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Abstract

The problem of reconstructing large-scale, gene regulatory networks from gene expression data has garnered considerable
attention in bioinformatics over the past decade with the graphical modeling paradigm having emerged as a popular
framework for inference. Analysis in a full Bayesian setting is contingent upon the assignment of a so-called structure
prior—a probability distribution on networks, encoding a priori biological knowledge either in the form of supplemental
data or high-level topological features. A key topological consideration is that a wide range of cellular networks are
approximately scale-free, meaning that the fraction, P(k), of nodes in a network with degree k is roughly described by a
power-law P(k)!k{c with exponent c between 2 and 3. The standard practice, however, is to utilize a random structure
prior, which favors networks with binomially distributed degree distributions. In this paper, we introduce a scale-free
structure prior for graphical models based on the formula for the probability of a network under a simple scale-free network
model. Unlike the random structure prior, its scale-free counterpart requires a node labeling as a parameter. In order to use
this prior for large-scale network inference, we design a novel Metropolis-Hastings sampler for graphical models that
includes a node labeling as a state space variable. In a simulation study, we demonstrate that the scale-free structure prior
outperforms the random structure prior at recovering scale-free networks while at the same time retains the ability to
recover random networks. We then estimate a gene association network from gene expression data taken from a breast
cancer tumor study, showing that scale-free structure prior recovers hubs, including the previously unknown hub SLC39A6,
which is a zinc transporter that has been implicated with the spread of breast cancer to the lymph nodes. Our analysis of the
breast cancer expression data underscores the value of the scale-free structure prior as an instrument to aid in the
identification of candidate hub genes with the potential to direct the hypotheses of molecular biologists, and thus drive
future experiments.
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Introduction

Gene Regulatory Networks and Gene Expression Data
Knowledge of the interactions among genes and gene products

that occur within a cell is vital for understanding cellular behavior.

These activities are largely a consequence of gene expression, the

process whereby genes transcribe signature mRNA molecules that

are translated into gene products of numerous kinds and functions.

As it happens, genes do not express independently of one another;

instead, their activities are coordinated in a complex system of

control in which distinguished genes, called transcriptions factors,

regulate the expression of other genes via their gene product

proxies.

An undirected network G is a mathematical object consisting of

a set of nodes and a set of unordered pairs of nodes called

undirected edges. It differs from a directed network, which is also

denoted by G, in that the latter is defined in terms of ordered pairs

of nodes known as directed edges. Applying these straightforward

abstractions to cellular processes has gained currency through-

out the biosciences, so much so that a network mind-set has

become a necessary precondition for thinking about systems of

gene regulatory interactions. For the purposes of this paper, a gene

regulatory network is a directed network in which genes are

identified with nodes and regulatory interactions with directed

edges. From a purely statistical standpoint, it is best to regard a

gene regulatory network as a convenient depiction of the true

regulatory interactions of a system that, in reality, must be

estimated from data.

Indeed, the network approach toward understanding gene

regulatory systems only came to prominence in response to the

advent of DNA microarray technology, which makes the profiling

of mRNA expression levels for individual genes possible on a

genome-wide scale. A typical experiment consists of a library of n
expression profiles, each one a snapshot of the expression levels for

p genes under a different experimental condition. The raw

expression profile data is preprocessed and then arranged by row

in an n|p data matrix, D. In practice, not only is gene expression

data notoriously noisy [1], but to make matters worse the number

of samples is typically at least an order of magnitude smaller than

the number of genes, that is, n%p (the ‘‘small n, large p’’ problem),

making the inference of regulatory interactions a challenging

statistical problem [2].
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There is now an extensive repertoire of algorithms available for

the analysis of gene expression data, the majority of which are

based on Boolean networks, differential equations, and graphical

models [3]. Some approaches produce estimated gene regulatory

networks that are directed networks, while others do not. In this

paper, we work primarily with a variety of undirected graphical

model known as gene association networks (GANs), in which

undirected edges, called gene associations, correspond to certain

statistical dependencies that are inferred from gene expression

data. Therefore, in an effort to simplify the terminology, the terms

‘‘network’’ and ‘‘edge’’ will be used hereafter to mean undirected

network and undirected edge, respectively. Although we will

occasionally use the term ‘‘network’’ in a colloquial sense, such as

in ‘‘network mind-set’’ or ‘‘network approach.’’ At any rate, the

meaning should be clear from context.

Graphical Models
Graphical models [4], [5], [6] are a suite of probabilistic models,

widely used for estimating large-scale gene regulatory networks

from gene expression data [7]. In this framework, genes are

identified with the random variables of a multivariate distribution

X with covariance matrix S, and each row of D is taken as a

random sample from X . The conditional independence structure

of X defines a network with the random variables as nodes and

conditional dependencies latent between the random variables as

directed or undirected edges; a diversity of models arise from the

extent to which the dependencies are resolved [8].

Relevance networks comprise the simplest class of graphical

model with absent edges corresponding to marginal independen-

cies between the components of X . These networks have long

been used in the analysis of genetic data [9]. But in terms of

identifying regulatory interactions, relevance networks are bound

to be misleading because marginal independence alone cannot

discriminate among direct and indirect dependencies.

GANs provide a better alternative, circumventing this drawback

by appealing to conditional independence as a criterion for edge

exclusion. Gaussian graphical models (GGMs) are the gold

standard. In a GGM, a pair of nodes do not share an edge when

their underlying random variables from X are conditionally

independent given all of the remaining random variables.

However, GGMs too are not without disadvantages, as their

estimation can be computationally intensive in a ‘‘small n, large p’’

setting [10]. A class of GANs, bridging the gap between relevance

networks and GGMs, has been advanced with this consideration

in mind where absent edges are identified with lower order

conditional independencies [11], [12], [13].

