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ABSTRACT
Heterogeneity is a key feature of all psychiatric disorders that manifests on many levels, including symptoms, disease
course, and biological underpinnings. These form a substantial barrier to understanding disease mechanisms and
developing effective, personalized treatments. In response, many studies have aimed to stratify psychiatric disorders,
aiming to find more consistent subgroups on the basis of many types of data. Such approaches have received renewed
interest after recent research initiatives, such as the National Institute of Mental Health Research Domain Criteria and the
European Roadmap for Mental Health Research, both of which emphasize finding stratifications that are based on
biological systems and that cut across current classifications. We first introduce the basic concepts for stratifying
psychiatric disorders and then provide a methodologically oriented and critical review of the existing literature. This shows
that the predominant clustering approach that aims to subdivide clinical populations into more coherent subgroups has
made a useful contribution but is heavily dependent on the type of data used; it has produced many different ways to
subgroup the disorders we review, but for most disorders it has not converged on a consistent set of subgroups. We
highlight problems with current approaches that are not widely recognized and discuss the importance of validation to
ensure that the derived subgroups index clinically relevant variation. Finally, we review emerging techniques—such as
those that estimate normative models for mappings between biology and behavior—that provide new ways to parse the
heterogeneity underlying psychiatric disorders and evaluate all methods to meeting the objectives of such as the National
Institute of Mental Health Research Domain Criteria and Roadmap for Mental Health Research.

Keywords: European Roadmap for Mental Health Research, Heterogeneity, Latent cluster analysis, Psychiatry,
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Psychiatric disorders are, without exception, highly heteroge-
neous in terms of symptoms, disease course, and biological
underpinnings. Diagnoses are made on the basis of symp-
toms, while at the level of the underlying biology their causes
are complex and multifaceted. This becomes acutely problem-
atic in psychiatry because biological tests to assist diagnosis
or predict outcome have not been developed (1). Diagnostic
categories therefore often do not map cleanly onto either
biology or outcome, which forms a major barrier to under-
standing disease mechanisms and developing more effective
treatments.

A recognition of the imperfections of psychiatric nosology is
not new; the debate between “lumpers” and “splitters” (2) over
the number and validity of diagnostic classifications has
continued unabated for more than a century following the
classifications of dementia praecox and schizophrenia pro-
posed by Kraepelin and Bleuler (3,4). Reflecting this ongoing
debate, classifications are revised with every new edition of
diagnostic manuals (5,6). Data-driven approaches to address
heterogeneity in psychiatric disorders have also been applied
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for decades, in which the dominant approach has been to
partition clinical groups into more homogeneous subgroups
using data clustering methods—early examples can be seen in
Paykel (7) and Farmer et al. (8). These approaches have
recently received renewed interest for three reasons: 1) the
advent of technologies for measuring many aspects of biology
noninvasively and in vivo, particularly neuroimaging and
genetics; 2) advances in statistical and machine learning data
analytic approaches that make it possible to extract informa-
tion from complex and high-dimensional data; and 3) increas-
ing emphasis on using biological data to tailor treatments to
the needs of individual patients (“precision medicine”) (9,10).
Most notably, recent funding initiatives, such as the National
Institue of Mental Health Research Domain Criteria [RDoC (11)]
and the European Roadmap for Mental Health Research
[ROAMER (12)], have encouraged researchers to think beyond
the classical case-control approach—where participants are
either “patients” or “controls” based on fixed diagnostic cri-
teria—and instead link cognitive dimensions with underlying
biology while cutting across diagnostic classifications. The
iety of Biological Psychiatry. Published by Elsevier Inc. This is
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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hope is that this will lead to biologically grounded under-
standing of disease entities and ultimately to more effective,
personalized treatments.

These initiatives have stimulated an increasing number
of studies that have used data-driven methods to stratify
many disorders, including schizophrenia, major depression,
attention-deficit/hyperactivity disorder (ADHD), and autism
based on many types of data, including symptoms, neuro-
psychologic scores, and neuroimaging measures (13–21). We
selectively review this burgeoning literature.1 We first present a
didactic introduction to the most prevalent methodologic
approaches for stratifying psychiatric disorders, highlighting
the (often implicit) assumptions they entail. We then present an
illustrative overview of studies that have used these methods
to parse the heterogeneity underlying psychiatric disorders.
We identify problems with current approaches and discuss the
importance of validation to ensure reproducibility and ensure
that clusters map onto clinically meaningful variation. We
discuss emerging techniques, such as normative modeling
(22), that provide means to parse heterogeneity in clinical
cohorts without needing to make strong assumptions about
clinical groups and evaluate the suitability of each method for
meeting the objectives of recent research initiatives. Finally,
we propose future developments that may help to parse
heterogeneity more effectively.
METHODOLOGIC APPROACHES FOR STRATIFYING
CLINICAL POPULATIONS

