscle wasting [140, 163].
For example, in female Apcmin/+ mice, 100% of acyclic
females become cachectic as opposed to essentially no
cycling females becoming cachetic [140]. This acyclicity
appears to occur in ~ 38% of female Apcmin/+ mice
[140]; however, mechanisms for this cessation are not
yet fully understood. These works suggest that the pres-
ence or absence of the estrous cycle influences muscle
maintenance in cancer cachexia; however, these differ-
ences develop over the course of weeks. With the rela-
tively short time frame of many disuse studies (~ 3–14
days) [10, 11, 92, 164], and the accelerated development
of atrophy therein, it is unlikely that the presence or
absence of cycling dramatically influences the progres-
sion of disuse atrophy. However, this hypothesis has
not been directly investigated, therefore more research
directly investigating the influence of estrous cycle dur-
ing disuse atrophy is likely warranted.
Taken together, the aggregate of the current literature

suggests that hormones can significantly influence overall
muscle health and size. With loss of testosterone or estro-
gen dramatically influencing muscle size in males and fe-
males respectively [1, 104, 117–122, 134, 145]. However,
the potential for supplementation or pharmacological
activation of these specific receptors has mixed results de-
pending on the sex of the model organism and muscle
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pathology [125, 126] [119–121, 123, 124, 141–144]. These
data imply the necessity of research using both male and
female organisms to more fully elucidate the influences of
these hormones on muscle pathologies and potential
treatment efficacy. Finally, progesterone, the traditionally
classified female hormone has recently emerged as a po-
tential regulator of mitochondrial and muscular health
[154–156]. These recent findings warrant further research
on the potential mechanisms of progesterone during
muscle pathologies and possible therapeutic applications
of progesterone during various muscle pathologies.

Mitochondrial differences between males and females
Mitochondrial quality has been a recently proposed medi-
ator of muscle size and function [108]. Females in general
tend to preferentially oxidize fat as the primary energy sub-
strate [34, 165, 166], aligning with a greater relative content
of type I fibers [35, 36]. Therefore, suggesting females’
higher reliance on mitochondrial oxidative phosphorylation
for ATP synthesis. To date, multiple studies have found
mitochondrial function, morphology, and content to differ
between males and females. Indeed, animal and human
studies across multiple tissues have found higher mitochon-
drial content per gram of tissue and greater transcription
factors associated with mitochondrial biogenesis in females

compared to males [165, 167–170]. Female gastrocnemius
muscles have greater mitochondrial content and mtDNA
per gram of tissue compared to males as well as more ATP
synthase, TFAM protein, and mitochondrial complexes
[168]. These differences appear to correspond to greater
mitochondrial activities [167]. Additionally, in other tissues,
such as the liver, females have greater mitochondrial con-
tent, and respiratory capacity [169, 170]. Taken together,
these data demonstrate that some aspects of mitochondrial
quality appear inherently different between males and fe-
males, which may contribute to differential progressions of
mitochondrially related pathologies including muscle atro-
phies (Fig. 3).

Sex differences in mitochondrial aberrations during
catabolic stimuli
Recent data suggests that mitochondrial alterations
during catabolic stimuli appear to discriminate between
males and females. During arthritis-induced disuse,
females experience a large decline in subsarcolemmal
mitochondrial density compared to males [35, 46].
Additionally, females have greater reductions in the
mitochondrial translation protein TFAM compared to
males with aging-associated muscle wasting [171] and
female mitochondria tend to make less ATP compared

Fig. 3 Summary of current data on mitochondrial differences between males and females as well as mitochondrial interventions for
disuse atrophy
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to males during energetic stress such as glucose
deprivation in vitro [172]. Overall demonstrating that
females and males have different mitochondrial re-
sponses to cellular stress, emphasizing the need to
further understand how female muscle differs from
male, both during basal and stressed conditions. Recent
research examining primary cells from males and fe-
males have demonstrated sexual dimorphisms on mea-
sures of mitochondrial function [172, 173], clearly
demonstrating that sex differences are not solely hor-
mone mediated and need to be further investigated
using in vivo and in vitro methods. Overall, while it is
generally well known that females have differing mito-
chondrial profiles compared to males, both at baseline
and during differing pathologies, it is not directly clear
how these differences may influence overall phenotypic
and clinical outcomes.

Mitochondrial aberrations during disuse atrophy
Research throughout the past 25 years has demonstrated
that disuse atrophy increases reactive oxygen species
(ROS) and peroxide species production [13, 15–19, 174].
Because mitochondria are the primary generators of ROS,
efforts to increase mitochondrial quality and function are
being investigated as a therapeutic modality for disuse at-
rophy. For example, multiple studies have investigated the
therapeutic potential of antioxidant treatments such as
vitamin E supplementation. However, the results of these
studies have been mixed with some data showing vitamin
E supplementation to be protective [20, 175], whereas
others have not seen any protective effects of supplemen-
tation [12, 13]. Additionally, because alterations in PGC-
1α, mitochondrial quality, and oxidative phosphorylation
have been noted as substantial contributors to disuse
muscle wasting [14, 91, 176], efforts to improve these
markers have been investigated as possible therapeutic
agents. Overexpression of PGC-1α in C2C12 myotubes in-
hibits protein degradative pathways [177]. In vivo, genetic
overexpression of PGC-1α in male mice mitigates some
phenotypic characteristics of disuse atrophy [12], whereas
local transfection of PGC-1α in the tibialis anterior of
female mice mitigates some measures of oxidative stress
associated with reloading after disuse [178]. Additionally,
mitochondrially targeted antioxidant treatment has shown
some promise in female rats for the prevention of disuse
atrophies [91].
However, despite these promising findings, no

