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Abstract: Genetically attenuated microorganisms, including pathogenic and commensal 

bacteria, can be engineered to carry and deliver heterologous antigens to elicit host immunity 

against both the vector as well as the pathogen from which the donor gene is derived. These 

live attenuated bacterial vectors have been given much attention due to their capacity to 

induce a broad range of immune responses including localized mucosal, as well as systemic 

humoral and/or cell-mediated immunity. In addition, the unique tumor-homing characteristics 

of these bacterial vectors has also been exploited for alternative anti-tumor vaccines and 

therapies. In such approach, tumor-associated antigen, immunostimulatory molecules,  

anti-tumor drugs, or nucleotides (DNA or RNA) are delivered. Different potential vectors 

are appropriate for specific applications, depending on their pathogenic routes. In this review, 

we survey and summarize the main features of the different types of live bacterial vectors  

and discussed the clinical applications in the field of vaccinology. In addition, different 

approaches for using live attenuated bacterial vectors for anti-cancer therapy is discussed, 

and some promising pre-clinical and clinical studies in this field are outlined. 
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1. Introduction 

Vaccination is considered one of the most effective strategies for the prevention of infectious diseases. 

In the ongoing endeavor to create vaccines against diseases for which none exist, many avenues are 

being explored. Some of the earliest vaccines were the class termed “attenuated”, so called because 

although they can infect a host, generally by the normal entry route, their replication is limited and they 

do not cause disease. They do however induce strong immune responses, and importantly, responses that 

are appropriate for protection against the pathogen. In the past couple of decades some of these vaccines 

have been utilized as vectors to deliver heterologous antigens, with a view to vaccinating against both 

the vector pathogen and the pathogen from which the donor gene is derived. While infectious disease is 

a terrible human burden, so is cancer. The versatility of live-attenuated bacterial vectors also allows 

targeted-delivery of therapeutic anti-cancer agents to tumors, which can potentially avoid adverse  

side-effects present when conventional chemotherapeutic drugs are used. This review will survey  

live-attenuated bacterial vaccine vectors and examples of their potential for preventing infectious 

disease, and importantly, for the treatment of cancers. 

2. Live-Attenuated Bacterial Vaccine Vectors for Infectious Diseases 

In delivering heterologous antigen, both viral and bacterial vectors can be used, however the subject 

of this review is the use of bacterial vectors, which is a topic of ongoing research in our laboratory. 

Bacterial vaccine vectors expressing heterologous antigens and employed as live vaccine vectors have 

been extensively studied over the last 30 years [1]. Such technology has been used to elicit immune 

responses against bacterial, viral, protozoan and metazoan pathogens in animal models and clinical 

studies [1,2]. Bacterial vaccine vectors possess many advantages: (1) easy and inexpensive manufacture 

with flexible scalability [3]; (2) multiple vaccination routes available, especially the oral mucosal route 

for elicitation of a broad spectrum immune responses [4]; (3) well-characterized mutations for virulence 

attenuation [1]; (4) antibiotic-susceptible vaccine vectors are available, thus treatment with an antibiotic 

is possible if adverse reactions occur [5–7]; (5) enteric bacterial vectors have tropism towards lymphoid 

antigen presenting cells (i.e., dendritic cells and macrophages) in the intestinal mucosal tract, which is 

an unique asset for developing mucosal vaccines [1,8–12]; (6) they are known to elicit potent adaptive 

immune responses against homologous and the carried (vectored) heterologous antigens [3,13,14].  

Some of the strategies used to employ these vectors for antigen delivery are depicted in Figure 1. 

2.1. Attenuation of Bacterial Vectors 

Historically, attenuation of bacterial vaccine vectors was achieved by chemical mutagenesis or serial 

passages under laboratory conditions, such as for Salmonella enterica serovar Typhi Ty21a [15] and 

Mycobacterium bovis BCG [16]. Modern advances in biotechnology have employed recombinant DNA 

technology to generate genetically well-defined live-attenuated bacterial vaccine vectors, often achieved 

by deleting essential genes involved in either virulence regulatory systems (e.g., phoP and/or phoQ in 

Salmonella spp. [17]) or the aromatic amino acid biosynthesis pathway, also known as auxotrophic 

mutants (e.g., aroA in Salmonella enteric serovar Typhimurium [18,19]). Most of the attenuated 

Salmonella enterica vector strains currently used for experimental or clinical studies are auxotrophic 
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strains which are generated via the deletion or mutation of essential genes that are required for the 

biosynthesis of metabolically essential elements such as aromatic amino acids (aro), guanidine (gua) or 

purine (pur) [20]. These mutations attenuate the strain whilst preserving its immunogenicity. Such 

Salmonella mutants have shown promising results in animal models. For example, in guinea pigs, oral 

administration of a Salmonella Typhimurium aroA mutant expressing chromosomally integrated 

Mycobacterium tuberculosis fusion antigen Ag85B-ESAT6, followed by boosting with a dose of purified 

Ag85B-ESAT6, successfully reduced the level of M. tuberculosis in the lung and spleen to the same 

extent as the BCG vaccine [21]. Another study demonstrated that a passenger antigen delivered could 

be detected in Peyers patches and the spleen several days after immunization with attenuated Salmonella, 

even if the expression plasmid was lost soon after administration [22]. Other useful mutations that  

can render bacteria non-pathogenic are in the genes encoding outer membrane proteins C and F (ompC, 

ompF), the cAMP receptor (cya/crp) [23,24], as well as mutations in DNA recombination and repair 

genes (recA, recF) [25]. 

 

Figure 1. The use of bacterial vectors to vaccinate against pathogens. (I–IV) Cloning of 

heterologous gene and insertion into bacterial vector, either carried on a plasmid or inserted 

into the chromosome; (V) Expression of the heterologous antigen; (VI) Elicitation of 

immune responses; (VII) protection against pathogens. 