Lastly, Bayesian networks are a variety of graphical model

founded on a more refined notion of conditional independence,

conferring directionality to the edges; they are also well-established

as a methodology for estimating gene regulatory networks [14].

The Structure Prior
Inference within the graphical modeling paradigm amounts to

an often painstaking exercise in covariance estimation and model

selection. We defer a discussion on the problem of covariance

estimation to the Methods section. That is because our interest

pertains to model selection, which in a Bayesian setting is

accomplished by sampling from the posterior distribution

P(GDD)!P(DDG)|p(G) ð1Þ

over the appropriate space of networks using either heuristic

searches or else Markov chain Monte Carlo (MCMC). The term

P(DDG) is the likelihood and p(G) the structure prior, that is, a

prior assigning a probability to each possible network.

The role of the structure prior is to direct inference toward

graphical models consistent with biological prior knowledge,

which may come in the form of a priori topological considerations

or from a posteriori sources apart from the dataset. As far as the

latter is concerned, previous research has concentrated on

Bayesian networks [15], [16], [17], [18]. On the other hand,

biologically-motivated topological assumptions are a consistent

feature of graphical models tailored for genetic data. Heuristic

search strategies often include implicit assumptions concerning

network sparsity [19], [20], [21], [22]. In instances in which the

structure prior is given explicit specification, standard practices

include using a uniform prior capped at a small number of

potential regulators per gene [23], or assigning it as a sparse

random network [24], [25].

Random and Scale-Free Networks
The theory of random networks was given its first systematic

expression by Erdös and Rényi [26], [27]. According to the

theory, a p-node random network is defined by an eponymous,

generating algorithm — the Erdös-Rényi (ER) model — that

works by connecting each pair of nodes in an initially empty

network independently with probability b. This simple procedure

gives rise to a probability distribution over the space of p-node

networks, which is used to define the so-called random structure

prior, pr(G). The degree distribution P(k) — the probability that a

given node is connected to k other nodes — of a random network

is binomially distributed according to
p{1

k

� �
bk(1{b)p{1{k

where the degree, k, of a node denotes the number of edges

incident upon it. It follows, therefore, that degree in a random

network has a strong central tendency, implying that the average

degree of a random network is representative of the degree of a

typical node.

Empirical studies, however, have firmly established that a wide

variety of large-scale networks in nature, society, and technology

exhibit heavy-tailed degree distributions that cannot be accounted

for by random network theory [28], [29], [30]. This property is

often approximately described by a power-law degree distribution,

P(k)!k{c, over a large range of k with exponent c typically

between 2 and 3. A network that follows a power-law is called

scale-free. It gets this name because the functional form of P(k) is

retained under a scaling of the argument k by a constant factor a:

P(a|k)!P(k). The scale-free property is thought to be a key

organizational feature of cellular networks [31], and analyses

suggest such an architecture for the gene regulatory networks of

the model organisms S. cerevisiae [32] and C. elegans [33].

Introducing a Scale-Free Structure Prior
Proposing a structure prior which incorporates the scale-free

property is the topic of this paper. We define the scale-free

structure prior, psf (G), according to the probability of a network

under a simple, scale-free network model. As for the underlying

network model itself, a multitude of candidates have been

proposed in the literature [34]. They fall into two broad categories:

1) growing models, where a network is generated via the successive

addition of nodes and edges to a small seed network, and 2) non-

growing models, where to a fixed number of nodes, pairs of nodes

are chosen randomly and connected by edges.

The growing model approach employs a handful of simple

universal mechanisms, thought to underpin disparate natural

phenomena, to drive the stochastic evolution of networks toward

power-laws. Preferential attachment is, perhaps, the best known

A Scale-Free Structure Prior
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mechanism. The idea works something like this: the probability of

attaching an edge from a newly added node to a node already in

the system is roughly proportional to the degree of the old node.

The Bárabasi-Albert (BA) model [35] is the latter-day progenitor

of a wide variety of preferential attachment models. The BA model

generates a network via the successive addition of nodes and edges

to a small seed network. At each step, a node is added to the

system with a fixed number of emanating edges, which are

subsequently preferential attached to the existing nodes. The

resulting network follows a power-law with c~3 on average.

Preferential attachment is not considered to be the main driving

force behind genome evolution; instead, gene (node) duplication

and point mutations (edge dynamics) play the dominant role in

shaping of gene regulatory networks [36]. The duplication model

as formulated by [37] is such a network model, which in an

analysis by [38] is suggested to approximately follow a power-law.

By contrast, in the non-growing approach, each node is assigned

a fixed weight with the probability of a particular network

depending on those weights. The ER model is an example of a

non-growing model with uniform weights. Another non-growing

model is the static model [39], which is a generalization of the ER

model that has been shown to follow a power-law with c tunable to

any value greater than 2, depending on the specification of the

model parameters; see Methods for details. We use the static

model to define psf (G). Indeed, this model is an appealing

candidate for the purpose as the probability of a network is easy to

compute compared with growing models of similar complexity.

Moreover, the static model actually includes the ER model as a

limiting case.

A New Metropolis-Hastings Sampler for Networks
We implement an MCMC algorithm with psf (G) for GGMs

adapted from [25], although it is important to point out that our

methodology applies to graphical models in general. Reworking

the algorithm is not simply a matter of plugging in a formula for

psf (G) because it depends furthermore on a labeling of the nodes

of G. Confronted with this complication, we design a novel

Metropolis-Hastings sampler that solves the problem by including

a node labeling, s, which is defined in the Methods section, as a

variable in the state space, thereby allowing it to be estimated.