The predominant approach has been to subdivide clinical
cohorts using statistical or machine learning methods, largely
of two main types: clustering (23) and finite mixture models
(FMMs) (24–26). Both are unsupervised in that they do not
have access to class labels (e.g., diagnostic labels) and must
find subgroups automatically based on structure within the
data and heuristics used by each algorithm. In contrast,
supervised methods are provided with labels that indicate
the class to which each subject belongs (e.g., “patient” or
“control”). Supervised learning has been successful for pre-
dicting diagnosis or outcome from neuroimaging data in
research settings (27–29) but is fundamentally limited by the
quality of the clinical labels and the heterogeneity within
disease cohorts (29) and cannot, by definition, inform on the
validity of the labels. Therefore, unsupervised methods have
been more widely used for discovering latent structure within
clinical groups. We present a brief introduction to clustering
and FMM methods below; additional details and a didactic
introduction are provided in the Supplement.
1We identified studies by performing a PubMed search for each
disorder separately using the following search string: [(cluster-
ing OR subtypes OR subgroups OR stratification) and (disorder
name OR disorder acronyms)]. We then selected a representa-
tive overview of studies for each disorder (this was exhaustive
for ADHD, autism, and cross-diagnostic studies). For example,
in the case of multiple studies using the same cohort, we only
included the first or most important in this review. We also gave
priority to studies that have not been reviewed previously
(19,51,52).
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Clustering

The classical case-control approach can itself be phrased in
terms of defining clusters and associated decision boundaries.
For example, Fisher’s linear discriminant (23) uses the class-
dependent mean response (e.g., in patients vs. controls) and
thereby clusters the entire cohort along a decision boundary
defined by the mean and class-specific covariances. More
generally, given a set of data points (e.g., clinical or neuro-
imaging measures), clustering algorithms aim to partition the
data into a specified number (K) of clusters such that the
samples in each cluster are more similar to one another than
to those in the other clusters. This entails defining a measure
of similarity or distance between data points. One of the
simplest and most widely used approaches is K-means
clustering, which partitions the input space into K subregions
based on the squared Euclidean distance (see Supplement). A
wide variety of other algorithms have also been proposed in
the machine learning literature (23,30,31). Two that are rele-
vant for stratifying psychiatric disorders are 1) hierarchical
clustering, which forms a hierarchy of cluster assignments by
recursively splitting larger groups (“divisive clustering”) or
combining individual samples (“agglomerative clustering”
[e.g., Ward’s method (32)]), and 2) community detection, which
is a graph-based method that aims to cluster nodes into
“communities” (33).

Finite Mixture Modeling

FMMs2 are a broad class of probabilistic approaches that aim
to represent data using a finite number of parametric distri-
butions (“components”). The simplest examples are Gaussian
mixture models (GMMs),3 where all components have Gaus-
sian distributions (24), but many other models are also
members of this class (26), including latent class cluster
analysis (LCCA) (25,34), growth mixture modeling (35), latent
class growth analysis4 (LCGA) (36), and factor mixture model-
ing (20) (see Supplement).

LCCA is a particularly widely used approach that accom-
modates many different data types (e.g., continuous, catego-
rical, and ordinal). It is highly generic and can model, for
example, dependence between variables (e.g., to model
correlated clinical variables) or can use covariates to help
predict class membership (25,26,34). Growth mixture model-
ing is a useful generalization and is derived by combining FMM
with growth models (26,35). This is appropriate for modeling
longitudinal data derived from different growth trajectories.
Given the neurodevelopmental basis for psychiatric disorders
(37) and the importance of disease course in diagnosis (38),
these approaches are increasingly being applied to stratify
psychiatric disorders (39,40).
2Many of the FMM approaches discussed here originate in the
psychometric literature, which uses different nomenclature to
mainstream statistics. Unfortunately, this nomenclature also
varies between authors. We use consistent terminology
throughout and synthesize with mainstream statistical literature
wherever possible.

3Referred to as “latent profile analysis” in the psychometric
literature.

4Also referred to as “group-based trajectory modeling.”
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One advantage of FMMs is that they provide a full statistical
model for the data, and therefore classical statistical techni-
ques can be used to assess fit (e.g., likelihood ratio tests).
They are also flexible; for example, GMMs can approximate
any continuous distribution to acceptable error (41). However,
modeling complex distributions may require many mixture
components having many parameters.

Model Order Selection

Choosing the number of clusters or components is an
important consideration and directly influences model flexibil-
ity. Many techniques have been proposed for comparing
model orders, including classical information criteria (42,43)
and specialized methods (44–48). Different methods embody
different heuristics (e.g., how parameters are penalized), which
may not yield the same or even a unique optimal model order,
indicating that the data can be equally well-explained using
different model orders. Some methods automatically estimate
model order (33,49) but do not indicate whether other model
orders are equally appropriate and often have additional
parameters that influence the estimated model order. For
example, graph-based methods (33) entail specifying a thresh-
old above which nodes are considered connected (see
Advantages and Disadvantages of Clustering for further
discussion).