Among all the vaccine delivery systems that have been developed, including viral particles, attenuated 

viral vectors, liposomes, ISCOMs and plant-based oral vaccines, live-attenuated bacterial vectors are the 

most characterized vehicles for mucosal vaccine delivery. Such vaccines can be delivered through oral, 

intranasal, ocular, rectal, vaginal and pulmonary inhalation routes, and studies have shown elicitation of 

both mucosal and systemic immune responses [2,26–28]. One of the major advantages of using live 

attenuated vaccine-carriers in regard to mucosal delivery is that they can overcome the obstacles faced 
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by antigen alone at mucosal surfaces. The environment at mucosal surfaces consists of degradative 

enzymes and extreme pH, which prevents free antigens from reaching target cells. Furthermore, free 

antigens alone are usually less immunogenic due to poor uptake by mucosal cells [2]. Enteric pathogens 

are known to survive the mucosal environment by their intrinsic protective mechanisms, and hence are 

able to protect the heterologous antigen carried with them. Moreover, live vaccine-carriers such as 

Salmonella spp. have been demonstrated to target the intestinal sensing cells (i.e., M cells) that overlay 

the gut-associated lymphoid tissue (GALT) [29], which is known to play a key role in stimulating 

mucosal immune responses. In addition, Salmonella spp. have the ability to be taken up by phagocytic 

cells and transverse the reticuloendothelial system, consequently leading to the stimulation of systemic 

immune responses [30–32]. 

The development of an effective vector depends on the delicate balance between maximal 

immunogenicity towards the antigens and minimal side-effects [33]. Current studies indicate strains that 

cause no side-effects are often over-attenuated and thus inadequately immunogenic, even to the 

homologous (vector) antigens [34,35]. Therefore, careful selection of genes to knock-out for the 

attenuation of vaccine-carriers is required for the development of robust vaccine systems. 

2.2. Genetic Stability and Protein Expression of Heterologous Genes 

In general, the heterologous gene encoding the vaccine antigen can be either integrated into the 

bacterial chromosome or expressed from a plasmid. Chromosomal integration can be achieved by locus 

deletion and replacing with a cassette encoding the heterologous antigen gene; this allows maximum genetic 

stability, as chromosomal DNA rarely undergoes mutation or deletion [36]. However, chromosomal 

integration usually results in a single copy of heterologous antigen per bacterium, and it is a challenge 

to ensure that sufficient antigen is expressed to confer protective immunity [37]. Plasmid-based 

expression is another option for carrying heterologous antigen. A wide array of plasmid-based 

expression systems is available for such applications. However, plasmid-based expression systems have 

two major challenges that have to be overcome to achieve both the required immunogenicity and genetic 

stability. The metabolic burden associated with plasmid replication can lead to over-attenuation of the 

vaccine-carrier thus reducing immunogenicity, and spontaneous loss of plasmid is frequent resulting in 

plasmid-less bacteria rapidly outgrowing plasmid-bearing bacteria and becoming the dominant 

population in tissues [38]. Various mechanisms have been proposed to enhance plasmid retention:  

(1) self-transferring plasmid for mobilization of plasmid between bacteria; (2) selective advantage to 

enhance plasmid inheritance [39]; (3) self-regulating origin for plasmid replication [40]; (4) promote 

plasmid distribution by an active partitioning mechanism [39]; (5) post-propagation killing of plasmid-less 

bacteria to ensure a population of only plasmid-bearing bacteria [41]. However, it should be remembered 

that self-transferring plasmids and the use of clinically relevant antibiotics as selective pressure are 

strongly discouraged by regulatory authorities due to potential safety concerns [42]. 

One of the most successful strategies for the prevention of plasmid loss is known as the  

conditional lethal system. This system maintains the plasmid-bearing bacterial population by encoding 

replication-essential proteins in the plasmid, so that plasmid-less daughter cells are unable to survive [43]. 

In one such approach, the asd gene that encodes aspartate β-semialdehyde dehydrogenase was used.  

It is an important enzyme for not only amino acid synthesis, but also for cell wall synthesis [43]. 
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Consequently, in an asd-deleted bacterial host, harbouring an asd-encoding plasmid is essential for 

survival. This particular system has been successfully demonstrated in a live attenuated S. Typhimurium 

to deliver a variety of heterologous antigens including a viral peptide from HBV [44], and F1-Ag and 

V-Ag antigens derived from Yersinia pestis [45]. The S. Typhimurium vaccine induced potent humoral 

immune responses, including serum IgG and secretory IgA in mucosally immunized mice. 

2.3. Controlling Antigen Expression and Antigen Compartmentalization 

Another important aspect of using a vaccine carrier to deliver heterologous antigen is how the protein 

expression is controlled and compartmentalized. Regulating the level and location of heterologous 

antigen expression can have a significant impact on the immunogenicity of the vaccine. Incorporating 

an appropriate expression promoter is the key to regulating the desired level and timing of antigen 

delivery, and to confer optimal immune responses [46]. Early studies conducted by Hohmann et al., 

1995 [46] demonstrated that an antigenic protein expressed from a constitutive promoter encoded in the 

S. Typhimurium chromosome was incapable of inducing a protective antigen-specific immune response. 

In contrast, the use of in vivo-inducible promoters such as PpagC, which only induces antigen expression 

after the bacterial cell has been phagocytosed by macrophages, resulted in the induction of a strong serum 

IgG response against the same antigen [46]. It was however suggested that although the constitutive 

promoter confers high levels of heterologous antigen expression, there is an overall increase in metabolic 

burden to the vaccine carrier, which compromises immunogenicity [47]. 

Several other in vivo-inducible promoters which respond to environmental stimuli in vivo have been 

exploited for the purpose of controlling protein expression in live-attenuated bacterial vaccine vectors, 

and include those induced by oxidizing agent availability [48], low iron concentration [49] and low 

magnesium concentration [50]. Chu et al., 2015 [51] reported the use of quorum sensing genes from 

Vibrio fischeri with iron uptake regulons, and a synthetic binary regulation system was designed for 

Edwardsiella tarda. The vaccine construct carried a protective antigen glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) from the fish pathogen Aeromonas hydrophila LSA34. A challenge study  

was carried out in Turbot (Scophtalmus maximus), and most vaccinated fish survived the challenge.  

This is an example where a well-controlled in vivo-inducible promoter can significantly enhance  

vaccine immunogenicity. 

Correct protein folding and localization is essential for inducing protective humoral responses against 

conformational epitopes. Several strategies have been developed, which include the export of the antigen 

to the extracellular space and direct surface display [52,53]. Kang and Curtiss, 2003 [54] demonstrated 

that in orally immunized mice, the antigen-specific humoral response of an attenuated S. Typhymurium 

carrying PspA derived from the S. pneumonia surface protein was enhanced 10,000-fold by incorporating 

the secretion signal from β-lactamase compared with the unfused PspA construct. Surface display is an 

attractive means to present heterologous antigen to the host immune system because of the potential to 

elicit potent humoral immunity. Heterologous genes can be fused into the gene encoding bacterial outer 

membrane proteins such as OmpA [55], LamB [56] or flagellin [57]. The fusion protein that contains the 

heterologous antigen is then presented on the bacterial outer membrane for immunological stimulation. 

