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Membrane fusion is one of the most fundamental physiological processes in eukaryotes
for triggering the fusion of lipid and content, as well as the neurotransmission. However,
the architecture features of neurotransmitter release machinery and interdependent
mechanism of synaptic membrane fusion have not been extensively studied. This review
article expounds the neuronal membrane fusion processes, discusses the fundamental
steps in all fusion reactions (membrane aggregation, membrane association, lipid
rearrangement and lipid and content mixing) and the probable mechanism coupling
to the delivery of neurotransmitters. Subsequently, this work summarizes the research
on the fusion process in synaptic transmission, using electron microscopy (EM) and
molecular simulation approaches. Finally, we propose the future outlook for more
exciting applications of membrane fusion involved in synaptic transmission, with the
aid of stochastic optical reconstruction microscopy (STORM), cryo-EM (cryo-EM), and
molecular simulations.

Keywords: membrane fusion, neurotransmission, neurotransmitter release machinery, electron microscope,
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INTRODUCTION

Neurotransmission is composed of the delivery of neurotransmitters from presynaptic neuron to
another neuron, and the feedback of postsynaptic neuron (Jahn and Scheller, 2006; Burnstock,
2007). It is a chemical event which is involved in the transmission of the impulse (Xu et al.,
2017), and relies on: the availability of the neurotransmitter; the neurotransmitter release
(exocytosis); the binding of the neurotransmitter to the postsynaptic receptor, the excitatory-
inhibitory interaction in the postsynaptic cell (Bonifacino and Glick, 2004); and the subsequent
removing or deactivating of the neurotransmitter (Iversen, 1971; Heuser and Reese, 1973).
Hence, this process requires the controlled release of neurotransmitter from synaptic vesicles
by membrane fusion with the presynaptic plasma membrane (Martens and Mcmahon, 2008).
Soluble N-ethylmaleimidesensitive factor attachment protein receptors (SNAREs) are the core
constituents of the protein machinery which is responsible for synaptic membrane fusion (Jahn and
Scheller, 2006). In general, the SNAREs-mediated fusion event is thought to involve a hemifusion
diaphragm between the fusion talk and the fusion pore (hemifusion intermediate, Figure 1),
where the outer lipid bilayers have been fused, whereas not the inner ones (Zimmerberg, 1987;
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Brunger et al., 2015). Beyond that, there exists a direct pathway
where pre-fusion contact translates into fusion pore without the
hemifusion state (Gerst, 1999; Xu et al., 2005; Brunger et al.,
2015).

An integral part in the SNAREs-mediated fusion is
the assembly of synaptic vesicle transmembrane protein
(synaptobrevin) with the target plasma membrane proteins
synaptosome-associated protein with relative molecular
mass 25 K (SnAP25) and syntaxin (Bommert et al., 1993),
which is thought to provide the driving force for the fusion
(Haucke et al., 2011). During this process, the extended
α-helices of these proteins trend to assemble together, with
the formation of four-helix bundles (Mehta et al., 1996).
The formed trans-SNARE complex then facilitates the close
proximity of vesicular and plasma membranes (∼3–4 nm),
and induces the membrane fusion (Martens and Mcmahon,
2008).

The spatial regulation of membrane shape, curvature and
fluidity are strongly influenced by the lipid composition
and topology, during the processes of membrane fusion
and fission. Effective neurotransmission requires the precise
spatial regulation of lipid-protein interactions for synaptic
vesicle targeting, docking, priming and fusion at the active
zone (Rohrbough and Broadie, 2005). For an in-depth
understanding of the neuronal membrane fusion, various
points and states will be summarized in this article, including
the process and mechanism of membrane fusion, electron
microscope (EM) approaches and molecular simulation
results.

PROCESS AND MECHANISM OF
MEMBRANE FUSION

Membrane fusion is identified as a process where two separate
phospholipid bilayers merge into an interconnected structure. It
is a fundamental physiological and pathological process at the
level of cell, organelle and vesicle, resulting in the mixing of the
two bilayers of lipids and proteins, as well as the mixing of the
contents (Jahn et al., 2003).