APPLICATIONS TO STRATIFY PSYCHIATRIC
DISORDERS

Clustering methods5 have been used extensively to stratify
all psychiatric disorders, both individually and across
diagnoses; Tables 1–5 provide a representative (but not
exhaustive) overview. Several articles offer more extensive
quantitative reviews (19,50,51). Three salient observations can
be made: first, during the many years that computational
approaches have been used, relatively few algorithms have
been used. There is, however, more variability among methods
to select model order. Second, stratifications have been based
on a range of measures, but predominantly symptoms or
psychometric variables. This is notable considering that RDoC
and ROAMER emphasize stratification on the basis of map-
pings between biological systems and cognitive domains, not
just symptoms (10). To date, few studies have stratified
psychiatric disorders on the basis of quantitative biological
measures, and these studies have predominantly used
neuroimaging-based measures (13,16,17,52). This may be
because of well-known problems with clustering complex,
high-dimensional data (see Advantages and Disadvantages of
Clustering).

CLINICAL IMPLICATIONS

One of the most striking features evident from Tables 1–5 is
that the outcomes of clustering are heavily dependent on the
input data; the overall picture derived from the literature is a
profusion of different ways to subtype psychiatric disorders
5The overall objectives of clustering approaches and FMMs are
similar; for the remainder of this article, we refer to both as
“clustering” for brevity.
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with relatively little convergence onto a coherent and consis-
tent set of subtypes (19,50). The disorder with the most
consistent stratifications across studies is major depression,
where many (53–56), but not all (57–59) studies report
evidence for “typical” (melancholic) and “atypical” subtypes,
although these often do not align with the classical DSM
subtypes (60). In contrast, stratifications of schizophrenia,
ADHD, and autism have been much more variable across
studies. In these cases, it is difficult to know how these
different clustering solutions relate to each other or which are
most relevant for clinical decision-making. From a clinical
perspective, the discrepancies in these findings may reflect
different subgroupings being reflected in different measures or
a convergence of multiple causal mechanisms on the same
phenotype. There are hundreds of genetic polymorphisms
associated with most psychiatric disorders (61,62), all having
small effect sizes and converging on similar symptoms. This
aggregation of small effects has been likened to a “water-
shed,” where genetic polymorphisms aggregate as they flow
downstream, finding full expression in the syndromic expres-
sion of the disorder (63). An additional complication in
comparing studies is that symptom profiles of many disorders
vary over the course of the disorder, even within individual
subjects (64). Therefore, quantitative comparisons between
different studies and cohorts are needed, as is a greater focus
on external validation (see below).

ADVANTAGES AND DISADVANTAGES OF
CLUSTERING

Tables 1–5 show that clustering algorithms have been the
method of choice for stratifying clinical groups and have made
an important contribution to studying the heterogeneity under-
lying psychiatric disorders. Clustering methods are ideal if the
disorder can be cleanly separated into subgroups (e.g., for
separating typical from atypical depression). However, our
review shows that psychiatric disorders cannot be reprodu-
cibly stratified using symptoms alone, probably because of
extensive overlap between disorders. Indeed, finding an
optimal solution is in general a computationally difficult prob-
lem (65).6 Therefore, all algorithms used in practice use
heuristics to find approximate solutions that do not guarantee
convergence to a global optimum. This is not overly problem-
atic in itself, and standard approaches are to run multiple
random restarts to find the best solution possible or to
integrate different solutions to provide measures of cluster
uncertainty. A more serious problem is that clustering algo-
rithms always yield a result and partition the data into the
specified number of clusters regardless of the underlying data
distribution (Supplementary Figure S1). The number and
validity of the clusters must be specified a priori or assessed
post hoc. In this regard, it is important to recognize that
different approaches to clustering embody different heuristics,
possibly leading to different solutions. These heuristics are
determined by many factors, including the choice of algorithm
and distance function, the model order, the subspace in which
clustering takes place, and the method used to search the
6Technically, clustering belongs to the “NP-hard” class of
problems.
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Table 1. Studies Using Clustering Methods to Stratify Schizophrenia

Study Subjects (N) Measures Algorithm
No. of Clusters

(Method) Cluster Descriptions External Validation

Farmer et al.,
1983 (8)

SCZ (65) Symptoms and case history
variables

K means and
hierarchical
clustering

2 (maximal agreement
between methods)

Good premorbid adjustment, late onset, and well
organized delusions

None

Poor premorbid functioning, early onset,
incoherent speech, and bizarre behavior

Castle et al.,
1994 (93)

SCZ (447) Symptoms and case history
variables

LCCA 3 (χ2 test) Neurodevelopmental Premorbid, phenomenologic, and
treatment response variables
[see (94)]

Paranoid

Schizoaffective

Dollfus et al.,
1996 (95)

SCZ (138) Symptoms Ward’s hierarchical
clustering
method (32)