Another approach for surface display is to utilize the bacterial autotransporter (AT) system. The ATs are 

abundant proteins encoding many virulence factors of Gram-negative bacteria, and are responsible for 

exporting the N-terminal domain of the fusion protein to the bacterial outer membrane [57]. 
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2.4. Current Achievements and Perspectives 

Pathogenic microorganisms are of particular interest for developing live-attenuated bacterial vectors, 

as most of them are well adapted to the environment of the mucosal surface, and initiating the infection 

process. Therefore, the early live bacterial vectors were constructed from pathogenic microorganisms 

such as Salmonella, Listeria [58,59], and Mycobacterium [60]. However, these attenuated pathogenic 

strains retain a level of residual virulence (essential for the induction of immune responses) that render 

them unsuitable for the vaccination of individuals such as infants, the elderly or immunocompromised 

patients [60]. In an effort to allay these concerns, non-pathogenic microorganisms, such as lactic acid 

bacteria, have been exploited as antigen delivery vehicles. The characteristics of the main microorganisms 

used for developing live-attenuated bacterial vector vaccines are summarized in Table 1, and some 

examples of live-attenuated bacterial vector vaccines that have reached preclinical evaluation and Phase 

I clinical trials are listed in Table 2. These studies clearly point to the promise of these approaches, with 

strong and protective humoral and cellular immunity generated by these vaccines. 

In addition to these examples, there are several further innovations that have been developed to 

enhance immunogenicity and the safety profile of live-attenuated bacterial vaccine vectors. 

The co-delivery of cytokines and heterologous antigen can enhance vaccine immunogenicity [61]. 

Cytokines are crucial molecules that orchestrate innate and adaptive immunity, as well as the development 

of immunological memory [62]. Byrd et al., 2002 [61] constructed a recombinant Streptococcus gordonni 

strain that expressed either murine interleukin-2 (IL-2) or interferon-γ (IFN-γ) in addition to a surface 

anchored model protein (the conserved C-repeat region of the M6 protein derived from Streptococcus 

pyogenes). In their experiment, in mice that were subcutaneously immunized with the S. gordonii strain, 

cytokine co-expression modulated the systemic immune response. Furthermore, in vivo expression of 

cytokines delivered using live-attenuated bacterial vectors has been successfully employed for 

therapeutic purposes in many studies. One such example was demonstrated by Braat et al., 2006 [63], in 

which genetically modified Lactococcus lactis encoding mature human interleukin-10 (IL-10) was used 

for the treatment of Crohn’s disease. A Phase I trial demonstrated that the vector was not only safe for 

humans with minor adverse effects, but a decreased disease severity was also observed. Cytokine 

delivery using live-attenuated bacterial vectors has also been applied for tumor prevention and/or 

therapeutic measures; these will be discussed later in the review. 

Significant progress in the development of live-attenuated bacterial vectors as prophylactic vaccines 

has been achieved over the past few decades. Many studies have demonstrated how effective and 

powerful these vectors can be when used to promote human and animal health. The research field of 

live-attenuated bacterial vectors is still relatively young, and there are new vectors and expression systems 

under development. Therefore, it is not difficult to imagine that some of these live-attenuated bacterial 

vectors will become available for either the prevention or treatment for diseases in the near future. 
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Table 1. Characteristics of the main microorganisms used for the development of live-attenuated bacterial vector vaccines. 

Vector Target Host Cell Advantages Limitations/Concerns Ref. 

Enteric pathogens 

Listeria 
monocytogenes 

Intestinal epithelial cells and non-
phagocytic cells such as hepatocytes 
are primary invasion sites before 
systemic dissemination.  
Intracellular pathogen. 

Ability to present homologous and heterologous 
antigens to both endogenous and exogenous 
antigen-presenting pathways, thus eliciting CD4+ 
and CD8+ T-lymphocyte responses. 

Wild-type Listeria can cause serious and 
potentially lethal disease, especially in 
immunocompromised individuals. Severe 
attenuation to ensure safety could over-
attenuate and lead to poor immunogenicity. 
Possible reversion to pathogenic state. 

[64] 

Salmonella spp. 

M cells as primary invasion site, 
and taken up by phagocytic cells for 
systemic dissemination.  
Intracellular pathogen. 

Among the first bacteria used as vaccine-carrier to 
deliver heterologous antigens, well-established 
protocol for genetic manipulation.  
Stimulate humoral immune responses and induce 
serum IgG and secretory IgA antibody.  
Elicits both cytotoxic and memory T-lymphocyte 
responses. 

Pre-existing immunity could decrease 
immunogenicity.  
Possible reversion to pathogenic wild-type. 

[14,29,60, 
65–67] 

Vibrio cholerae 
M cells and intestinal epithelial 
cells.  
Extracellular pathogen. 

Ability to adhere to M cells and other epithelial 
cells without further invasion (decreased 
pathogenicity). Ideal for delivering antigens from 
luminal pathogens rather than systemic infections. 

Unable to elicit systemic and potent  
cell-mediated immune responses.  
Possible reversion to pathogenic state. 

[68] 

Commensal organisms 

Lactobacillus 
spp. 

Colonize gastrointestinal and uro-
genital mucosa.  
Normal flora. 

Non-pathogenic bacteria.  
Ability to stimulate antigen-specific immune 
responses via intranasal and oral routes.  
Special interest for the development of sexually 
transmitted diseases vaccines. 

Unable to elicit cell-mediated immune 
responses. 

[69–71] 
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Table 1. Cont. 

Vector Target Host Cell Advantages Limitations/Concerns Ref. 

Staphylococcus 
spp. 

Colonize oral, nasal and uro-genital 
mucosa.  
Normal flora. 

Food grade bacteria with intrinsic safety profiles.  
Stable colonization by a single intranasal or oral 
inoculation for more than two months.  
Ability to stimulate systemic immune responses 
against heterologous antigens.  
Strains such as S. carnosus have low extracellular 
proteolytic activity, which facilitates stable display of 
heterologous antigens. 

Possible cause of pyelonephritis and 
endocarditis.  
Pre-existing immunity could decrease 
immunogenicity. 

[72–74] 

Table 2. Examples of live-attenuated bacterial vector vaccines that have reached preclinical evaluation and Phase I clinical trials. 

Vector Mutation/Attenuation 
Heterologous 

Antigen 
Inoculation 

Route 
Target Host Outcome Ref. 

Listeria 
monocytogenes 

BMB72 
ΔactA ΔactB 

Influenza A 
nucleoprotein 

Oral and 
transcutaneous 

Human 

All volunteers who received the vector 
vaccine developed detectible mucosal 
immune responses to listerial antigens, but 
not to the heterologous influenza antigen. 