Process of Membrane Fusion
Despite derived by diverse proteins, all fusion reactions processes
four fundamental steps (Jahn and Südhof, 1999): membrane
aggregation (approaching each other), membrane association
(coming into a very close apposition), lipid rearrangement
(highly-localized lipid rearrangements of adjacent two bilayers)
and lipid and content mixing (complete fusion; Figure 1;
Wilschut and Hoekstra, 1986; Plattner et al., 1992; Blijleven et al.,
2016).

Hemifusion of lipid bilayers is an important intermediate state
in the membrane fusion, which might be boosted by negative
spontaneous curvature of monolayer (monolayer trends to bulge
toward the hydrophobic tails) and deformation of monolayer
induced by the distortion of lipid monolayer (inclusion of
amphiphilic peptides; Figure 1; Chernomordik et al., 2006).
In addition, bilayers hemifuse when brought to distances of

the polar heads of lipids much smaller than the one in
the equilibrium state, by adding polyethylene glycol to draw
water from the contact zone or by a direct dehydration of
multileveled lipid sample. To complete the fusion process,
the hemifusion state should proceed to a full fusion pore
(Geisow and Fisher, 1986). The pore might open directly
from a fusion stalk (stalk-pore pathway) or from a hemifusion
state with discernible hemifusion intermediates (hemifusion-
fusion pathway; Chernomordik et al., 2006). The formation
and closure of the fusion pore are usually regulated by the
conformational change with a high activation energy and phase
separated lipids, respectively (Oberhauser et al., 1992). The
hemifusion diaphragm is a possible intermediate between the
stalk and the final fusion pore (Chernomordik et al., 2006).
However, Diao et al. (2012) observed more fast fusion (on the
ms scale) upon Ca2+ addition starting from a hemifusion-free
state. This discovery revealed that the neurotransmitter release
(especially the fastest event) is more dependent on the immediate
pathway, and then stimulated a substantially revised membrane
fusion paradigm for the membrane fusion (Wickner and Rizo,
2017).

Fusion of Protein-Free Lipid Bilayers
The major constituent of the most bilayer lipid, especially the
membranes of mammalian cells, is phosphatidylcholine (PC)
which has no spontaneous fusion for hours or days (Wang,
2010). Only the tension (or dehydration contact zones) of
these bilayers could fuse by the interposition of polyethylene
glycol (Sharma and Lindau, 2016). A monolayer protruding
into the layer of polar heads seems to consist of molecules
with a reasonable inverted cone (Epand, 1998) and positive
spontaneous curvature (Chernomordik et al., 2006). A lipid
monolayer that orients toward the hydrocarbon tails usually
possesses a negative curvature, composed by cone shaped
lipid molecules (Chizmadzhev, 2004). A possible explain is
that the action of proteins in fusion process do not directly
facilitate the formation of fusion intermediates, also generate
fusogenic lipids (sphingomyelinase and phospholipase; Epand,
2000; Chernomordik and Kozlov, 2008). It is promoted
by the defects created of the bilayers referring membrane
perturbation, including the vicinity of lipid phase transition,
the separation of lateral phase or the generation of domain,
the high local curvature of membrane, osmotic or electric
stress in or on the membrane; the present of amphipaths
or macromolecules within the membrane, etc. (Cevc and
Richardsen, 1999). High concentrations of lysolipids, which
increase the intrinsic curvature of the monolayer, inhibit several
biological membrane fusion processes (Shangguan et al., 1996;
Söllner, 2004).

Protein-Mediated Membrane Fusion
The context of membrane fusion in vivo is more complicated
since biological fusion is always mediated by protein. However,
the specific mechanisms of these processes still remain elusive,
especially on proteins which promote the development of
hemifusion and fusion pore. Viral membrane fusion and
synaptic membrane fusion are widely studied among current
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FIGURE 1 | Hemifusion intermediate during the process of membrane fusion. At the state of initial contact (A), lipid bilayers move apart to allow local close contact
between two membrane bilayers which proteins mediate membrane binding and fusion (B) and a merger of their contacting leaflets into a stalk like hemifusion
connection (C) that expands into a small hemifusion diaphragm (D). An initial fusion pore opens in a HD (E). This pore gives rise to an hourglass fusion pore (F),
expansion of which completes the fusion reaction. There show the bilayer surfaces formed by lipid polar heads.

protein-mediated membrane fusions. The former promotes
the combine between the viral membrane and the host cell
membrane, then inducing the release of viral genome into
the cytoplasm, as well as the replication cycle of virus.
There are two mechanisms of activating viral fusion proteins:
exposure to low pH and pH-independent (Earp et al.,
2005).