4 (informal examination
of cluster dendrogram)

Positive symptoms Social variables

Negative symptoms

Disorganized symptoms

Mixed symptoms

Kendler et al.,
1998 (96)

SCZ (348) Symptoms LCCA 6 (not specified) Classic schizophrenia Historical data

Major depression

Schiophreniform disorder

Bipolar-schizomania

Hebephrenia

Murray et al.,
2005 (97)

SCZ (387) “Operational criteria” diagnostic
measures (medical records and
interview)

LCCA BIC (42) Depression None

Reality distortion

Mania

Disorganization

Dawes et al.,
2011 (98)

SCZ and SAD
(144)

Neuropsychological measures K means 5 (Ward method) Visual learning and memory (–) None

Verbal comprehension (1), processing speed (1),
abstraction (–) auditory and visual learning, and
memory (–)

Abstraction (–)

Verbal comprehension (1), visual learning and
memory (1), abstraction (–), auditory learning and
memory (–)

Verbal comprehension (1), abstraction (–), visual
learning and memory (–)

Cole et al.,
2012 (99)

SCZ (208) Social and academic adjustment
scales

LCGA 3 [BIC and Lo-Mendell-
Rubin test (44)]

Good—stable None

Insidious onset

Poor deteriorating

Bell et al.,
2013 (18)

SCZ and SAD
(77 1 63
validation)

Symptoms and social cognitive
measures

K means 3 (Ward method) High negative symptoms None

High social cognition

Low social cognition
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space. Moreover, in general it is not possible to adjudicate
unambiguously between methods because there is no clear
measure of success for unsupervised learning methods (23).7

For example, different metrics for assessing model order often
yield different answers and also may not identify a unique
optimal model order. Therefore, heuristics and previous
expectations play a strong role in the choice of algorithm
and model order. Indeed, many studies use multiple
approaches, aiming for consensus (Tables 1–5), but the final
choice of method is often a matter of taste.

High-dimensional data bring additional problems for clus-
tering that are well-recognized in the machine learning liter-
ature (see Supplementary Methods) (31,66). Specialized
algorithms are therefore recommended for high-dimensional
data (31,66), but to date these have not been applied to
psychiatric disorders. Another problem for biological data
(e.g., neuroimaging and genetics) is that the magnitude of
nuisance variation is usually larger than clinically relevant
variation, so the clustering solution can be driven by the
nuisance variation rather than clinical heterogeneity. Therefore,
it can be difficult to constrain clustering algorithms to find
clinically relevant clusters, which necessitates careful data
handling and preprocessing.

More specific problems with applying clustering algorithms
to stratify psychiatric disorders include the following: 1) some
participants may not clearly belong to any class; 2) some
classes may be not well defined or may be unmanageably
small (67); 3) subgroups may principally index severity
(39,55,68); and 3) it is not clear whether healthy participants
should be clustered separately or in combination with patients.
VALIDATION

The complexity of deriving clustering solutions makes valida-
tion crucial to ensure reproducibility and to ensure that the
derived clusters index clinically meaningful variation. A com-
mon approach is to train supervised classifiers to separate
classes using the same data that were used to derive the
clusters or data that are highly correlated (e.g., different
symptom measures). However, this approach is circular and
simply measures how well classes can be separated within the
training sample. A better approach is to assess cluster
reproducibility, which requires additional cohorts or resam-
pling of the data (e.g., cross-validation). However, to avoid
bias, the entire procedure—including clustering—must be
embedded within the resampling framework. To assess clinical
validity, external data are necessary and should be defined
a priori. For this, prediction of future outcome is considered
the best test (69) if outcome can be clearly defined (e.g., the
absence of relapse in schizophrenia). Biological measures can
also provide useful validation because they can determine
whether clusters map onto pathophysiology (11,12), which is
important because subgroups that reduce phenotypic hetero-
geneity may not reduce biological heterogeneity (70).
7In contrast, there is a clear measure by which success of
supervised methods can be assessed: the expected loss,
measured by some loss function, over the joint distribution of
labels and covariates. This can be estimated in various ways
(e.g., cross-validation).
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Table 2. Studies Using Clustering Methods to Stratify Depression

Study Subjects (N) Measures Algorithm No. of Clusters (Method) Cluster Descriptions External Validation

Paykel, 1971 (7) Patients with depression (165) Clinical interviews, case
history, and personality
variables

Friedman–Rubin
algorithm
(103)

4 (maximize the ratio of between to
within class scatter)

Psychotic None

Anxious

Hostile

Young depressive with
personality disorder

Maes et al.,
1992 (57)

MDD (80) Symptoms K means 2 (not specified) Vital (i.e., psychomotor
disorders, loss of energy,
early morning awakening,
and nonreactivity)

Biological (e.g., endocrine)
measures

Nonvital

Kendler et al.,
1996 (53)