[75,76] 

Bordetella 
pertussis 
BPZE1 

Lacking dnt gene and producing 
inactive pertussis toxin and reduced 

tracheal cytotoxin. 

SP70 derived from 
enterovirus 71 

Intranasal Mouse 
Strong and sustained systemic anti-SP70 
antibody response was observed in nasally 
immunized mice. 

[77] 

Listeria 
monocytogenes 

XFL-7 
prfA-defective  

HPV-16 E7 
antigen  

Intravenous Human 
HPV-16 E7-specific T lymphocyte 
responses were elicited 

[78] 

Salmonella 
Typhi 

ΔssaV ΔaroC 
Escherichia coli 
heat labile toxin 

(LT-B) 
Oral Human 

Humoral immune responses to LT-B and S. 
Typhi lipopolysaccharide were observed in 
67 and 97% of subjects. 

[79] 
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Table 2. Cont. 

Vector Mutation/Attenuation 
Heterologous 

Antigen 
Inoculation 

Route 
Target Host Outcome Ref. 

Salmonella Typhi 
Ty21a 

ΔgalE with undefined attenuating 
mutations 

OprF-Oprl derived 
from Pseudomonas 

aeruginosa 

Oral and 
intranasal 

Human 
A significant elevated IgA and IgG 
antibody levels in the lower airways was 
observed. 

[80] 

Salmonella Typhi 
Ty21a 

ΔgalE with undefined attenuating 
mutations 

Urease or HP0231 
derived from 

Helicobactor pylori 
Oral Human 

T cell-mediated immunity against  
H. pylori was elicited in immunized 
subjects. 

[81] 

Salmonella Typhi 
Ty21a 

ΔgalE with undefined attenuating 
mutations 

O-Ps derived from 
shigella dysenteriae 

Oral Human 
Protective immunity was elicited against 
challenge assay with S. dysenteriae 

[82] 

Vibrio cholera ΔCTA Cholera toxin-B 
Oral and 
intranasal 

Mouse and 
rabbit 

Cholera toxin has >80% identity to  
E. coli (ETEC) heat-labile protein. 
Neutralizing antibody responses against 
ETEC heat-labile toxicity was observed 
in vaccinated mice and rabbits. 

[83] 

 



Vaccines 2015, 3 949 

 

 

3. Live-Attenuated Bacterial Vectors for Cancer Treatment 

There are ongoing endeavors to search for cancer therapies that exhibit greater treatment efficacy, 

specificity, and selectivity. In vivo therapeutic cancer vectors that directly deliver heterologous antigen 

or genes encoding various anti-cancer molecules have been studied and developed for such purposes. 

Some microorganisms have been shown to selectively replicate within solid tumors or preferentially 

colonize the tumor micro-environment, hence providing an attractive platform for tumor targeting 

therapy. This section will summarize the use of various bacterial vectors in development as a novel 

cancer treatment strategy. 

3.1. Tumor-Targeting Ability of Bacterial Vectors 

There are a number of bacterial species that have been demonstrated to target solid tumors, and lead 

to therapeutic effects in tumor-bearing rodent models. Generally, anaerobic bacteria are employed. 

Amongst the bacterial species used, Clostridum and Bifidobacterium are strict anaerobes, whereas 

Salmonella and Listeria are facultative anaerobes. It was initially believed that the hypoxic  

micro-environment present in necrotic areas of solid tumors was the primary driver of their tumor-targeting 

ability. However, recent investigations have uncovered various other micro-environment characteristics 

which might favor the preferential proliferation and colonization of bacteria in tumors [84]. These are 

illustrated in Figure 2. Kasinskas and Forbes, 2007 [85] suggested that the chemo-attracting compounds 

present in necrotic regions (e.g., aspartate, serine, citrate, ribose or galactose) produced by quiescent 

cancer cells are important contributing factors for bacterial chemotaxis towards tumors. Furthermore, 

other unique micro-environment properties found within solid tumors such as aberrant neo-vasculature 

and localized immunosuppression are also believed to be factors involved in bacterial tumor-targeting. 

Actively growing tumors promote the formation of new blood vessels, a process known as neo-angiogenesis. 

These newly formed blood vessels exhibit malformed vascular structure, being highly disorganized with 

impaired endothelial linings and blind ends. As the result, these blood vessels are “leaky”, and may  

allow circulating bacteria to escape from tumor vasculature and lodge locally in tumor tissue [86,87].  

In addition, multiple tumor-induced immunosuppressive mechanisms have been proposed to explain the 

preferential colonization and proliferation of bacterial vectors in tumors. Tumor masses may contain 

myeloid-derived immune suppressor cells, which alter and reprogram the activation of macrophages and 

antigen presenting cells (APCs) [88]. Furthermore, there are studies demonstrating direct inhibition of 

immune cell-activating transduction via the accumulation of ligands of immunosuppressive receptors in 

the tumor micro-environment [89,90]. Each of these structural and immune dysregulation events in 

tumors creates an environment for bacteria to flourish. 
  



Vaccines 2015, 3 950 

 

 

 

Figure 2. Tumor-targeting ability of bacterial vectors. (I) The hypoxic microenvironment  

in necrotic areas of solid tumor favours the colonization and proliferation of facultative 

anaerobes and obligate anaerobes; (II) Increased entrapment in the organisationally 

compromised and leaky vasculature, caused by neo-angiogenesis; (III) Chemo-attracting 

compounds present in necrotic areas (e.g., aspartate, serine, citrate, ribose or galactose) allow 

bacterial vectors to taxi toward tumors; (IV) Compromised pathogen clearance due to the 

presence of myeloid-derived immune suppressor cells and the accumulation of ligands of 

immunosuppressive receptors in the tumor micro-environment. 

3.2. Strategies for Cancer Therapy 

Various strategies been developed for bacteria-mediated anti-tumor therapy, and some of these have 

entered pre-clinical and/or clinical phase trials for evaluation. In the past, microorganisms such as 

Salmonella [91] and Clostridium [92] were noted for their intrinsic oncolytic capacity, and can induce 

tumor growth retardation. However, despite the initial tumor retardation and necrosis that was observed 

after application of these microorganisms, the tumor can often re-grow after treatment. Therefore, solely 

relying on the intrinsic anti-tumor ability of these oncolytic vectors is not sufficient; consequently many 

studies have addressed methods to improve the therapeutic effects. Several genes have been exploited 

and genetically engineered into these vectors. According to their mode of action, these genes can be 

categorized as acting via direct killing or immunomodulation (Table 3). 
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Table 3. Examples of therapeutic genes carried by bacterial vectors for anti-cancer treatment. 