Summary of Contributions
In this paper, we advance a scale-free structure prior, psf (G), for

graphical models defined by the formula for the probability of a

network under the static model. Our objective is to compare the

performance of this prior with the commonly used random

structure prior, pr(G), in the arena of simulation as well as with a

real data example. We choose GGMs for this purpose, modifying

the MCMC algorithm of [25] to include psf (G). As mentioned

above, one challenge of implementing psf (G) is that, unlike with

pr(G), it requires a labeling of the nodes of G. We address this

issue by introducing a Metropolis-Hastings sampler that includes

the node labeling as a variable in the state space.

In a simulation study, we generate networks with given degree

distributions together with Gaussian data in accordance with their

implied conditional independence structures. As a case study we

show that pr(G) and psf (G) are equally effective at recovering a

random network, but that pr(G) is comparatively ineffective at

recovering a scale-free network. In the full simulation study, we

confirm that the aforementioned result holds, illustrating our main

conclusion: psf (G) recovers random networks on an equal footing

with the pr(G), yet surpasses it in recovering scale-free networks.

Finally, we illustrate our methodology by analyzing a real gene

expression dataset taken from a breast cancer tumor study by [40],

showing that in contrast with the random structure prior, the

scale-free structure prior recovers hubs, including the estrogen

regulator FOXA1 and the zinc transporter SLC39A6, which was

previously unrecognized as a hub.

Methods

Network Notation
The terms ‘‘network’’ and ‘‘graph’’ are used synonymously

throughout this paper. An undirected network G~(V ,E) is a

mathematical object defined by a set of nodes V~ v1,v2, . . . ,vp

� �
together with a set of undirected edges E consisting of unordered

pairs vi,vj

� �
taken from V , provided that vi=vj . The set of all p-

node, undirected networks is denoted by Gp. A directed network is

defined in an analogous manner, save that the elements of E are

ordered pairs vi,vj

� �
called directed edges; vi is called the parent

and vj the child.

It should be understood that a network refers to an undirected

network, and likewise an edge is to be understood to mean an

undirected edge. However, the following definitions are applicable

to both undirected and directed networks. An empty network has

no edges, that is E~1, while, in a complete network E is defined

as the cross product V|V . A subnetwork of G is a network whose

node set V ’ is a subset of V , and whose edges are a subset of E
restricted to V ’. The subnetwork of G induced by a given subset of

nodes V ’(V is the subnetwork containing all edges from E that

connect nodes in V ’. Two nodes are said to be neighbors when

they are connected by an edge. And, a network is itself connected

when every pair of nodes is connected by a sequence of neighbors.

Finally, a node labeling s~ s1,s2, . . . ,sp

� �
is a permutation of the

integers 1,2, . . . ,p, applied to the nodes of G so that each vi[V is

represented by the integer si; see Figure 1. This node labeling is

used later for defining the structure prior.

Gaussian Graphical Models
In this section we sketch out the theory of GGMs essential to

this paper. A detailed overview of the GGM estimation procedures

outlined here is described in [25], while [8] is a good starting point

Figure 1. An example of a node labeling. A node labeling,
s~ 3,4,2,1,5ð Þ, of the nodes of a network with p~5 nodes so that, for
instance, s2~4 and s5~5.
doi:10.1371/journal.pone.0013580.g001
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for understanding the niche they occupy in the larger context of

graphical models.

Let X~ X1,X2, . . . ,Xp

� �
be a p-dimensional Gaussian random

vector with zero-mean and positive definite covariance matrix, S.

Two random variables Xi and Xj are not conditionally

independent given the remaining variables in X if, and only if,

there is a corresponding nonzero entry in the precision matrix,

V~S{1 [41]. The conditional independence structure of X can

be represented by a network, G, where Xi is the value at node vi

and there is an edge between vi and vj when Xi and Xj are not

conditionally independent. A GGM for X is the family of p-

dimensional Gaussian distributions from N(0,S), constrained by

the structure of G.

Fitting a GGM to a given dataset — a task known as covariance

selection — amounts to identifying zeros in the estimated precision

matrix. In the classical setting when nwp, ensuring that S is

positive definite, this is typically accomplished by inverting the

estimated covariance matrix and then applying statistical tests to

identify any entries significantly different from zero [4]. With

genomic data, however, ‘‘small n, large p’’ is the norm and,

consequently, S will not generally be invertible.

This problem can be addressed in one of two ways. One way

calls for restricting inference to pairwise independencies condi-

tioned on fewer than all p{2 remaining random variables. A

relevance network, for example, is constructed by estimating the

pairwise correlations between all random variables, connecting

any pair with correlation exceeding a specified cutoff value [9]. A

related approach goes one step beyond a relevance network by

estimating a GAN based on not only marginal but also first-order

conditional independencies [11].

A more ambitious approach is to compute satisfactory small

sample estimates for S and V using Bayesian methods. Empirical

Bayesian solutions are exemplified by shrinkage estimates [21] and

sparsity encouraging lasso regression estimates [22]. Meanwhile,

the full Bayesian scheme of [42] works by marginalizing over S to

compute the likelihood term in (1), using a prior that constrains

elements of the precision matrix to zero depending on G:

P(DDG)~

ð
SDG

P(DDS,G)P(SDG)dS: ð2Þ

The term P(DDS,G) is multivariate Gaussian, while the prior

P(SDG) is hyper-inverse Wishart with hyperparameters W, a

positive definite dispersion matrix, and dw0, a degrees of freedom

parameter. Jones et. al [25] advise a small value for d as a

reflection of ignorance, and take W as the diagonal matrix tI ,

which assumes that the underlying Gaussian variables have

common variance. A consequence of this assignment is that d
can be used to specify t by making use of the fact that the marginal

prior mode for each variance term is var(Xi)~t=(dz1).