The latter carries the neurotransmitter across the synapses
(neurotransmitter release) and plays an important role in the
signals traveling in the central nervous system. Neurotransmitter
release during the synaptic membrane fusion process requires
a protein family that have termed SNAREs which can be
divided into four categories (Diao et al., 2012; Hughson,
2013): (1) vesicle-anchored (v) and target-membrane–anchored
(t) SNAREs; (2) N-ethylmaleimide–sensitive factor (NSF)
and NSF attachment proteins (SNAPs); (3) Rab GTPases
and multicomponent vesicle tethering complexes; and
(4) Sec1/Munc18 (SM) proteins. So far, the mechanism of
this family still has a few basic doubts, such as function,
conformational changes, etc. The SNARE-mediated membrane
fusion was conducted the zippering mechanism which pulls
two membranes together (Diao et al., 2013b). In general,
synaptic membrane fusion requires a consecutive two-step
pathway. First, the N-terminal domain of the vesicle (v-)
SNARE, synaptobrevin-2, docks to the target membrane (t-)
SNARE, thereby results in a conformational rearrangement of
a half-zippered SNARE complex. Then, the assembled SNARE
complex locks the C-terminal portion of the t-SNARE into
the same way as the four-helix bundle, which is formed with
syntaxin and SNAP-25. Besides, this fusion is greatly accelerated
by synaptotagmin-Ca2+ (Lai et al., 2013). Reconstitutions of
synaptic vesicle fusion indicated that the interactions between the
Ca2+-binding loops of the synaptotagmin-1 and phospholipids
are critical to release of neurotransmission, when little content

mixing occurs in the absence of Ca2+ (Diao et al., 2013b;
Wickner and Rizo, 2017).

ELECTRON MICROSCOPE ON
MEMBRANE FUSION

In general, neuronal communication is mediated by
neurotransmitters release induced by Ca2+-induced synaptic
vesicle exocytosis. It is a long-sought goal that understanding
the mechanism of synaptic vesicle fusion, associated with the
development of in vivo synthetic system. With the advent of
modern electron microscopic techniques, we could particularly
investigate the neurotransmission and the consequentmembrane
alterations.

