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A diffeomorphic aging 
model for adult human brain 
from cross‑sectional data
Alphin J. Thottupattu1*, Jayanthi Sivaswamy1 & Venkateswaran P. Krishnan2

Normative aging trends of the brain can serve as an important reference in the assessment of 
neurological structural disorders. Such models are typically developed from longitudinal brain image 
data—follow‑up data of the same subject over different time points. In practice, obtaining such 
longitudinal data is difficult. We propose a method to develop an aging model for a given population, 
in the absence of longitudinal data, by using images from different subjects at different time points, 
the so‑called cross‑sectional data. We define an aging model as a diffeomorphic deformation on a 
structural template derived from the data and propose a method that develops topology preserving 
aging model close to natural aging. The proposed model is successfully validated on two public cross‑
sectional datasets which provide templates constructed from different sets of subjects at different age 
points.

Human brain morphometry varies with respect to age, gender, and population. Since the human brain changes 
structurally with age, understanding the normative aging process from structural and functional images has 
been of interest both in general and within a specific population. Studies aimed at arriving at such an under-
standing, either use a longitudinal or a cross-sectional  design1 for collecting images of the study cohort. The 
former is usually difficult as it is challenging to access a fixed cohort over an extended number of years and scan 
them repeatedly. A more pragmatic approach is based on a cross-sectional design where a set of individuals in 
different age range forms the cohort. This approach makes it easier to collect scans but their analysis requires 
a disentangling of the inter-subject variations from age-related changes which is not straight forward. A more 
elaborate treatment of the differences in such approaches can be found in Ref.2. Regardless of the data collection 
strategy, in computational anatomy, aging is typically modelled as a continuous deformation of a template image 
over  time3. This modelling helps to derive any age-specific template from the model, develop subject specific 
growth trajectory and derive direct interpretations from the deformation field about the aging pattern. In this 
paper, we propose a method to develop such an aging model for healthy, adult human brain using cross-sectional 
data drawn from a population.

Since aging trend varies across individuals, longitudinal data-based age modelling typically starts with follow-
up scans of a cohort. The continuous aging deformation for each individual can be accurately extracted by regres-
sion  approaches4–7 as they find the best fit model for the data. The subject-specific trajectories are then mapped 
to a common  space8–12 to define an aging model. The variability in inter-subject aging trends are also of interest 
and hence have been studied in longitudinal settings. A group-wise analysis of multiple elderly subjects in differ-
ent age groups was done to understand aging in healthy adults versus Alzheimer’s disease using follow up scans 
of subjects collected over a short time span of up to 6.9  years12. Inter-subject variations have also been studied 
by considering a tubular neighbourhood for the  deformation13. The spatio-temporal  model14 also considers 
similar variations due to diseased data points in the dataset and uses partial least squares regression to compute 
normal aging deformations; this gives modes of aging and corresponding scores for each subject. Modelling of 
early brain development from longitudinal and cross-sectional image data, have used both parametric and non-
parametric regression  approaches15–18. Given the large volume change during this stage, these models in general 
relax the volume preserving deformation/diffeomorphism criteria in the model. Changes in the human brain at 
an early developmental stage is distinct from those due to aging of the adult brain as the latter has a more com-
plex anatomy and the changes are much slower and more consistent over the entire age  range19,20. Furthermore, 
since brain development is highly influenced by nature and nurture of an individual, a mature/adult brain shows 
complex variations across anatomy and smoother variations with aging across  individuals21–23; such variations 
are termed as cross-sectional variations.
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A cross-sectional design to perform a cohort based aging study allows creation of larger data sets compared to 
that with longitudinal data. In aging studies with a cross-sectional design, the inter-subject variability within an 
age group and across age groups is disentangled to some extent by developing templates which represent subjects 
in some small age  interval24–26. Several such template data are publicly accessible even though the image-sets 
used for template generation are not publicly  available24,26,27.

An early approach to develop an aging model from cross-sectional data for the adult brain employed a 
parametric regression approach based on weighted  averaging28. More recently, a global template was created 
by co-registering given templates and a mapping between each of the given templates to this global template 
was defined as the aging  model29. There is no attempt in this work to define a relation between the age points 
which implies the derived aging model is discrete. These methods are a departure from the notion of aging as a 
continuous deformation process acting on a  template3.

We argue that an aging model developed by smoothly deforming a global template is more natural and attrac-
tive than one defined as a weighted average of image points in  neighbourhoods28 or a discrete  model29. Hence, 
given cross-sectional data in the form of templates, we explore the use of a diffeomorphic deformation of a global 
template as an aging model. The contributions of this paper are: a method to derive (i) a continuous aging model 
for a normal, adult brain from cross-sectional data covering a long age span and (ii) an aging model based on a 
diffeomorphic deformation of a global template that is more versatile than existing models.