Female twin pairs (2163) Symptoms LCCA 7 (not specified) Only 3 clusters described: Body mass index, personality,
and concordance of cluster
membership among twin pairs

Mild typical depression
Atypical depression
Severe typical depression

Sullivan et al.,
1998 (54)

National comorbidity survey
respondents (2836)

Symptoms LCCA 6 (χ2 statistic) Severe typical Demographic and personality
variablesMild typical

Severe atypical

Mild atypical

Intermediate

Minimal symptoms

Hybels et al.,
2009 (58)

MDD (368) Symptoms LCCA 4 [L2 statistic (34), BIC] DSM-IV depression: Moderate
sadness, lassitude and
inability to feel

Demographic, social, and clinical
variables

Higher severity for all items,
especially apparent sadness

Milder profile

Highest severity and most
functional limitations

Lamers et al.,
2010 (55)

MDD (818) Symptoms plus
demographic,
psychosocial, and
physical health variables

LCCA 3 [BIC and AIC (43)] Severe melancholic (decreased
appetite, weight loss)

Stability over time,
sociodemographic, clinical,
and biological (e.g., metabolic)
variables (104,105)

Severe atypical (overeating and
weight gain)

Moderate severity

Lamers et al.,
2012 (56)

National comorbidity survey—
replication respondents.
Adolescents (912) and
adults (805)

Symptoms LCCA Adolescents: 3, adults: 4 (BIC) Adolescents: None

Moderate typical
Severe typical
Severe atypical

Adults:

Moderate
Moderate typical
Severe typical
Severe atypical
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Biological Psychiatry: Cognitive Neuroscience and Neuroi
Historically, the importance of validation has been somewhat
overlooked (Tables 1–5), but it is reassuring to note that
studies are increasingly validating stratifications against exter-
nal measures, especially in the case of major depression
(60,71–73); for example, Rhebergen et al. (39) derived a set
of symptom trajectories to stratify depressed subjects that
were subsequently validated against measures of affective
processing derived from functional magnetic resonance imag-
ing scans (73). Another notable example of external validation
was provided by Karalunas et al. (14), who stratified children
with ADHD on the basis of temperament ratings and validated
these stratifications against cardiac measures, resting state
functional magnetic resonance imaging scans, and clinical
outcome.
ALTERNATIVES TO CLUSTERING

Surprisingly few alternatives to clustering have been pro-
posed. Proposed alternatives are of 3 main types: first, some
methods extend supervised learning to classify predefined
disease states while accommodating uncertainty in the class
labels. This has been achieved in the following ways: embed-
ding the algorithm in a “wrapper” that identifies mislabeled
samples [(74) Figure 1A, B]; semisupervised methods that only
use labels for subjects with a definite diagnosis [(75)
Figure 1C]; and hybrid methods that combine supervised
learning with clustering [(76–78) Figure 1D] or fusing the image
registration process with FMMs such that brain images are
clustered at the same time as they are registered together (79).
Second, manifold learning techniques (Figure 2A) have been
used to find low-dimensional representations of the data that
highlight salient axes of variation. For high-dimensional data,
approaches that preserve local distances are well-suited for
this (80) and have been used to find latent structure underlying
neurologic disorders (81) and used for dimensionality reduc-
tion before clustering (82). Third, novelty detection algorithms,
such as the one-class support vector machine (83), aim to
identify samples that are different from a set of training
examples [(84) Figure 3B].

Normative modeling (Figure 3) is an alternative approach for
parsing heterogeneity in clinical conditions (22,85,86) and aims
to model biological variation within clinical cohorts, such that
symptoms in individual patients can be recognized as extreme
values within this distribution. This can be compared to the
use of growth charts to map child development in terms of
height and weight as a function of age, where deviations from
a normal growth trajectory manifest as outliers within the
normative range at each age. This is operationalized by
learning some decision function that quantifies the variation
across the population range, including healthy functioning and
also potentially symptoms (see Supplementary Methods).
Such approaches have been proposed for identifying subjects
that have an abnormal maturational trajectory in brain struc-
ture (86) or in cognitive development (85), or for mapping any
clinically relevant variable (22). This approach breaks the
symmetry inherent in case-control and clustering approaches
and provides multiple benefits. First, it does not entail making
strong assumptions about the clinical group (e.g., existence or
number of subgroups). This was shown by Marquand et al.
(22), where the clinical variables did not form clearly defined
maging September 2016; 1:433–447 www.sobp.org/BPCNNI 439
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Table 3. Studies Using Clustering Methods to Stratify Attention-Deficit/Hyperactivity Disorder

Study Subjects (N) Measures Algorithm No. of Clusters (Method) Cluster Descriptions External Validation

Fair et al.,
2012 (15)

ADHD (285) and
TDC (213)

Neuropsychologic
scores

CD (33) 6 for ADHD (determined
implicitly by the
algorithm)

Response time variability (1) None

Working memory (–), memory span (–), inhibition (–), and
output speed (–)