During neurotransmitter release, several SNARE protein
complexes involve with synaptobrevin (vesicle (v-) SNAREs)
and syntaxin and SNAP-25 (target membrane (t-) SNAREs) to
mediate the fusion of two membranes. Meanwhile, this vesicle
membrane fusion is acutely triggered in a Ca2+-dependent
manner (Figure 2). Munc18 (also called neuronal Sec1) forms
a tight complex with syntaxin, with a closed conformation
that is unable to bind other SNAREs. Regarding as Munc13,
a synaptic vesicle ‘‘priming’’ protein, catalyzes the transition
from syntaxin-Munc18 complex to fully assembled v/t-SNARE
complex (syntaxin—SNAP-25—synaptobrevin), via bridging the
vesicle and plasma membranes and controlling vesicle tethering
(Hughson, 2013; Ma et al., 2013; Wickner and Rizo, 2017).
Chen et al. (2002) explored the atomic structure of the
complexin/SNARE complex, using the X-ray and TROSY-based
NMR methods. The results revealed that complexin presents an
antiparallel helical conformation, stabilizes the interface between
two helices of synaptobrevin and syntaxin, thus enables the Ca2+-
evoked neurotransmitter release with the exquisitely high speed.
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FIGURE 2 | A model with Muncs (Upside) the Soluble N-ethylmaleimidesensitive factor attachment protein receptor (SNARE) complex, fused by v-liposomes
(containing synaptobrevin) and t-liposomes (containing SNAP-25 and syntaxin), was disassembly derived under the N-ethylmaleimide–sensitive factor (NSF) with the
consuming of adenosine triphosphate (ATP). The entry of Munc18-bound syntaxin into SNARE complexes was catalyzed by Munc13, with the assembly of ternary
v/t-SNARE complexes. Then Synaptotagmin-Ca2+ induce the release of neurotransmitter, thereby drive membrane fusion. Imaging of donor/acceptor interface
morphologies by cryo-electron microscopy (EM) before and after Ca2+ addition (Downside; Diao et al., 2012).
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Over the past 10 years, cryo-electron microscopy (cryo-EM)
has been developing rapidly, which combines the potential of
three-dimensional (3D) imaging at molecular resolution with a
close-to-life preservation of biological samples. Rapid freezing
followed by the investigation of the frozen-hydrated samples
avoids the artifacts caused by chemical fixation and dehydration
procedures. Furthermore, the biological material is observed
directly, without heavy metal staining, avoiding artifacts caused
by the unpredictable accumulation of staining material (Lucić
et al., 2005). The vesicle clusters induced by Ca2+-bound C2
domains of synaptptagmin-1 was visualized by the Cryo-EM
method, and the tomographic 3D reconstruction of a vesicle
cluster revealed that this process might be induced by Ca2+-
dependent phospholipid binding of the C2AB fragment, where
the C2B domain cooperates with the SNAREs bring the
membranes together, as well as the multiple interactions
between the C2B domain and phospholipids (diacyglycerol
and phosphatidylinositol 4,5-bisphosphate (PIP2); Araç et al.,
2006).

In fact, there is still an active debate regarding whether
SNAREs are linked to pre-fusion contact to a fusion pore or
participate later in the fusion process by facilitating hemifusion,
through the formation of tight SNARE complexes and gathering
of the vesicle and plasma membranes. With the aid of
single-vesicle fluorescence fusion assay and EPR, the direct
observation of two-faceted functions of complexin revealed
the formation of a complex substrate (SNARE complexes,
complexins and phospholipids) for Ca2+ and Ca2+-sensing
fusion effectors in the release process of neurotransmitter (Yoon
et al., 2008). Neuron firing gives rising of the intracellular
Ca2+ concentration, with the triggering of synaptic vesicles
fusion to carry neurotransmitter molecules. Diao et al. (2012)
used recently developed Cyro-EM method to monitor the
temporal sequence of both content and lipid exchange upon
Ca2+-triggering between single pairs of donor and acceptor
vesicles on a 100-ms time scale (Diao et al., 2012). Their
system performed a quantitative analysis of all observed cryo-EM
images (before and after Ca2+-injection) and achieved a Ca2+

sensitivity in the 250–500 µM range (Figure 2). During
their experiments, hemifusion diaphragms were observed, as
well as points where liposomes contacted each other without
the shape change of membrane. Extended tight contacts of
membrane were not observed, without the present of Ca2+.
With the addition of Ca2+, there merely exists the process
from point-contacts to fast fusion (Diao et al., 2012). It
was found that alone neuronal SNAREs cannot efficiently
induce the complete fusion. The combination of SNAREs
with selected components (small-head group lipids, Munc18-1,
Munc 13 and synaptotagmin-Ca2+) could lower the activation
barriers during the fusion process, because of enhancing the
kinetic control by complexin (Kyoung et al., 2011; Wickner
and Rizo, 2017). Bharat et al. (2014) performed reconstitutes
synaptic fusion and applied large-scale, automated cryo-electron
tomography to observe this in vitro system. Afterwards docking
and priming of vesicles with the fast Ca2+-triggered fusion,
a local protrusion in the plasma membrane will be induced
by the SNARE proteins, with the direction towards the

primed vesicle and allowing synchronous and instantaneous
fusion upon the complexin clamp release (Zhang et al.,
2015b).

MOLECULAR SIMULATION ON
MEMBRANE FUSION

Many efforts have been devoted to modeling the membrane
fusion process involved in synaptic transmission via molecular
simulations, such as Coarse-grained (CG) molecular dynamics
(MD) simulations. The results of these studies revealed
the mechanics of membrane fusion involved in synaptic
transmission and some key physical properties of lipid
monolayers and related proteins.