Methods
The proposed method derives an aging model from cross-sectional data of a cohort. We aim to address the case 
where the cross-sectional data is in the form of templates for different age groups as scans of subjects in the 
cohort are usually more difficult to source. It should be pointed that for a good representation of an age point, 
the number of subject scans used to construct the template has to be high since a small number of subjects will 
result in poor  normalization30.

Rationale. Aging of a mature, human brain is characterised by a deformation trend that is slow, spatially 
smooth and monotonic since atrophy, which is the hallmark of  aging22, is reported to be slow and non-uni-
form20,23,31,32; the rate of atrophy being higher in the elderly age group compared to the younger age group. Hence, 
aging has to be modelled as a temporally non-uniform deformation. Regression approaches help to find the best 
fit model for such time series data by optimizing an initial image and path. Experiments with cross-sectional 
data have shown the regression results to be sensitive to the choice of initial  image7. In the current problem of 
interest, due to the complex inter-subject anatomy variations, a joint optimization of the anatomy and path will 
therefore, result in an initial anatomy-dependent, best fit model whereas what is desired is a representation for 
aging (in a global space). Hence, a direct regression is inappropriate for age modelling from cross-sectional data.

The proposed model defines the aging process as a continuous deformation of a global template that rep-
resents the average anatomy represented by all the templates in the cross-sectional data. The model uses age-
specific templates as the starting point and extracts the aging deformation across them. Separating non-aging 
variability from age-based change is a key challenge here. While the former has been normalized in the template 
creation process at each age point, variability will persist across age points since the set of subjects across the age 
points are likely to be mutually exclusive in a cross-sectional setting. Therefore, there is a need to isolate those 
deformations that arise due to natural aging, and importantly, discard those deformations that come from inter-
subject or non-aging variations. One key hypothesis we make is that the inter-subject variability across templates 
will cause large deformations, and the deformations due to aging are small smooth  deformations20,23,31,32. Our 
approach, therefore, identifies a median age point and uses 2-steps: computing pairwise SVFs between given 
templates which rejects large deformations due to non-aging factor, as SVF (Stationary Velocity Field) based 
registrations captures only smooth deformations. Next, performing a composition step to filter out residual 
temporally inconsistent non-aging deformations and derive a single SVF from the median point in the forward 
and backward directions. The extracted single SVF models a monotonic deformation. A component to capture 
the rate of aging is introduced in the model to represent the non-uniform nature of the natural aging process. 
The computed aging deformation is then transported to the global template space to define the final normative 
aging model. A schematic representation of the proposed aging model in shown in Fig. 1. The construction 
process is described in detail next.

Computing the global structural template (G). Given a template sequence Ti ; i = 1, 2, . . . ,N repre-
senting healthy adults in an age range, in order to capture the aging process, the age range of interest should 
ideally be sampled adequately, i.e. N should be large enough for the sequence to represent normative aging well. 
We will assume that every template Ti has been constructed over sufficient number of scans of subjects whose age 
is in the ith interval. As each of the templates can be derived from different sets of images/subjects, the template 
space defined for each set need not be the same and thus the aging path will be different for each Ti . Finding the 
common aging path from the unaligned T1,T2, . . . ,TN is the challenge here. The final aging model is therefore 
defined on a global average template G representing all the Ti s in the diffeomorphic space G . The template G 
is computed using a non-rigid group-wise registration method called  SyNG33 which iteratively minimizes the 
average distance from G to each of the Ti s in the space G . The distance incorporates both the non-aging (cross-
sectional) and aging deformations and hence G normalizes over both these deformations. Considering such a 
global average as the structural template element in the proposed model avoids biases toward any Ti . All the Ti s 
are aligned to G using an affine transformation before developing the model. This simplifies the model as an 
affine alignment can be done accurately from one template to another template.
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Computing the aging deformation. The proposed model does not follow an optimization strategy to 
find the aging process in global space. It utilises the properties of the aging process in an adult brain, as dis-
cussed earlier. Aging deformation across the nearby time/age points is expected to be smooth and small as aging 
is a slow process. We choose SVF based registration because they are known to extract smoother and smaller 
deformations compared to Large deformation diffeomorphic metric mapping (LDDMM)34 or Free Form Defor-
mation (FFD)35 registration models. In SVF based registration methods, the deformation φ across images is 
modelled by an SVF v, where the group exponential map of v gives φ , i.e., φ = exp(v).