GGM theory comes equipped with powerful techniques for

computing the likelihood function when the underlying network is

decomposable. Roughly speaking, a decomposable network can be

broken down into distinguished subsets of nodes called maximal

cliques. A clique is a subset of nodes whose induced subgraph is

complete, and is called maximal when it is not contained within a

larger complete subgraph. Computing the likelihood for a subset

of X corresponding to a maximal clique is particularly tractable

because the density is just an unrestricted multivariate Gaussian.

Hence, when a network is decomposable, the evaluation of the

likelihood term in (1) reduces to the computation of many

likelihoods of smaller dimension [43]. We will return to these

issues in the section on our MCMC implementation.

The Static Model
A network model is a stochastic algorithm for generating

networks that may depend on a vector of parameters,

h~ h1,h2, . . . ,hMð Þ. Associated with any model is a probability

distribution, assigning a probability P(GDh,s)§0 to each G[Gp,

where s is a node labeling of G.

The static network model [39] works by first assigning a weight

wi~s{m
i =

Pp
l~1 s{m

l to each node v1,v2, . . . ,vp where m, the Zipf

exponent, is a tunable parameter in (0,1). To generate a network,

G, the following step is repeated p|K (p{m%K%p1{m) times:

select nodes vi and vj with probabilities wi and wj and connect

them with an edge, unless vi~vj or vi and vj are already

connected, in which case no edge is added to the network. The

overall model parameter is h~(m,K).
In order to work out the functional form of the degree

distribution, it is enough to notice that, on average, each node

acquires edges in proportion to its weight. Supposing for a

moment that ki denotes the degree of node vi, we may write this as

ki!s{m
i . The probability distribution over the ki’s is known as

Zipf’s law, and it has been shown to be equivalent to a power-law

degree distribution with c~1z1=m [44]. It follows that the static

model generates networks that follow a power-law with 2vcv?
depending on the choice of m. A rigorous derivation of the power-

law appears in a comprehensive analysis of the static model by Lee

et al. [45]. In the case when 1=2vmv1, the exponent, c, lies

between 2 and 3, which is the most interesting range of values

from the point of view of scale-free architecture. In contrast, for

values of mv1=2, which corresponds to cw3, the tail of P(k) is less

pronounced. In the limit of m?0, or equivalently c??, each

weight w1, . . . ,wp tends to 1=p, resulting in the ER model with

edge inclusion probability b~1{(1{2=p2)pK . To be clear, the

static model actually includes the ER model as a special case.

A formula for the probability of a network is provided in the

same analysis. The probability that nodes vi and vj are connected

in the final network is 1{(1{2wiwj)
pK , which is well-approxi-

mated by e{2pKwiwj when p is large. The probability of a network,

then, is given by overall product of the edge inclusion probabilities

P(GDh,s)~ P
vivj

� �
[E

1{e
{2pKwiwj

� 	
P

vivj

� �
=[E

e
{2pKwiwj , ð3Þ

assuming independence.

A Scale-Free Structure Prior
The structure prior is generically defined as

p(G)~
1

p!

X
s

ð
h

P(GDh,s)p(h)dh ð4Þ

where P(GDh,s) is the probability of a p-node network, G, under a

certain network model given a vector of parameters, h, and a node

labeling, s; the summation is over all permutations of s. It is

obvious from the definition that h and s are hyperparameters and

must be dealt with accordingly. In the case of s, each one of the p!
possible node labeling assignments is alloted uniform weight. In

our work, we additionally impose that p(h) is a uniform prior,

leaving the details to be described below within the contexts of

specific network models.

The simplest means of dealing with uncertainty about graphical

structures is to assign uniform weight either to each G[Gp, that is,

p(G)~1=DGpD, or to the subspace of decomposable networks [43].

This approach is in fact a special case of the probability of a

network under the ER network model when b~1=2. A related

A Scale-Free Structure Prior
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approach uses a prior that distributes probability mass uniformly

according to the number of edges as opposed to individual

networks [42]. More recently, the ER model has been explicitly

employed as a structure prior [24], [25]. The random structure

prior, pr(G), is formally defined by

P(GDh)~bDED(1{b)T{DED ð5Þ

where h~(b) and T~
p

2

� �
is the number of possible edges. A

node labeling would be superfluous due to symmetry. To foster

sparsity b may be fixed at 2=(p{1) so that the expected number of

edges comes out to be p when (5) is taken over all networks.

Although strictly speaking the value will be somewhat lower in the

decomposable case [25]. The approach taken in this paper goes

one step further by simply taking p(b) as uniform over the unit

interval.

As explained above, the static model with parameter h~ m,Kð Þ
is a generalization of the ER model that is accommodating to

scale-free topologies. We define the the scale-free structure prior,

psf (G), according to the probability of a network under (3). The

static model has two parameters, h~ m,Kð Þ, and they are not

exactly independent as the domain of K is a function of m. This

means that the prior p(m,K) must actually be treated as the

product of p(m) and p(K Dm). We take each term to be uniform over

its respective domain.

MCMC Implementation
MCMC algorithms are commonly used for sampling from high-

dimensional probability distributions such as those encountered in

modern bioinformatic applications [46], [47], [48]. In this section,

we describe a Metropolis-Hastings sampling scheme for updating

the state variables G, h, and s. Our main interest is in inference for

the posterior P(GDD). We take the approach of estimating the

target distribution

P(GDD,h,s)!P(DDG)P(GDh,s)p(h)p(s) ð6Þ

with p(s)~1=p! and then marginalize over h and s to obtain

P(GDD). In the process, any hm (m~1, . . . ,M) or si (i~1, . . . ,p)

can be estimated from a histogram of values, constructed from an

MCMC chain. While methodology for sampling from

P(GDD,h)!P(DDG)P(GDh)p(h) is well-established for GGMs

[43], [42], [25], the concept of including s as a state space

variable is new to our work. In principle, it is possible to

marginalize over all permutations of s at each step, that is,

P(GDh)~(1=p!)
P

s P(GDh,s). This approach, however, quickly

becomes unfeasible as the number of nodes becomes large. What is

more, very few assignments for s actually capture scale-free

network structure, making the marginalization difficult to estimate

by random sampling. Instead, we include s in the MCMC

directly. We describe a Metropolis-Hastings sampler for s below,

and provide an implementation in C computer code for

decomposable GGMs, built largely on the work of [25].