Mode of 
Action 

Therapeutic 
Approach 

Example of Passenger  
Gene (or Antigen) 

Delivery 
Vector 

References 

Direct cell 

killing or 

tumor growth 

retardation 

Intrinsic oncolytic 

vector 
None 

Clostridium spp.  

Salmonella spp. 
[91–96] 

Anti-angiogenic 

molecule 

Vascular endothelial growth factor 

receptor 2 molecule (fetal liver kinase-1) 

L. monocytogenes  

S. Typhimurium 
[97,98] 

Endostatin 

B. longum  

B.adolescentis 
[99–102] 

S. choleraesuis [103] 

RNA interference 
Anti-bcl2 shRNA S. Typhimurium [104] 

Anti-MDR1 siRNA S. Typhi [105] 

Cell death inducer 

Fas ligand S. Typhimurium [106] 

HylE cytolynsin S. Typhimurium [107] 

TNF-related factor apoptosis ligand 

(TRAIL) 

S. Typhimurium  

B. longum 
[101,108,109] 

Apoptin S. Typhimurium [110] 

Pro-drug activating 

enzyme (+drug) 

Herpes Simplex Virus thymidine kinase 

(HSVtk) + ganciclovir 

S. Typhimurium [111,112] 

B. infantis [113] 

Bactofection is the term to describe the technique of using bacteria as a vehicle to deliver therapeutic 

cargo into the target organism, cell, organ or tissue [114]. This can be by the delivery of a plasmid to be 

transferred to the host cell for production of heterologous antigen, or production of the heterologous 

antigen (often followed by secretion) by the bacterial vector itself. Figure 3 represents the process for 

the delivery of a foreign gene. Several invasive bacterial species have been demonstrated to successfully 

transfer a eukaryotic expression plasmid into mammalian cells, such as S. Typhimurium [104,115–117], 

Shigella [118], L. monocytogenes [119] and recombinant E. coli [120]. Amongst them, S. Typhimurium 

is the most extensively studied vector for bactofection, demonstrating promising therapeutic expression 

and anti-tumor effects [104,106,108,121]. To date, the mechanisms involving DNA transfer by bacterial 

vectors are still not fully understood for many species, and proposed mechanisms are deduced from the 

inherent bacterial invasion properties (i.e., pathogenic pathway) and the cell type involved [122]. 

Basically, invasive microorganisms such as S. Typhimurium and L. monocytogenes are favored as 

bactofection vectors, but non-invasive microorganisms such as Bifidobacterium longum have also 

received attention due to their outstanding safety profiles [99,101,123–125]. For bactofection, two major 

engineered species are being widely exploited in pre-clinical and clinical studies: pathogens with 

intrinsic intracellular tropism, S. Typhimurium and L. monocytogenes. Although both attenuated vectors 

have shown promising potential as a gene delivery vehicles, one major difference between them has 

determined their fate in the development of anti-tumor bacterial vectors. 
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Figure 3. Bactofection into tumors. (A) Bacteria are used as a vector to deliver the genetic 

information into the eukaryotic cell. Bacterial vectors that possess plasmid (each bacterial 

vector can carry multiple copies of transgenic plasmid) carrying a transgene are administered 

into the target tissue, I.: The vectors penetrate into the cells. II: Vectors undergo lysis and 

the plasmids are released into the cytoplasm, III: The released plasmids enter the nuclei and 

the therapeutic transgene is expressed by eukaryotic transcription and translation mechanisms; 

(B) Alternative gene therapy: recombinant bacterial vectors express the recombinant 

therapeutic protein in situ intracellularly or in the intercellular space. Recombinant bacterial 

vector that possess plasmid carrying the transgene are administered into the target tissue and 

either enter the cells or stay in the intercellular space; I: The transgene is expressed and 

secreted after entering the cell, or; II: Bacteria do not enter the eukaryotic cell, but express 

the therapeutic transgene in the intercellular space. 

In these gene delivery methods, DNA is transferred to mammalian cells and subsequently transcribed 

by host cell-machinery within the nucleus. Although these DNA molecules can be delivered straight into 

the cell nucleus by employing viral vectors [126], plasmid-based DNA transfer systems often result in 

limited effectiveness, as the spontaneous trafficking of plasmid DNA into the cell nucleus is rate-limiting 

and inefficient [127]. However, RNA can also be delivered by bacteria. Schoen et al., 2005 [128] 

demonstrated the use of self-destructing L. monocytogenes to release ready-to-translate enhanced green 

fluorescent protein (EGFP)-encoding mRNA into the cytosol of epithelial cells. Their investigation 

revealed an enhanced EGFP expression level over the conventional plasmid DNA delivery strategy. 

In terms of production of the protein by the vector itself, L. monocytogenes has a major advantage.  

It is equipped with two unique virulence factors known as listeriolysin O and phospholipase C, which 

enables the bacteria to escape phagosomal degradation. Furthermore, an actin polymerase known as 

ActA allows L. monocytogenes to be internalized by adjacent cells, hence the intracellular lifecycle 

enables the antigens secreted by L. monocytogenes to be available for both MHC class I and class II 
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presentation on the cell surface [129,130]. In contrast, antigen secreted by S. Typhimurium is processed 

as exogenous antigen and presented mainly by MHC class II molecules. This is because S. Typhimurium 

lacks mechanisms to escape the phagosome, hence their intracellular survival and replication is  

restricted to the organelle, and secreted antigens are seen as exogenous. Finally, as demonstrated by 

Darji et al., 1997 [22,131], even though the expression plasmid carried by S. Typhimurium is lost soon 

after oral administration, the encoded passenger antigen can still be detected. 

Different therapeutic strategies were therefore developed according to their unique characteristics.  

As summarized in Table 3, L. monocytogenes has been receiving particular interest in delivering  

defined tumor antigens. This is because of their capacity to deliver heterologous antigen through the 

endogenous pathway, consequently presenting antigenic peptides through the MHC class I pathway, 

leading to the activation of antigen-specific CD8+ CTLs and breaking immune tolerance [132,133].  

In 2009, Stark et al., [134] evaluated the differential tumor protection between these two bacterial vectors 

by constructing L. monocytogenes and S. Typhimurium, both expressing ovalbumin (OVA). Although 

both vectors successfully induced functional OVA-specific CD8+ T-lymphocyte responses that 

expressed IFN-γ in vivo, only OVA-expressing L. monocytogenes immunized mice were protected 

against B16-OVA melanoma tumors. 