We define G to be the global average representation of all Ti s. Since a pairwise mapping between G and a 
template Ti captures both aging and non-aging deformations it cannot be used directly to extract the aging 
deformation from the Ti s. We therefore find a template among Ti s that is closest (i.e. smallest deformation) to G 
and use that as a reference to compute the aging deformation. This reference is denoted as TM . If {vi} are the SVFs 
that map each Ti to G then the reference template TM is found using the norm of the SVF as the norm is a measure 
of the distance between the templates. If A is a vector field and ai,j is an element vector then the norm of A denoted 
as �A� =

√

∑

i

∑

j |ai,j|
2 . The desired TM is the template corresponding to the smallest norm ‖vi‖ . In other words,

Extracting deformations which are consistent over the entire age range from the smooth pairwise deformations. In 
the proposed model, the aging deformation is considered as a consistent temporal relationship across Ti s for all 
i, with TM being considered as the reference template. This temporally consistent aging deformation is derived 
from the deformations between consecutive template pairs in the forward (f) and backward (b) directions which 
are defined with respect to TM . The SVF between the first pair of templates in the forward direction, namely, 
(TM ,TM+1) is denoted as v1f  and the SVf between the next pair (TM+1,TM+2) is denoted as v2f  and so on. To 
generalise, vjf  represents the forward deformations between (TM+(j−1),TM+j) for all j = 1, 2, . . . , (N −M) and 
vjb represents the backward deformations between (TM−(j−1),TM−j) for all j = 1, 2, . . . , (M − 1) . These SVFs 
reject all large non-aging variations across age points.

Any smooth non-aging deformations that remains in the above step is generally random across pairs. They can 
be rejected and temporally consistent aging deformation across templates retained by composing the forward/
backward pairwise deformations.

Specifically, we compose the deformations sequentially using the Baker–Campbell–Hausdorff (BCH) 
 formulation36 given in Eq. (3) below. Since the BCH formula in Eq. (3) involves the sum of vector fields and its 
Lie derivatives, the composition has an averaging effect serving to smooth out the random deformations. This 
allows compositions of group exponentials to be expressed as a single SVF, which models a consistent behaviour 
across the entire age range in spatial neighbourhoods. Let the velocity vector field obtained as a result of repeated 
application of BCH formula on the forward (backward) deformations be denoted as vjf ( vjb ). The vector field 
vjf ∀j = 1, 2...(N −M) defines the single SVF parameterization of the forward deformation from TM to T(M+jf ) 
and vjb∀j = 1, 2...(M − 1) defines the same for the backward deformation from TM to T(M−jb) . These velocity 
fields are computed from Eq. (2) with an initialization of v1f = v1f  and v1b = v1b.

(1)TM = Ti where i is such that �vi� = min {�vk�, 1 ≤ k ≤ N}.

(2)
vjf = BCH ( BCH (· · · ( BCH (v1f , v2f ), v3f ), ...), vjf ), for j = 2...(N −M),

vjb = BCH ( BCH (· · · ( BCH (v1b , v2b ), v3b ), ...), vjb ), for j = 2...(M − 1).

Figure 1.  A schematic representation of the aging model. Included is an illustration of how the model maps a 
subject scan at age = 61 years to the global space.
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The BCH formula for a pair of forward deformations is given in Eq. (3). Backward deformations can be 
computed in a similar manner.

Here, [·, ·] denotes the Lie bracket of two vector fields.
It should be noted that since the BCH approximation is valid only for small deformations, in practice, vjf  is 

divided into n smaller deformations such that 
vjf
n < 0.5× voxel dimension, and these smaller deformations are 

composed iteratively with v(jf−1) to compute vjf . In the proposed method, the extracted deformation is con-
strained to be spatially smooth due to the log-Euclidean framework and temporally smooth since the composing 
step captures only the temporally consistent trends from the sequential data. For simplicity, the forward aging 
deformation from TM to TN , φf = exp(v(N−M)t) is denoted as exp(vf t) and the backward aging deformation from 
TM to T1 , φb = exp(v(M−1)t) is denoted as exp(vbt).

Imposing non‑uniform temporal variations on aging deformation. The computed initial-value based aging 
deformations φf  and φb vary uniformly with time which is not consistent with the natural aging trends. For 
example, tissue degradation is rapid in the elderly age  range23. Hence, a temporal dependency is introduced in φf  
and φb to accommodate any non-uniform changes in natural aging. This step is explained next.

We propose a quantification for the aging deformation (denoted as R) at each time point in Eq. (4). This is 
defined in terms of the distance between Ti and TM as in Eq. (4). A norm helps to quantify the magnitude of the 
given vector field. Hence, ‖vi‖ helps to quantify the aging deformation modelled by an SVF vi . With this, let us 
define

R is a discrete sequence, whereas a continuous aging trend is of interest. This can be achieved by fitting a curve 
(such as a cubic spline) to R(i). The resulting function γ (t) ; t = [t1, tN ] , quantifies the aging deformation at a 
particular time point with respect to TM . As this deformation increases in both directions with time, the curve 
will, in general, have a bilateral increasing trend about the age point corresponding to TM . The aging deforma-
tion computation is illustrated in Fig. 2.