Metropolis-Hastings Sampler
Updating G. The space of decomposable graphs can be

traversed by adding or deleting a single edge in the transition from

a current network, G, to a proposed network, G’ [49]. In an

arrangement of this sort, G and G’ will have nearly identical

maximal cliques, leading to extensive cancellation in the likelihood

ratio P(DDG)=P(DDG’) [42]. This coupled with the closed form

expressions for (2) in the decomposable case, results in

considerable computational savings in comparison with the same

computations for non-decomposable models. However, in the

transition from G to G’, special care is required to preserve

decomposability. To that end, a theorem of [43] provides easily

verifiable, necessary and sufficient conditions to determine

whether or not a network is decomposable. In their

implementation [25], a transition is accomplished by first

deciding to either add or delete an edge to G by the flip of a

coin. Next the appropriate move is made at random to obtain G’
as shown in Figure 2. If G’ happens to be non-decomposable, then

it is rejected outright.

Updating h. Each hyperparameter hm (m~1, . . . ,M ) is

updated as follows: select a value for hm’ uniformly from

(hm{e,hmze) for a given step size e, rejecting when h’m falls

outside its domain hmmin,hmmaxð Þ.
Updating s. In order to obtain s’ we select an integer

h[f1, . . . ,p{1g at random, find nodes vi and vj such that si~h
and sj~hz1, and then exchange the values of si and sj ; see

Figure 2.

Network and Parameter Estimation
Estimating G. An MCMC sample of the posterior (1)

becomes increasingly threadbare as the number of variables

grow, so much so that the frequency of a network in a chain is an

inadequate approximation to its true probability, even for

problems of moderate dimension. So too for the maximum

posterior network — the single most probable network in a chain

— unless its probability mass dominates a possibly multi-modal

landscape, comprising a near-infinity of alternative models, its

status as a representative estimator is questionable [50]. This is

even more important in our implementation, as we carry the

model parameters through the computation. Alternatively, a more

representative estimator can be pursued by exploiting marginal

probabilities of edge inclusion, which do reflect posterior density.

We took our estimated network to be the network of all edges in

the sample with marginal probability greater than c, which we

denote by ĜGc
p; the subscript p denotes the structure prior.

Estimating h. Let h(r)
m denote the r’th value of hm

(m~1, . . . ,M) in an MCMC chain of length R. hm is estimated

by averaging over the values in an MCMC sample so thatbhhm~
PR

r~1 h(r)
m .

Results

Simulation Design
We carried out a simulation study in order to evaluate the

relative performance of the random and scale-free structure priors.

In our experiments, we generated trees invested with a variety

degree distributions that can be thought of as falling along a

spectrum ranging from binomial to scale-free on through to more

extreme heavy-tail forms, called crumple trees, culminating finally

with a star tree. For each tree, we generated multivariate Gaussian

data under the assumption that a tree represents the true

underlying conditional independence structure of a GGM. We

then ran our Metropolis-Hastings sampler for both structure priors

in an effort to recover each true tree from the data.

Data generation. In order to simulate trees we more or less

relied on the stochastic algorithm of [51]. Their approach rests on

specifying a formula for the degree distribution, P(k), for a p-node

connected tree. Then, roughly speaking, they use MCMC to draw

a tree that is maximally random under P(k).

The reason for restricting our simulation to trees is that data

satisfying their implied conditional independence structures can be

generated by a simple iterative procedure. With this end in mind,

A Scale-Free Structure Prior
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it is convenient to imagine the edges as being directed according to

index so that an edge from vi to vj implies that ivj. The

procedure begins with simulating X1, which is identified with node

v1, as a standard normal random variable, Z1. Next, any Xj

corresponding to a child of v1 is simulated as Xj~(X1zZj)=
ffiffiffi
2
p

.

The step Xj~(XizZj)=
ffiffiffi
2
p

is then repeated from parent vi to

child vj until all nodes have been reached. The scaling factor,
ffiffiffi
2
p

,

ensures that each Xi[X has unit variance.

Performance measures. Let TP (true positive) denote the

number of edges correctly identified by the estimated network

with FP (false positive), FN (false negative), and TN (true

negative) defined similarly. The positive predictive value,

PPV~TP=(TPzFP), and the sensitivity, Se~TP=(TPzFN),

are reported for each estimated network. While it is often

customary to include specificity, TN=(FPzTN), along with

PPV and Se, its conspicuous absence here is for good reason.

Since GANs are sparse, TN is sure to be very large in comparison

to FP. As a result, even a moderate change to FP will have little

influence on the specificity, making this an unsuitable measure of

performance.

Simulated Example
This section serves as a prelude to an extensive simulation study,

illustrating our methodology by means of a simple example.