3.3. Anti-Angiogenesis 

The growth of solid tumors is known to be angiogenesis-dependent and this is often observed in 

hypoxic and necrotic areas. Therefore, in the quest for more efficient anti-tumor drugs, blocking tumor 

angiogenesis would be a promising intervention point [135]. Jia et al., 2005 [136] successfully 

demonstrated this by administering attenuated S. Typhimurium VNP20009 in combination with 

endostatin (an endogenous angiogenesis inhibitor) for the treatment of malignant melanoma in a murine 

model. Therapy using bacteria or endostatin alone had little or no effect on tumor growth. However, the 

combined therapy was very effective at retarding tumor growth, and was associated with marked tumor 

necrosis. Their investigation suggested that tumor-targeting bacteria can administer drugs to poorly 

perfused tumor areas. Lee et al., 2004 [103] constructed Salmonella choleraesuis carrying endostatin in 

a eukaryotic expression vector, and the vector was intraperitoneally administered into tumor-bearing 

mice. The construct significantly inhibited tumor growth by 40% to 70%, and markedly prolonged 

survival was observed [117]. In addition, immunohistochemical studies indicated reduced intratumoral 

microvessel density, and enhanced infiltration of CD8+ T-lymphocytes. B. longum and Bifidobacterium 

adolescentis vectors engineered to delivery plasmid-encoded endostatin showed similar anti-tumor 

results in tumor-bearing mice [99,100], and some promising preclinical results have been demonstrated 

in various tumor models [100,102,137,138]. Finally, another strategy used to inhibit angiogenesis is to 

break tumor immune tolerance by stimulating the host immune system to recognize tumor antigens such 

as endothelial growth factor receptor 2. Seavet et al., 2009 [98] constructed L. monocytogenes to carry 

polypeptides from mouse vascular endothelial growth factor receptor 2 molecule which was fused with 

a microbial adjuvant, listeriolysin O. In immunized mice, the construct was able to elicit strong  

anti-tumor CTL responses, was able to eliminate some established breast tumors, and reduced microvessel 

density in the remaining tumors. Attenuated S. Typhimurium strains SL3261 and VPN20009 have also 

been used to mediate anti-angiogenesis therapy with promising results [97,136]. Taken together, these 

studies point towards a promising future in the use of bacterial vectors to limit angiogenesis in tumors. 
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3.4. RNA Interference 

RNA interference (RNAi) is a highly efficient regulatory process that mediates post-translational gene 

silencing in most eukaryotic cells; it silences the expression of targeted genes via distinct messenger 

RNA degradation pathways [139]. RNAi represents a promising new approach to mediate and  

manage a variety of diseases and medical conditions, including viral infection, cancer and immune 

disorders [140,141]. Three different forms of RNA molecules are involved in mediating gene regulation, 

which are microRNA (miRNA), short hairpin RNA (shRNA), and small interfering RNA (siRNA) [140]. 

However, difficulties in the in vivo delivery of RNAi for therapeutic purposes are major limitations in 

this rapidly expanding field. This is because small interfering RNA molecules are negatively  

charged polymers that cannot efficiently enter cells, and undergo rapid degradation in the extracellular 

space [142,143]. A number of bacterial vectors have been exploited and shown to be an efficient,  

cost-effective and safe strategy for delivering RNAi to malignant tumors. Figure 4 shows the general 

approach. Zhao et al., 2005 [144] and Xiang et al., 2006 [145] independently demonstrated the concept 

by showing that siRNA molecules expressed by an invading E. coli strain could elicit an RNAi effect in 

mammalian cell cultures. Furthermore, Xiang and colleague successfully induced significant gene 

silencing effects in mouse intestinal epithelium and human colon xenografts when administered with  

E. coli engineered to carry shRNA against CTNNB1 (catenin beta-1). Overexpression of CTNNB1 is 

often associated with cancers including hepatocellular carcinoma, colorectal carcinoma and endometrial 

cancer [146]. Xiang’s pioneering study provided the first evidence of transfer of RNAi effector 

molecules from bacterial vectors to mammals in vivo, and this delivery strategy is termed transkingdom 

RNAi. Following these studies, Jiang et al., 2007 [105] constructed attenuated S. Typhi as an in vivo 

delivery vector for multidrug-resistance gene (MDR1) siRNA, and successfully transferred MDR1 

siRNA to tumors. Zhang et al., 2007 [147] evaluated the combined effects of an oncolytic vector together 

with an RNAi molecule by systemic administration of S. Typhimurium against tumor transcription factor 

STAT3. Their study revealed greater therapeutic efficiency in combined therapy compared with treatment 

using the vector alone. 

Bacterial vectors have also been exploited to deliver short-hairpin RNA for therapeutic gene-silencing 

effects. Yang et al., 2008 [104] successfully delayed tumor growth and prolonged survival in a murine 

melanoma model by orally administering S. Typhimurium carrying a short-hairpin RNA against the  

anti-apoptotic protein bcl-2. Blache et al., 2012 [148] developed S. Typhimurium transformed with an 

shRNA plasmid against indoleamine 2,3-dioxygenase 1 (IDO), an immunosuppressive molecule present 

in the tumor-associated microenvironment. Upon systemic administration in tumor-bearing mice,  

anti-IDO shRNA silenced host IDO expression and resulted in considerable intratumoral cell death with 

significant tumor infiltration by polymorphonuclear neutrophils. Blache and colleagues also presented 

an interesting finding whereby silencing of host IDO expression significantly enhances S. Typhimurium 

colonization, suggesting intratumoral expression of IDO mediates the immune response to  

S. Typhimurium [148]. In summary, many promising RNAi-mediated anti-tumor therapeutic strategies 

have been developed, and further investigation will expand potential applications. 
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Figure 4. Tumor therapy using RNA interference: Bacterial vectors are transformed with an 

shRNA-encoding vector for intra-bacterial transcription. shRNA are expressed inside the 

vectors before release into the target tumour cell’s cytoplasm. Following bacterial lysis,  

the shRNA molecules are cleaved by Dicer into the corresponding siRNA molecules.  

The anti-sense strand of the siRNA specifically binds with its target mRNA, which is then 

degraded by the RNA-induced silencing (RISC) complex resulting to a post-transcriptional 

gene silencing or suppression. 