The SNARE complex between opposing membranes
promotes membrane fusion of synaptic transmission (Mayer,
1999; Pfeffer, 1999). In vivo, the formation of complex connects
the opposing membranes and pulls two membranes together
using their α-helical transmembrane domains (TMD; Ossig
et al., 2000). In addition, SNARE complexes are also deemed
to overcome the fusion barriers and to accelerate the fusion
process (Chen and Scheller, 2001; Hong, 2005; Risselada and
Grubmüeller, 2012).

The SNARE complex is represented by a twisted bundle of
four α-helices which generally consists of SNAP-25, syntaxin-1,
and synaptobrevin-2, confirmed by coarse-grainMD simulations
(Durrieu et al., 2009; Tekpinar and Zheng, 2014) There is
mechanistically link between the conformational flexibility of
SNARE TMD helices and their ability to induce lipid mixing
(Nagy et al., 2005; Stelzer et al., 2008). The basic residues (positive
charged) at the C terminal of SNAP-25 is benefit for the tight
zippering of SNARE complex and the binding with negatively
charged lipid head groups, improving the high frequency and
clipping neurotransmitter release (Fang et al., 2015). Besides,
the transmembrane domain of synaptobrevin II (sybII TMD)
influences both the natural helicity and flexibility of SNARE
(Gao et al., 2012; Zheng, 2014; Han et al., 2016). The assemblage
of SNARE complex is regulated by complexin, a cytoplasmic
neuronal protein and theMD results suggest that the α-accessory
helix of complexin (Cpx AH) make partially unzipped state of
the SNARE bundle being stabilized by its functions in relate in
the clamping of synaptic vesicle fusion (Ghahremanpour et al.,
2010; Bykhovskaia et al., 2013; Lai et al., 2014, 2016; Gong et al.,
2016).

The composition of several parts of the SNARE completes
its function of modulate membrane fusion (Figure 3). MD
simulations have also been used in the study of other
functions in relation with membrane fusion. During the synaptic
transmission, vesicles filled with neurotransmitter molecules are
required to be docked to themembrane (Knecht andGrubmüller,
2003; Bock et al., 2010; Lai et al., 2015). Therefore, the SNARE
complex use attractive forces to counterbalance the long-range
repulsion between the vesicle and membrane (Diao et al.,
2013a; Fortoul et al., 2015). More recently, the formation of
a transient pore by using the MD method was first reported.
The close contact of two membranes gives rise to a high local
transmembrane voltage. The decrease of the distance of the
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FIGURE 3 | (A) The four domains of neuronal SNARE protein: N Terminal Domian, Zero Ionic Layer, C Terminal Domain, Linker Domain; and involved four helices:
snaptobrevin (blue), syntaxin (green), synaptosome-associated protein with relative molecular mass 25 K (SNAP25; magenta). (B) Top view of zero ionic layer.
Reproduced with permission from Tekpinar and Zheng (2014).

opposed bilayers brings out the increase of the transmembrane
voltage. When the distance is under a critical value, the local
transmembrane voltage is enough high to induce the transient of
membrane pores (Figure 4; Ribrault et al., 2011; Bu et al., 2016).
Finally, some findings have offered new structural and dynamic
details of SNARE disassemblymechanism based onCGmodeling
(Zheng, 2016).

OUTLOOK

The controlled release of neurotransmitter by membrane fusion,
from synaptic vesicles to presynaptic cell, is an important step
in the synaptic transmission (Trimbuch and Rosenmund, 2016).
This universal fusion can be accelerated by synaptotagmin-Ca2+,
with the assembly of specialized proteins (such as SNAREs)

within the opposing membrane bilayers. Electron density map,
3-D topography and simulation studies of the SNARE ring
complex, advance that membrane-associated SNAREs overcome
repulsive forces to process the two membranes being close to
each other (just 2.8 Å apart; Chen and Scheller, 2001). However,
people are actually working on an assumption that all proteins
are at the right position for inducing membrane fusion. Since
all proteins are unlabeled, one is not able to tell the real story
on the protein side, which is also an important part for the
study of membrane fusion in synaptic transmission. Thus, in
the future, it requires the high spatial resolution techniques
in order to monitor these interactions simultaneously during
the fusion processes, such as stochastic optical reconstruction
microscopy (STORM), is required (Diao et al., 2011). In STORM,
single biomolecules containing photo-switchable fluorophores
are turned on and off repeatedly, to find their positions precisely