current clinical treatments have yet been developed
based on these findings. This may be partially due to
the disparity in pre-clinical research in female models.
Females generally have more mitochondria [168]; while
it may be appealing to conclude that females are inher-
ently protected against mitochondrial-related patholo-
gies such as muscle wasting, to date this hypothesis has

not been directly tested in disuse pathologies. More so,
greater mitochondrial content does not necessarily
translate to greater mitochondrial and cellular health,
as we and others have demonstrated that genetic induc-
tion of mitochondrial biogenesis via PGC-1α overex-
pression does not protect against, and may exacerbate,
other muscle pathologies such as insulin resistance
[179–181]. Additionally, greater mitochondrial content
per gram of tissue weight also presents the opportunity
for greater ROS production during pathological stimuli.
ROS production is thought to occur primarily through
complex III within the mitochondria [182], and some
evidence suggests that females may have greater com-
plex III activity compared to males [183]. Overall sug-
gesting that mitochondrial differences between males
and females may potentially explain differences noted
between males and females during disuse pathologies.

Mitochondria and sex hormones
It is becoming more and more accepted that the mito-
chondria also contain receptors specific to classical sex
hormones that may influence sexual dimorphisms in
mitochondrial-related pathologies. For example, estrogen
receptors (specifically ERβ) have been found in the mito-
chondrial membrane across multiple tissues [184–190].
The ERβ is currently thought to increase transcription of
nuclear- and mitochondrial-encoded proteins involved
in oxidative function and of NRF-1 and COX complexes
[191], leading to overall increased mitochondrial oxida-
tion and potentially improved function [192, 193]. ERβ
and ERα total content do not currently appear to differ
between males and females [194, 195], thereby suggest-
ing that ER-mediated differences between males and fe-
males are likely the result of differences in plasma
hormone circulation. Androgen rectors have in some
studies been noted on the mitochondria; however, this
has been limited to mitochondria present in mobile
sperm [196], as such, the influence ARs may have on
mitochondrial and cellular function is likely limited
[191]. Recently, progesterone action has been hypothe-
sized to alter mitochondrial oxidative function. It has
been established since the 1990s that during the luteal
phase of the female menstrual cycle (when progesterone
peaks), energy expenditure and mitochondrial respir-
ation increase [197–199]. However, recent works have
established the presence of a progesterone receptor spe-
cific to the mitochondrial membrane (PR-M) [154, 155].
This PR-M appears to facilitate increased cellular respir-
ation within the mitochondria [154, 155], overall sug-
gesting that progesterone may greatly influence overall
mitochondrial and muscular health. However, the poten-
tial direct and indirect effects of hormonal actions and
mitochondrial quality during muscle atrophies requires
further investigation.
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In aggregate, the current literature suggests inherent
differences between males and females on both mito-
chondrial content and function [165, 167–170]. These
differences may at least partially contribute to differen-
tial mitochondrial alterations during muscle pathologies
and subsequent muscle loss [35, 46, 171]. However,
many of these differences in disuse specific muscle loss
have yet to be investigated as well as global differences
in mitochondrial function during pathologies. As such,
more research on mitochondrial-specific alterations dur-
ing muscle pathologies between males and females is ne-
cessary to develop more effective therapeutics for
mitochondria-related pathologies.

Perspectives and significance
Skeletal muscle size and quality remain one of the largest
mediators of overall quality of life and mortality across a
variety of pathologies. Clearly, males have been preferen-
tially researched in pre-clinical models, resulting in a rela-
tive dearth of research on muscle pathologies in females.
However, the current research demonstrates that males
and females are clearly different on many aspects of mus-
cular health and physiology including muscle fiber
composition, anabolic and catabolic pathways, hormonal
interactions, and mitochondrial content and function.
These differences can greatly influence the development
and progression of various muscle atrophies, including
disuse atrophy. However, specific studies investigating
how any of these processes are differentially regulated be-
tween males and females in relation to muscle loss are
lacking, specifically disuse studies. This lack of data has
clear therapeutic implications; less than half of pharmaco-
logical agents move to phase 3 clinical trials [200], often
due to lack of efficacy in human models. Part of this lack
of efficacy in human models is likely partially attributable
to lack of female model organisms in pre-clinical and
phase I trials. If we are to fulfill the promise of individual-
ized medicine and a more efficient and impactful health
care system, we need to start seriously investigating one of
the basic aspects of an individual’s genome, biological sex.
Only then can we truly begin to adequately begin the long
process of developing individualized medicine for patients.
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