Working memory (–), memory span (–), inhibition (–), and
output speed (–), minor differences in remaining
measures

Temporal processing (–)

Arousal (–)

Arousal (–), minor differences in remaining measures

Karalunas et al.,
2014 (14)

ADHD (247) and
TDC (190)

Personality measures
(e.g., temperament)

CD 3 (determined implicitly by
the algorithm)

Mild Physiological (e.g., cardiac) measures,
resting state fMRI and 1-year clinical
outcomes

Surgent (positive apporach motivation)

Irritable (negative emotionality, anger, and poor
soothability)

Gates et al.,
2014 (16)

ADHD (32) and
TDC (58)

fMRI (functional
connectivity)

CD 5 (determined implicitly by
the algorithm)

Subgroups characterized in terms of functional
connectivity profiles

None

Costa Dias et al.,
2015 (17)

ADHD (42) and
TDC (63)

fMRI (reward related
functional
connectivity)

CD 3 (determined implicitly by
the algorithm)

Subgroups characterized in terms of functional
connectivity profiles

Clinical variables and reward sensitivity

Van Hulst et al.,
2015 (67)

ADHD (96) and
TDC (121)

Neuropsychological
scores

LCCA 5 (BIC) Quick and accurate Parent ratings of behavioral problems

Poor cognitive control

Slow and variable timing

Remaining 2 groups were too small to characterize

Mostert et al.,
2015 (106)

ADHD (133) and
TDC (132)

Neuropsychological
scores

CD 3 (determined implicitly by
the algorithm)

Attention (–), inhibition (–) Clinical symptoms and case history

Reward sensitivity (1)

Working memory (–) and verbal fluency (–)

External validation is defined as a data measure used to validate the derived classes that is of a different type to the data use to derive the classes. Wherever possible, we follow the
authors’ own nomenclature for describing clusters, and a (1) or (–) indicates relative improvement or deficit in the specified variable.

ADHD, attention-deficit/hyperactivity disorder; BIC, Bayesian information criterion; CD, community detection; fMRI, functional magnetic resonance imaging; LCCA, latent class cluster
analysis; TDC, typically developing control.

B
io
lo
g
ical

P
sychiatry:

C
N
N
I

B
eyond

Lum
p
ing

and
S
p
litting

440
B
iological

P
sychiatry:

C
ognitive

N
euroscience

and
N
euro

im
aging

S
ep

tem
b
er

2016;
1:433

–447
w
w
w
.so

b
p
.o
rg
/B

P
C
N
N
I

www.sobp.org/journal


Table 4. Studies Using Clustering Methods to Stratify Autism

Study Subjects (N) Measures Algorithm No. of Clusters (Method) Cluster Descriptions External Validation

Munson et al.,
2008 (107)

ASD (245) IQ scores LCCA and
taxonometric
analysis

4 (BIC, entropy, and Lo-Mendell-Rubin test) Low IQ Symptom scores

Low verbal IQ/medium
nonverbal

Medium IQ

High IQ

Sacco et al.,
2012 (21)

ASD (245) Demographic, clinical, case history, and
physiologic (e.g., head circumference)
variables

K means 4 (Ward’s method) Immune 1 circadian and
sensory

None

Circadian and sensory

Stereotypic behaviors

Mixed

Fountain et al.,
2012 (40)

ASD (6795) Symptoms LCGA 6 (BIC) High functioning Demographic variables
and autism risk
factors

Bloomers (substantial
improvement)

Medium-high functioning

Medium functioning

Low-medium functioning

Low functioning

Georgiades
et al.,
2013 (108)

ASD (391) Symptom scores FMM 3 (AIC and BIC) Social communication (–),
repetitive behaviors (1)

Demographic and
cognitive meaures

Social communication (1),
repetitive behaviors (–)

Social communication (–),
repetitive behaviors (–)

Doshi-Velez
et al.,
2014 (109)

ASD (4927) Electronic medical records Ward’s method 4 (Ward’s method) Seizures None

Multisystem disorders

Auditory disorders and
infections

Psychiatric disorders

Not otherwise specified

Veatch et al.,
2014 (68)

ASD (1261 1 2563
for replication)

Symptoms, demographic, and somatic
variables

Ward’s method 2 [Adjusted Arabie Rand index (110) and
validation with additional clustering
algorithms]

Severe Genomic data

Less severe

External validation is defined as a data measure used to validate the derived classes that is of a different type to the data use to derive the classes. Wherever possible, we follow the
authors’ own nomenclature for describing clusters, and a (1) or (–) indicates relative improvement or deficit in the specified variable.