FIGURE 4 | Snapshots and electrical potential distributions during the process of fusion pore (membrane contact-pore formation-membrane healing) through the
molecular dynamics (MD) simulations (A–C): the process of fusion pore formation. (D–F): electric potential alteration during the process (Bu et al., 2016).

Frontiers in Molecular Neuroscience | www.frontiersin.org 6 June 2017 | Volume 10 | Article 168

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Yang et al. Membrane Fusion involved in Neurotransmission

with ∼20 nm resolution by determining the center position of
the point-spread function from reconstructed images for each
biomolecule (Rust et al., 2006).

Cryo-electron microscopy, abbreviated as ‘‘cryo-EM’’, is a
form of transmission EM (TEM) technique which observes the
sample (generally biological sample) at cryogenic temperatures
in order to void the ultrastructural changes (Doerr, 2016).
It has been rapidly developed in the decade, with increasing
popularity in structural biology (Callaway, 2015; Nogales et al.,
2016). As cryo-EM became matured, it has been adopted
by an ever-increasing range of disciplines to offer tools for
providing a cell-like yet simplified environment for investigating
the membrane fusion, especially the dynamic structural change
of important proteins and the dynamic mechanism of fusion
process. In particular, optimized negative-staining (OpNS) EM
images have revealed several important physical attributes of
CETP and substantial molecular basis for the CETP-mediated
lipid exchange (Zhang et al., 2012, 2015a).

Active zones of synaptic plasma membranes are known to
concentrate the components that drive membrane fusion, such
as the SNAREs, Munc 18-1, Munc 13-1 and small-head group
lipids (e.g., diacyglycerol and PIP2), while the participation
and characteristic of these macromolecular complexes are still
not fully understood (Rizo and Xu, 2015; Ryu et al., 2016;
Wickner and Rizo, 2017). Strikingly, current experimental
techniques do not achieve a resolution better than ms/µs in
time, and neuronal membrane fusion normally occurs at ms
timescale (Diao et al., 2012). CG MD simulation is one of
effective solutions to overcome the time-scale gap between
computational and experimental methods (Bhushan, 2016).
With the aid of residue-based and shape-based CG approaches,
the regulatory mechanisms of SNARE proteins have been
briefly outlined, focused on the intricate molecular mechanisms
between proteins and membranes (Bu et al., 2016; Zhang
et al., 2016; Han et al., 2017). However, the application of CG
models sacrifice degrees of freedom and accurate molecular
interactions to get the requirement of less resources (Bhushan,
2016). Though the prohibitive computational cost usually limits
the simulation times and system sizes of all-atom models

less than 1000 ns and 10 nm, it will provide the description
of SNARE-mediated membrane fusions with all-atom detail,
such as the specific lipid properties for stimulating fusion,
the tethering/SM protein complex, the lipid-protein (such
as Munc18-1, Munc13-1, and complexin) interactions, and
membrane architecture. Nevertheless, molecular simulation
selectivity leads to the factitious results of synaptic membrane
fusion, therefore, the computational methods and initial
models should be amending continuously by the sufficient
basic parameters derived from the non-invasive experimental
observations (such as STORM and cryo-EM; Diao et al., 2013b;
Wickner and Rizo, 2017).

As STORM, cryo-EM, and all-atoms molecular simulations
continue to develop through advances in technological
innovation, the combination of the three techniques will
be a powerful tool for the in-depth investigation on the
regulatory mechanisms of synaptic membrane fusion at
atomistic resolution, uncovering the recruitment process of
Sec1-Munc 18 family proteins to catalyze SNARE assembly,
specific lipid properties which be crucial for fusion, and the
intricate balance of protein-lipid interactions. We expect to see
more exciting applications of synaptic membrane fusion with
continued advances in these methods.
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