Specifically, we set p~250 and generated a binomial tree and a

scale-free tree with c~2:3, and then simulated an n~75

Add Delete

Figure 2. An example of the Metropolis-Hastings transition step. The current network, G, with node labeling s~ 3,4,2,1,5ð Þ is updated to a
proposed network, G’, by adding/deleting a single edge to/from G at random. This picture shows two possible ways for G to be updated. In one
instance, a new edge is added between v1 and v3 to obtain G’, while the other G’ is obtained by deleting the the edge between v1 and v4. As for the
proposed node labeling, an integer h, in this example h~4, is selected randomly from 1,2,3,4f g. From there the node labels s2~h~4 and
s5~hz1~5 are swapped to get s’~ 3,5,2,1,4ð Þ.
doi:10.1371/journal.pone.0013580.g002
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observation dataset from each. In each case, we attempted to

recover the true tree from the scaled dataset using our Metropolis-

Hastings sampler implemented with 1) pr(G), and 2) psf (G).

For each chain, the Metropolis-Hastings sampler was run for

107 steps after a burn-in of 106, starting from the empty network

and identity node labeling. The value for the step size, e, required

for updating the hyperparameters was set to 0:05 with mmin~0:01.

As for the hyper-inverse Wishart parameters, we choose d~3
which fixes t at 4 since the data was standardized. The values of

the hyperparameters were recorded at every 100’th step after

burn-in. The runtime for the Metropolis-Hastings sampler with

pr(G) on a dual 1:8 GHz PowerPC G5 processor was 5:92hrs for

the binomial tree and 5:67hrs for the scale-free tree. The

corresponding runtimes with psf (G) were 15:20hrs and 12:93hrs.

The results of the case study are shown in Table 1. In this

experiment, our expectation that psf (G) will recover the scale-free

tree more accurately than pr(G) is confirmed. It should also be

noted that psf (G) was able to recover a reasonable value for the

scale-free exponent, too. Not to mention that it recovered the

binomial tree on par with pr(G), thereby allaying the potential

drawback that it would infer a heavy-tailed network, even from

binomial data. Remember, this can be explained by the rather

large value of bcc. Recall that when c is large, psf (G) actually

approximates pr(G). And although it may seem odd that psf (G)
fared slightly better on the binomial tree, the disparity falls within

the boundaries of sampling variation. More precisely, we ran the

Metropolis-Hastings sampler 10 times for each structure prior,

starting each run from a different random seed, and found that the

standard deviation of the sensitivity was 0:02 in each case. Finally,

we ran the uniform structure prior on both trees, but decided

against including the results in Table 1 due to very poor

performance.

Extended Simulation
Table 2 contains the results of our main simulation. In the

previous section, we focused on two particular trees: one binomial,

the other scale-free. This time we generated 25 trees (p~250)

under each model listed in the table together with accompanying

datasets of n~75 observations. The models listed as scale-free, not

including the BA model, and the crumpled one were generated

from a two-parameter family of distributions [51]. The parameter

setting for generating the crumple trees was a~8 and c~2. The

simulation settings used for each MCMC run are identical to those

of the case study. Finally, the values of PPV , Se, and bcc reported in

the table are averaged over the 25 chains. The simulation was run

on the supercomputer, Tsubame [52]. The system has a total of

639 Sun Fire64600 nodes. Each node has 8 AMD Opteron Dual

Core model 880, 2.4GHz cpus.

Just as with the simulated example, psf (G) recovers the

binomial trees equally as well as pr(G). In fact, the PPV agreed

to two decimal places, while the Se was actually a little higher

under the scale-free structure prior. This slight discrepancy can be

accounted for by noting that the standard deviation of Se was 0:04
for both priors. Also as expected, the more heavy-tailed the

underlying trees become, the more psf (G) outperforms pr(G). The

difference becomes huge in the extreme case of a star tree.

Moreover, psf (G) demonstrated the ability to roughly recover the

scale-free exponent of the underlying tree.

Real Data Example
We demonstrate our methodology on a subset of the gene

expression data from a breast cancer study by [40] that was

originally analyzed in [25]. The dataset (Dataset S1) consists of

expression profiles for p~150 genes related to the estrogen

receptor gene ESR1 (also known as ER-alpha) derived from n~49
tumor samples. This gene is an estrogen-activated transcription

factor key to the proliferation of cancerous cells that is found to be

overexpressed in luminal type A and B breast cancers. The overall

level of ESR1 expression is higher in type A than in type B with

the former correlating with better prognosis [53].

The Metropolis-Hastings sampler was run on the standardized

data with both the random structure prior and its scale-free

counterpart, yielding the corresponding GANs ĜGc
pr

and ĜGc
psf

. For

comparison’s sake, the edge inclusion threshold, c, was tuned for

each run so that the resulting GAN comprised exactly 150 edges;

the value of c is 0:370 for pr(G) and 0:747 for psf (G). In both

cases, the Metropolis-Hastings sampler was started from the empty

network with identity node labeling and 11|106 iterations were

run with the first 106 discarded as burn-in. The hyperparameter

assignments were identical to those of the simulated examples. The

runtime on a dual 1:8 GHz PowerPC G5 processor was 2:70hrs

with pr(G) and 11:93hrs with psf (G).

At this stage, comparing the performance of the scale-free

structure prior in a broader context is of key importance. To this

end, we used the software packages ARACNE [54], [55] and

BANJO [23] to analyze the gene expression data as well.

ARACNE constructs a relevance network based on estimated

mutual information between all pairs genes, but there is a twist.

After a relevance network is inferred by connecting any pair of

genes with mutual information greater than a certain cutoff value,

some edges suspected to represent indirect interactions are

eliminated using the data processing inequality principle. We

chose the cutoff value to be 0:2735 so that the number of

estimated edges was 150, while all other program arguments were

set at their default values. The code itself was run in a matter of

minutes. BANJO, on the other hand, constructs a Bayesian

network from discrete data using a heuristic search strategy to

explore the space of p-node, directed networks without cycles.