ASD, autism spectrum disorder; BIC, Bayesian information criterion; FMM, factor mixture modeling; LCCA, latent class cluster analysis; LCGA, latent class growth analysis.
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Table 5. Studies Employing Clustering Methods to Stratify Patients in a Cross-Diagnostic Setting

Study Subjects (N) Measures Algorithm

No. of
Clusters
(Method) Cluster Descriptions External Validation

Olinio et al.,
2010 (113)

Adolescents (1653),
including MDD (603),
ANX (253), SUD (453)

Diagnosis
(longitudinal)

LCGA 6 (BIC) Persistent depression Demographic and case
history variablesPersistent anxiety

Late onset anxiety, increasing
depression

Increasing depression

Initially high, decreasing anxiety

Absence of psychopathology

Lewdanowski et al.,
2014 (111)

SCZ (41), SAD (53),
BPDp (73)

Clinical and
cognitive
measures

K means 4 (Ward’s
method)

Neuropsychologically normal Diagnosis, demographic
variables, and
community functioning

Globally and significantly
impaired

Mixed cognitive profiles (32)

Kleinman et al.,
2015 (112)

ADHD (23), BPD (10),
BPDa (33), and HCs
(18)

Continuous
performance
test
measures

K means 2 [Silhouette
index (46)]

Sustained attention (–) , inhibitory
control (–), impulsiveness (1),
and vigilance (–)

Diagnosis

The converse of above

External validation is defined as a data measure used to validate the derived classes that is of a different type to the data use to derive the
classes. Wherever possible, we follow the authors’ own nomenclature for describing clusters and a (1) or (–) indicates relative improvement or
deficit in the specified variable.

ADHD, attention-deficit/hyperactivity disorder; ANX, anxiety disorders; BPD(p/a), bipolar disorder (with psychosis/ADHD); BIC, Bayesian
information criterion; DEP, depressive disorders (major depression and dysthymia); HC, healthy control; LCGA, latent class growth analysis; MDD,
major depressive disorder; SAD, schizoaffective disorder; SCZ, schizophrenia; SUD, substance use disorder.
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clusters but normative modeling identified distinct brain
mechanisms that give rise to symptoms. Second, it allows
both normal functioning and deviations from normal function-
ing that may underlie symptoms to be mapped in individual
subjects. Third, it permits diagnostic labels to be used as
predictor variables, enabling inferences over the labels. Finally,
it intuitively matches the clinical conception where diseases in
individual patients are recognized as deviations from normal
functioning. This approach can be used to estimate mappings
between biology and behavior across multiple cognitive
domains; therefore, it is well aligned with RDoC and ROAMER
and also compliments clustering because clustering algo-
rithms can still be applied to these mappings. On the other
hand, normative modeling requires careful data processing to
ensure that the outliers detected are not outliers from the
normative distribution due to artifacts. It is also best suited to
large normative cohorts that capture the full range of function-
ing in the reference population.
DISCUSSION

In this article, we introduced the basic concepts of data-driven
stratification of psychiatric disorders and reviewed the existing
literature. The overwhelming majority of studies have emplo-
yed clustering or FMM, aiming to subgroup clinical popula-
tions. This has been somewhat successful (Tables 1–5),
although the results are heavily dependent on the type of data
used; for most disorders, both the number and characteristics
of the derived clusters vary between studies, and a consensus
as to a consistent set of subgroups is yet to be reached. We
highlighted the importance of validation to ensure that derived
clusters map onto clinically relevant variation and outlined
various alternatives to clustering.
442 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging S
The ongoing discussion surrounding psychiatric nosology
reflects well-acknowledged difficulties in finding biolo-
gical markers that predict current disease state or future
outcomes with sufficient sensitivity and specificity to be
clinically useful (1,10). While this is an important motivation
behind RDoC and ROAMER (11,12,87), this review highlights
that neither the reclassification of psychiatric disorders nor the
emphasis on cutting across current diagnostic classifications
is a central innovative feature. A more important contribution is
a shift away from symptoms and towards conceptualizing
pathology as spanning multiple domains of functioning and
across multiple levels of analysis. In RDoC, this is represented
as a matrix with rows containing basic cognitive dimensions
(“constructs”) grouped into domains of functioning (e.g.,
positive or negative valence systems) and columns containing
units of analysis (e.g., genes, cells, or circuits) (87). Viewed in
this light, clustering of algorithms provides only a partial
answer to the challenges posed by RDoC and ROAMER
because it does do not provide an obvious means to link
constructs with units of analysis. Put simply, it is necessary to
link the rows of the RDoC matrix with its columns and chart
the variation in these mappings. This is necessary before the
clinical validity of RDoC domains can be assessed as to
whether they predict disease states more accurately than
classical diagnostic categories (38).