3.5. Cell Death Inducer 

In the context of directly inducing cell death, the most straightforward approach features a bacterial 

vector to deliver and transfect a suitable cytotoxic gene to tumor cells (Figure 5, part I). Fas ligand (FasL) 

is a membrane protein that belongs to the family of tumor necrosis factor proteins, which can initiate an 

apoptotic signal in Fas-sensitive cells [149]. Attenuated S. Typhimurium has been used to express FasL, 

with intravenous administration of this vector resulting in tumor growth inhibition in murine breast 

carcinoma and colon carcinoma models [106]. TNF-related apoptosis-inducing ligand (TRIAL) is 

another potent apoptotic agent. Chen et al., 2012 [109] and Ganai et al., 2009 [108] conducted separate 

studies by incorporating TRAIL-expressing plasmids in S. Typhimurium under the control of the 

prokaryotic hypoxic-inducible NirB promoter and radiation-inducible RecA promoter, respectively. 

Both vectors were able to retard tumor growth and prolonged survival in a murine tumor model.  

In addition, co-administration of B. longum expressing IL-2 and B. longum expressing TRAIL in  

tumor-bearing mice was evaluated, and significantly enhanced anti-tumor effect and prolonged  

survival was observed when compared with administration with either constructs alone [101].  

Ryan et al., 2009 [107] demonstrated an alternative approach to induce tumor cell death, which 

employed attenuated S. Typhimurium carrying a novel cytotoxic protein (HlyE) under the control of  
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FF + 20*, a highly hypoxic-inducible promoter derived from the semi-synthetic bacterial promoter,  

FF + 20. This resulted in a considerable increase in tumor necrosis and tumor growth retardation in 

murine mammary tumors. Lastly, more recent investigations have looked into the application of the 

chicken anemia virus derived protein “apoptin” as a passenger protein for vector-mediated anti-cancer 

treatment [150]. Guan et al., 2013 [110] successfully prolonged host survival in a syngeneic nude murine 

tumor model with marked tumor growth retardation and reduced microvessel density after systemic 

administration of apoptin-expressing S. Typhimurium. 

 

Figure 5. Tumor therapy with cell death inducer or pro-drug activating enzymes. (I) Cancer 

cells transfected with apoptosis inducers such as Fas ligand could lead to apoptosis in  

Fas-sensitive cells; (II) Cells transfected with pro-drug activating enzyme allow more 

specific and localised cell destruction, even upon systemic pro-drug administration. 

3.6. Pro-Drug Activating Enzyme + (Drug) 

Bacteria-mediated anti-tumor therapies using indirect cytotoxic genes have also shown promise. 

Gene-directed pro-drug therapy (GDPT) is a two-step approach to deliver anti-cancer effects (Figure 5, 

Part II). In the first step, a drug-activating enzyme is delivered and expressed in the tumor, whilst in the 

second step, a non-toxic pro-drug is administered which is selectively activated by the expressed  

drug-activating enzyme. The net benefit is that a systematically administered pro-drug can be  

converted locally to a cytotoxic drug, and deliver highly localized anti-tumor effect [151,152]. Several 

enzyme/prodrug systems are available for such anti-tumor approaches. An early attempt at GDPT was 

the combination of Herpes Simplex Virus thymidine kinase (HSVtk) and an antiviral drug ganciclovir 

(GCV). HSVtk phosphorylates GCV by a cellular kinase to produce GCV triphosphate, which interrupts 

DNA synthesis during S phase, resulting in cell death [154]. Pawelek et al., 1997 [112] successfully 

demonstrated GCV-mediated, dose-dependent suppression of tumor growth and prolonged survival in 

mice bearing B16F10 melanoma upon administering HSVtk-expressing attenuated hyper-invasive  
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S. Typhimurium. A similar study using Bifidobacterium infantis as the HSVtk-expression vector showed 

similar anti-tumor activity in a rat model of bladder cancer [113]. Moreover, a co-expression, bi-gene 

GDPT system was investigated by Zeng et al., 2012 [111]. Melanoma-bearing mice were administered 

with S. Typhimurium co-expressing Mycobacterium tuberculosis heat shock protein 70 (mtHS70) and 

HSVtk, and upon administering GCV, increased IFN-γ levels within tumor tissue and marked tumor 

growth retardation was observed. Some other commonly studied enzyme/pro-drug combinations include  

E. coli cytosine deaminase (eCD) in conjunction with 5-fluorocytosine [96,154–157], nitroreductase (NTR) 

in conjunction with the CB1954 prodrug [158,159], and purine nucleoside phosphorylase (PNP) in 

conjunction with 6-methylpurine 2’-deoxyriboside (MePdR) [116,160]. Of these, the use of eCD in 

conjunction with 5-fluorocytosine yielded the most promising results. A small pilot trial used attenuated 

S. Typhimurium expressing eCD for patients with refractory cancer, and demonstrated not only the 

safety profile of the vector, but also the conversion of 5-fluorocytosine to cytotoxic 5-fluorouracil, 

resulting in noticeable anti-tumor effects in two- thirds of the subjects [161]. Although GDPT is still in 

its infancy, it is foreseeable that with continuous technological improvements, innovative designs of both 

vector and enzyme/pro-drug systems will emerge in the near future and it will evolve into a successful 

routine therapeutic regime for cancer. 

3.7. Immune Stimulatory Molecules 

In-depth understanding of tumor immunology facilitates the design of vector-mediated immune-based 

therapies for cancer. Tumor cells are known to inhibit or down-regulate immune responses by three 

major mechanisms: attracting immunosuppressive lymphocyte populations, secreting immunosuppressive 

cytokines and expression of surface molecules which inhibit immune responses by inducing apoptosis 

in tumor-infiltrating lymphocytes [90,162–165]. Cancer immunotherapy approaches focus on mediating 

anti-tumor effects through either direct or indirect intervention of various effector immune cells,  

which include B-lymphocytes, CD8+ and CD4+ T-lymphocytes and natural killer cells [133,165–167]. 

Live-attenuated bacterial vectors have been exploited to mediate tumor cells or other cells to express 

pro-inflammatory or inflammatory cytokines that can enhance anti-tumor activity in various  

lymphocytes [86,136,166,167]. Several S. Typhimurium and B. longum vectors carrying immunostimulatory 

molecules have been experimentally tested in a variety of tumor models evaluating the anti-tumor 

immunotherapeutic effects, resulting in various degrees of tumor retardation or reduction. Some promising 

results were obtained from vectors carrying immunostimulatory molecules CLL21, granulocyte  

colony-stimulating factor (GCSF), IL-2, IL-18, TNF-α or LIGHT [101,125,166–170]. Preclinical studies have 

also used IL-4-expressing S. Typhimurium in combination with IL-18-expressing S. Typhimurium, resulting 

in significantly increased serum IFN-γ and strong anti-tumor effects in melanoma-bearing mice [171]. 