Each network happened upon in the search is ranked using a

Bayesian Dirichlet equivalence scoring metric. We discretized the

Table 1. Case study.

Random Structure Prior Scale-Free Structure Prior

Topology True c PPV Se PPV Se bcc+s:d:

Binomial — 0.96 0.59 0.96 0.60 19:74+3:79

Scale-Free 2.3 0.88 0.54 0.90 0.79 2:18+0:04

Summary of the networks estimated using pr(G) (left) and psf (G) (right) when the true tree topology is binomial in the one case and scale-free with c~2:3 in the other.
PPV is the positive predictive value and Se the sensitivity, which is computed in respect to the the number of edges correctly identified by the estimated network. The
value bcc is the estimated scale-free exponent, obtained by averaging over every 100’th value in the MCMC chain.
doi:10.1371/journal.pone.0013580.t001
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data into three categories and limited the number of parents any

given node may have to 10. Once again, all other program

arguments were set at their default values. The estimated network,

which was found to have 162 directed edges, was the highest

scoring network after running BANJO for 1hr.

Figures 3(A) and (B) show the GANs estimated with ĜGc
pr

and

ĜGc
psf

. The latter exhibits clear hubs, supporting the view that a

gene regulatory network consists of a small minority of hub genes

with the vast majority of genes engaged in a small number of

interactions. By contrast, the topology of ĜGc
pr

is relatively

Table 2. Full simulation.

Random Structure Prior Scale-Free Structure Prior

Topology True ª PPV Se PPV Se bªª
Binomial — 0.96 0.59 0.96 0.60 18.70

Scale-Free (BA) 3.0 0.95 0.58 0.94 0.65 2.49

Scale-Free 2.5 0.93 0.56 0.93 0.62 2.35

Scale-Free 2.3 0.86 0.49 0.90 0.71 2.18

Crumple — 0.76 0.38 0.90 0.80 2.10

Star — 0.63 0.30 0.90 0.86 2.10

Summary of the networks estimated using pr(G) (left) and psf (G) (right) for a variety of topologies. A total of 25 trees of were generated for each kind of topology; each
has p~250 nodes with an accompanying n~75 observation dataset. PPV is the positive predictive value and Se the sensitivity, which are computed according the the
number of edges correctly identified by the estimated network. bcc is the estimated scale-free exponent. The values in the table are averaged over the 25 MCMC runs.
doi:10.1371/journal.pone.0013580.t002

Figure 3. Estimated networks for the breast cancer expression dataset. (A) The gene association network estimated with random structure
prior, pr(G), and (B) the gene association network estimated with the scale-free structure prior, psf (G). (C) The relevance network estimated with
ARACNE, and (D) the Bayesian network estimated with BANJO. The labeled nodes are the largest hubs as identified by psf (G) (1:FOXA1, 2:SLC39A6,
3:E2F3). For ease of visualization, only the largest connected subnetworks are displayed.
doi:10.1371/journal.pone.0013580.g003
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decentralized with no single gene dominating the network.

Additionally, the estimated value of exponent c in the static

model was 2:28, in line with findings in the literature for gene

regulatory networks [31]. Turning now to Figures 3(C) and (D), it

is interesting to see that the topology of the relevance network

echoes that of the GAN inferred using the scale-free structure

prior. The same can be said for the Bayesian network and the

random structure prior GAN. Of course, a more exquisite

experimental technique is the only sure-fire way to validate the

individual regulatory interactions suggested by these graphical

models. These results, however, are telltale in one respect. In a

study comparing different reconstruction methods on simulated

data [56], it was reported that BANJO performs well only when

n&p, while ARACNE shows good performance even when n%p.

The topological dissimilarity between the two GANs is again

made evident by a visual inspection of their degree distributions,

plotted in Figure 4. The most abundantly connected node in ĜGc
pr

has degree 15, whereas ĜGc
psf

contains four nodes with degree

exceeding this value; the largest hubs correspond to the genes

FOXA1 (HNF-3A), SLC39A6 (LIV-1), and E2F3 (KIAA0075)

and have degree 50, 28, and 18, respectively. The main hub

FOXA1 is a forkhead box family transcription factor that is

necessary for optimum expression of roughly half of all ESR1-

regulated genes [57]. In a recent study [58], it was found that

FOXA1 is expressed predominantly in luminal type A carcinomas,

making it a potential marker of good prognosis. Previously

unrecognized as a hub, SLC39A6 functions as a zinc transporter,

and was identified in [59] to be highly expressed in ESR1-positive

tumors as well as showing a highly significant association with the

spread of breast cancer to the lymph nodes. Meanwhile, E2F3 is a

transcription factor that has been shown to regulate numerous

genes involved in cell cycle progression [60].

Finally, both GANs agreed with the relevance network on some

established regulatory interactions as can be seen in Figure 5. For

instance, FOXA1 is connected to AR (androgen receptor), which

is known to regulate estrogen receptor expression [61]. FOXA1

has also been shown to play a direct role in the transcription of the

TFF1 (pS2) gene [62], and our work agrees with [24] on the role of

TFF3 (ITF) as an intermediary. By contrast, the Bayesian network

agreed on very few of these interactions. Part of the explanation is

likely to rest in using the maximum posterior network as the

estimated network. As we drew attention to in the section Network

and Parameter Estimation, a single network of high posterior

probability may be a less representative estimator than an network

consisting of edges that occur with high frequency in an MCMC

chain. Another possible contributing factor is that the number of

observations was insufficient for BANJO, but what is also unclear

is the extent to which discretizing the expression data affected the

quality of the inference.