Surprisingly few methods have been proposed that meet
these objectives. Most that do exist aim to break the symmetry
that both the case-control paradigm and clustering
approaches entail in that all clinical groups are well-defined
entities. Normative modeling (22,85,86) is one particularly
promising approach that aims to map variation in clinically
relevant variables, so that each individual subject can be
placed within the population range and disease can be
considered as an extreme deviation from a normal pattern of
eptember 2016; 1:433–447 www.sobp.org/BPCNNI

www.sobp.org/journal


Figure 1. Schematic examples of alternative approaches to clustering and finite mixture models based on supervised learning. (A) This example shows the
benefit of correcting mislabeled training samples. A supervised classifier trained to separate experimental classes (black and red points) may be forced to use
a complex nonlinear decision boundary (blue line) to separate classes if data points are mislabeled (circled). (B) A simpler decision boundary results if the
incorrect labels are corrected, for example using a wrapper method (74). (C) In a semisupervised learning context (75), only some data points have labels
(black and red points). These can correspond to samples for which a certain diagnosis can be obtained. All other data points are unlabeled, but can still
contribute to defining the decision boundary. Hybrid methods (76–78) combine supervised classification with unsupervised clustering and use multiple linear
decision boundaries to separate the healthy class (blue points) from putative disease subgroups (colored points). See text for further details.

Biological
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functioning. This provides a workable alternative to lumping
and splitting the psychiatric phenotype and a method to chart
variability across different domains of functioning and different
units of analysis.

Our review also highlighted that few studies have used
biological measures to derive stratifications. This may be
because of difficulties that unsupervised methods have with
separating nuisance variation from clinically relevant varia-
tion, particularly in high dimensions (31). This may be
particularly problematic in genomic studies; some reports
have used genomic data as validation of the derived clusters
(60,68), but the only study we are aware of that used
genomic data to derive clusters (88) has received severe
criticism for inadequately dealing with artefactual variation.8
8For example, see the discussion at: http://www.ncbi.nlm.nih.gov/
pubmed/25219520.

Biological Psychiatry: Cognitive Neuroscience and Neuroi
One way that this problem may be addressed in the future
is by developing richer clustering models that integrate
clinical or domain knowledge in a way that guides the
clustering algorithm toward clinically relevant variation. A
simple example is the use of growth mixture models to
cluster samples on the basis of within-participant change
over time (39,40). More generally, probabilistic graphic
models (24) provide an elegant framework that allows
existing knowledge to be incorporated to help find clinically
meaningful clusters. To our knowledge, this approach has
not been used in psychiatry, but it has been useful to
stratify disease cohorts in other clinical domains (89). Other
emerging machine learning techniques that may be fruitfully
applied to stratifying psychiatric disorders include probabil-
istic methods that allow for multiple labels within individual
patients (90), clustering methods that do not uniquely assign
points to a single cluster (31), and deep learning methods
(91,92).
maging September 2016; 1:433–447 www.sobp.org/BPCNNI 443
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Figure 2. Schematic examples of alternative approaches to clustering
and finite mixture models based on unsupervised learning. (A) Manifold
learning techniques aim to find some low-dimensional manifold (right
panels) that represent the data more efficiently than the original high-
dimensional data (depicted by the cube on the right). Basic dimensionality
reduction techniques, such as principal components analysis (PCA), find a
single subspace for the data based on maximizing variance. This may not
efficiently show structure in high-dimensional data. In contrast, approaches
that preserve local distances, such as t-stochastic neighbor (t-SNE)
embedding (80), may highlight intrinsic structure more effectively. (B)
Novelty detection algorithms, such as the one-class support vector
machine (83), aim to find a decision boundary that encloses a set of healthy
subjects (blue points), allowing disease profiles to be detected as outliers
(red points). Note that this approach does not provide an estimate of the
probability density at each point.

Figure 3. (A) Normative modeling approaches (22,85,86) aim to link a set
of clinically relevant predictor variables with a set of quantitative biological
response variables while quantifying the variation across this mapping. This
is achieved by estimating a nonlinear regression model that provides
probabilistic measures of predictive confidence (blue contour lines). These
could be certainty estimates derived from a probabilistic model (22) or
classical confidence intervals (86) and can be interpreted as centiles of
variation within the cohort (blue numerals, right). Predictions for new data
points (red) can then be derived that provide measures of predictive
confidence to quantify the fit of the new data point to the normative model.
[Adapted with permission from (22).] (B) By performing this mapping across
different domains of functioning (e.g., different cognitive or clinical
domains), many types of abnormal patterns can be detected, including
classical disease clusters and also disease continua that describe pathol-
ogy in terms of a gradual progression rather than in terms of sharply defined
clusters (see Supplementary Methods for further details).

Biological
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In summary, we reviewed the literature for stratifying
psychiatric disorders and showed that the field has, to date,
relied heavily on clustering and FMM. These undoubtedly
provide an important contribution but only partially satisfy
the objectives of RDoC and ROAMER. It is also necessary to
chart variation in brain-behavior mappings to fully parse
heterogeneity across domains of functioning and diagnostic
categories. The hope is that using such mappings to derive
444 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging S
future disease stratifications will enable clinical phenotypes to
be dissected along the most relevant axes of variation,
ultimately enabling treatments to be better targeted to indi-
vidual patients.
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