3.8. Tumor Antigen 

The tendency of tumor-associated antigens to induce immune tolerance rather than eliciting active  

T-lymphocyte responses is a major obstacle to tumor immunotherapy. The cause of immune tolerance 

is associated with the initial presentation of these antigens to the immune system by tumor cells in the 

absence of co-stimulatory molecules [172,173]. The pathogen-associated molecular patterns (PAMPs) 

possessed by attenuated bacterial vectors have been exploited to break tumor-induced immune tolerance 
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with some positive results [133,174]. The large majority of anti-tumor vaccine studies have utilized 

attenuated S. Typhimurium and L. monocytogenes to deliver tumor-associated antigens [175,176]. In the 

latter case, the intracellular lifecycle of L. monocytogenes is attractive in cancer vaccine development; 

as its cytoplasmic location is advantageous for antigens to be processed directly and presented by MHC 

Class I, leading to priming antigen-specific CD8+ T-lymphocyte responses, consequently breaking 

tumor-induced immune tolerance [133,177]. A number of attenuated L. monocytogenes have been 

developed for expressing a wide range of tumor-associated antigens, such as Her-2/neu [178,179],  

HPV-16 E7 antigen [78,180–182], melanoma associated antigen [183] and prostate-specific antigen [184]. 

In addition, the tumor-associated antigens carried by L. monocytogenes are often fused with listerial 

virulence factors, such as listerolysin O or ActA, which possess motif sequences rich in proline, glutamic 

acid, serine and threonine residues (PEST domains); these positively charged residues can direct the 

fused proteins to proteosomes for degradation and presentation of processed CD8+-specific peptides via 

the MHC Class I [177]. Sewell et al., 2004 [182] conducted a comparative study using L. monocytogenes 

carrying HPV-17 E7 antigen against L. monocytogenes carrying HPV-17 E7 fused to a fragment 

containing the listerolysin O PEST domain. Their study showed that tumor regression was significantly 

more pronounced in the latter case. In 2009, this bacterial vector (L. monocytogenes carrying HPV-17 

E7 fused to a fragment of listerolysin O) was evaluated in a Phase I Clinical Trial in patients with 

metastatic cervical cancer [78]. This constituted the first clinical trial using a live attenuated  

L. monocytogenes; the trial outcome demonstrated 30% tumor reduction and increased overall survival 

rate, and apart from minor flu-like symptoms and hypertension in some subjects the vaccine vector was 

well tolerated, indicating the safety and efficacy of listerial vectors. 

Yang et al., 2014 [185] reported a novel strategy involving genetic modification of replication-deficient 

L. monocytogenes to express and secrete the human CD24 protein. Overexpression of CD24, a 

glycosylphosphatidylinositol-anchored membrane protein, is correlated with poor therapeutic outcomes 

in some cancers, and contributes to experimental tumor growth and metastasis [186]. A further study 

also reported its role in promoting tumor cell invasiveness in vivo, and it serves as a hepatic cancer stem 

cell biomarker that has a strong association with apoptosis, metastasis and recurrence of hepatocelullar 

carcinoma [185,187,188]. In IV administered mice, the vaccine vector efficiently enhanced both Th1 

and Th2 immune responses, indicated by enhanced production of IFN-γ, IL-4 and IL-10, resulting in 

significant reduction in tumor size and prolonged survival in mice. Of note was a reduction of T 

regulatory cell numbers, and enhanced specific CD8+ T-lymphocyte activity was observed in the  

tumor-infiltrating lymphocytes. 

3.9. In Vivo Tumor Imaging 

Despite the ongoing improvements in cancer therapy, early detection remains a vital aspect of 

effective treatment and better prognosis. Bacteria that preferentially replicate in tumors have been 

exploited in diagnostic applications, and genetically engineered bacterial vectors expressing imaging 

agents allow the detection of not only the primary tumor site but also metastatic sites [189,190].  

As accumulation of bacteria in tumors occurs over time, the need to administer large quantities of probe 

for an enhanced signal/noise ratio can be eliminated [86]. Bacteria expressing light-emitting molecules 

could be visualized whilst colonizing tumors. Both fluorescent (Green Fluorescent Protein (GFP) and its 
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variants) [191] and luminescent (lux) [192] genes are available for this strategy. Riedel et al., 2007 [193] 

successfully developed a system for the stable expression of high level bioluminescence (luciferase) in 

L. monocytogenes, providing a platform for in vivo tumor-targeting studies. On the other hand, a study 

conducted by Xiong et al., 2013 [191] using a GFP-carrying vector to transfect murine tumor models 

also showed promise. Other bacteria-based tumor-targeting imaging systems have also been examined, 

including Positron Emission Topography (PET) scanning in combination with bacteria expressing 

thymidine kinase [194]. Using this strategy, E. coli expressing endogenous thymidine kinase [195]  

and S. Typhimurium expressing thymidine kinase derived from HPV were evaluated [196,197]. 

Bacterial vector-mediated in vivo tumor imaging technology is a promising approach for the early 

detection of primary tumors as well as metastasis. Such technology also holds the key for real-time 

monitoring of disease progression and treatment efficacy, which would significantly enhance the 

prognosis and the quality of life of cancer patients. 

4. Conclusions 

Harnessing the ability of attenuated bacterial vaccines to elicit robust immune responses, the 

generation of recombinant vaccine vectors designed to protect against a heterologous pathogen is an 

attractive route for vaccine development. Some vectors are already in commercial use, and as we 

understand more about the pathogenicity and immune response induction by the vectors we can better 

tailor the vector to the antigen being expressed. This requires knowledge of the immune responses 

required to combat the pathogen from which the heterologous gene is derived, and marrying this to the 

delivery route and immune responses induced to the vector. However, bacterial vectors are not only 

useful for prophylactic vaccination. The use of these in combatting tumors is a very exciting and highly 

significant area of study, given the high burden cancers place on human health. As discussed, the intrinsic 

characteristics of different bacterial vectors give rise to particular strategies for anti-tumor therapeutics. 

This includes the ability of Salmonella to transfect tumor cells with therapeutic genes, the ability of  

L. monocytogenes to induce immune responses through the MHC Class I pathway, and the  

non-pathogenic nature of Bifidobacterium that can avoid potential side-effects. Each of these carries 

merit in the developing field of anti-tumor bacterial therapies. Overall, the development of live bacterial 

vectors for vaccination and anti-tumor therapies is a rapidly expanding research area with much 

potential. The future is bright for vectored vaccines.  
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