Discussion

The main purpose of this paper has been to introduce a scale-

free structure prior, psf (G), for graphical models with a view

toward the inference of large-scale GANs from datasets consisting

of few observations, n, for a comparatively large number of

variables, p. It is important to point out that the true network need

not follow a power-law in order for the scale-free prior to be

applicable; rather, psf (G) is a convenient distribution that can

account for heavy-tailed degree distributions — a crucial

limitation of the random structure prior. That said, we have

shown in simulated examples that psf (G) performs markedly

better than the random structure prior at recovering networks

characterized by heavy-tailed degree distributions. What is more,

Figure 4. Degree distributions of the gene association networks. The labels 1, 2, and 3 indicate the locations of the genes FOXA1, SLC39A6,
and E2F3, respectively. The plots are on a log { log scale.
doi:10.1371/journal.pone.0013580.g004
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psf (G) proved versatile enough to recover random networks on

par with pr(G) itself. Above all, our analysis of the breast cancer

expression data illustrates the practical value of the scale-free

structure prior as an instrument to aid in the identification of

candidate hub genes with the potential to direct the hypotheses of

molecular biologists, and thus drive future experiments.

A node labeling s~ s1,s2, . . . ,sp

� �
, that is, a permutation of

the integers 1,2, . . . ,p applied to the nodes of G so that each vi[V
is represented by the integer si, is an essential prerequisite for any

MCMC implementation of the scale-free structure prior. The

reason is that the scale-free network model underlying psf (G), or

any other scale-free network model for that matter, is so elaborate

that the nodes are not interchangeable in regard to computing the

probability of G. And, although easily overshadowed by psf (G)
itself, our new Metropolis-Hastings sampler for s is an innovative

contribution in its own right. Our sampler uses a simple pair

swapping strategy for updating s, and one future topic of research

is to investigate the comparative performance of more ingenious

update schemes. More research is also required in order to assesses

how accurately s can be estimated.

We take pains to point out that while our implementation is for

GGMs, the methodology described here applies to graphical

models more generally. For instance, psf (G) could be applied

crudely to Bayesian network inference by simply ignoring edge

directionality, or else the underlying static model could be

modified to have directed edges. The latter approach raises an

interesting consideration: in gene regulatory networks, according

to the prevailing wisdom [31], it is actually only the out-degree

distribution that follows a power-law. By contrast, the in-degree of

a node is usually small and its distribution is better approximated

by a sort of restricted exponential function. While this distinction

gets blurred when inference is conducted with undirected

graphical models, Bayesian networks provide an obvious incentive

for taking it into account. Indeed, Bayesian networks may prove to

be a more promising area of application because they currently

able to handle much larger networks than GGMs [63].

Although the static model is not biologically motivated, it is a

defensible choice as an underlying model for psf (G) on the

grounds that it is a simple model with the potential to describe any

network topology; not to mention that it includes the ER model as

a limiting case. But there is more, implementing a structure prior

based on a growing network model poses some added difficulties

because not only will the probability of a network depend on the

choice of seed network, but evaluating P(GDh,s) will result in a

greater expenditure of computational resources as the edge

inclusion probabilities depend on the order in which they were

added to the network.

All the same, we implemented two other scale-free structure

priors based on growing models; one on the Poisson-growth,

preferential attachment model [64], and another on the

biologically meaningful duplication model. In the former case,

we were able to get away with using a single node as the seed

network, and we found that while this prior recovered heavy-tailed

networks as well as psf (G), yet it understandably struggled to

accurately recover random networks. Meanwhile, the duplication

model based structure prior was highly sensitive to the choice of

seed network in addition to being unstable due to the complexity

of the model. One future avenue of research is to adapt these

Figure 5. Gene interactions identified by all methods. A subnetwork of the gene interactions involved with the estrogen receptor gene, ESR1,
that were commonly identified by the random structure prior, pr(G), the scale-free structure prior, psf (G), and the relevance network (estimated with
ARACNE). The directed edges indicate the gene interactions on which the Bayesian network (estimated with BANJO) agreed with the other three
methods.
doi:10.1371/journal.pone.0013580.g005
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models, or the MCMC implementation, to be more applicable for

use as a prior distributions. The primary motivation for doing so is

that the model parameters have biological meaning, and their

estimation could prove of independent interest.

The estimation of network model parameters has been an

incidental aspect of our work; however, it is related to the quite

different problem of fitting network models to known biological

networks. Likelihood and likelihood-free methods have been

developed [65], [66] in order to fit a hybrid preferential

attachment/duplication and divergence model to some protein-

protein interaction networks, obtaining estimates of the model

parameters. These methodologies assume that the ordering of the

nodes in time, that is s, is known, but in most cases this

information is unknown. In the future, our Metropolis-Hastings

sampler could very well be applied to this problem.

Software is available from the corresponding author upon

request.

Supporting Information

Dataset S1 This file contains the gene expression data that we

analyzed in our paper.

Found at: doi:10.1371/journal.pone.0013580.s001 (0.05 MB

TXT)
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21. Schäfer J, Strimmer K (2005) An empirical bayes approach to inferring large-

scale gene association networks. Bioinformatics 21: 754–764.

22. Meinshausen N, Bhlmann P (2006) High dimensional graphs and variable

selection with the lasso. Annals of Statistics 34: 1436–1462.

23. Yu J, Smith VA, Wang PP, Hartemink AJ, Jarvis ED (2004) Advances to

bayesian network inference for generating causal networks from observational

biological data. Bioinformatics (Oxford, England) 20: 3594–3603.

24. Dobra A, Hans C, Jones B, Nevins JR, West M (2004) Sparse graphical models

for exploring gene expression data. Journal of Multivariate Analysis 90:

196–212.

25. Jones B, Carvalho CM, Dobra A, Hans C, Carter C, et al. (2005) Experiments in

stochastic computation for high-dimensional graphical models. Statistical

Science 20: 388–400.
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