Transferring the deformations to the global template space. Finally, the deformations captured 
using Eq. (3) are mapped to the global template space using the mapping from TM to G, i.e., exp(vM) . The cap-
tured deformations on the manifold G are parameterized by SVF. In order to transfer the aging deformations to 
the global template space we use an existing  algorithm37 for parallel transport which is explained next.

Let the global template space images corresponding to Ti s be Gi s. The deformations to be transported are 
parameterized by SVFs vf  and vb . A schematic of the deformation mapping scheme is shown in Fig. 3. In 
Fig. 3, G′

1 = G ◦ exp(−�(vb)) and G′
N = G ◦ exp(−�(vf )) . Thus, the inverse of the mappings from G to G′

1 
and G′

N i.e., exp(�(vb)) and (exp(�(vf )) gives φb and φf  respectively. Here ρb = exp
(

vM
2

)

◦ exp(−vb) and 
exp(�(vb)) = exp

(

vM
2

)

◦ ρ−1
b  . Therefore,

and similarly,

(3)

BCH (v(j−1)f , vjf ) = log(exp(v(j−1)f ) exp(vjf ))

=v(j−1)f + v(jf ) +
1

2
([v(j−1)f , v(jf )])

+
1

12
([v(j−1)f , [v(j−1)f , v(jf )]] + [vjf , [v(jf ), v(j−1)f ]])+ · · · = vjf .

(4)R(jf ) =

∥

∥vjf
∥

∥

�vf�
for j = 1...(N −M), R(jb) =

∥

∥vjb
∥

∥

�vb�
for j = 1...(M − 1).

(5)exp(�(vb)) = exp
(vM

2

)

◦ exp(vb) exp

(

−vM

2

)

,

Figure 2.  Illustration of the proposed aging deformation computation.
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The aging model. The proposed aging model has three components: G, γ (t) and the SVF parameterization 
of the transported forward and backward deformations �(vf ),�(vb) respectively. An age-specific template at 
any time point t can be computed using the following formula:

The aging model implementation is publicly available at http:// doi. org/ 10. 17632/ nw983 x225c.1.

Results
Several experiments were conducted to assess/validate the proposed aging model. All experiments, barring the 
one with simulated data, were done on 3D data though only 2D central slices from the results are shown for visual 
comparison. The proposed aging model is affine invariant, and, therefore, results were also aligned using affine 
transformation prior to comparison. The proposed method to create an aging model was implemented using two 
cross-sectional template datasets covering a wide age range: (i) Brain Imaging of Normal Subjects (BRAINS)27 
with 7 templates of subjects aged 25–93 years and (ii) Neurodevelopmental MRI Database (Neurodev)24 with 
14 templates of subjects aged 20–89 years. T1 scans were used in both datasets. More information regarding 
the subject scans can be found in Refs.24,27. The dataset provides information on the age interval and number of 
scans of subjects were used to create each template. In BRAINS, the sampling of the age range is not uniform, 
particularly at the upper age level, and the number of scans used for template data creation is less relative to 
Neurodev. The spacing between template data is shorter (5 years) and uniform in Neurodev.

Aging model. Recall that the proposed aging model has two elements, namely, the structural template G and 
the aging deformation. The aging deformation has three components: the forward aging deformation φf  param-

(6)exp(�(vf )) = exp
(vM

2

)

◦ exp(vf ) exp

(

−vM

2

)

.

(7)T(t) =

{

G ◦ exp(�(vf )γ (t)) for t ≥ tM ,
G ◦ exp(�(vb)γ (t)) for t ≤ tM .

Figure 3.  TM is mapped to G using exp(vM) and the path is used to transport exp(vf ) and exp(vb) to the global 
template space.

http://doi.org/10.17632/nw983x225c.1
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eterized by vf , φb parameterized by vb and the γ function. The proposed model developed with Neurodev and 
BRAINS datasets are shown in Fig. 4. Understanding aging trend from γ (t) plot is not feasible as it represents 
the degree of deformation with respect to G, rather than any of the endpoint templates. It however does indicate 
the age point that corresponds to the reference template TM ; which is 57 years for Neurodev and 77 years for 
BRAINS.

Representation quality analysis. Age-specific templates were generated with the proposed aging model 
using Eq. (7), and were used for visual comparison to assess the quality of representation. Comparisons are done 
with natural aging trends, existing spatio-temporal atlas and the supplied templates used for model creation.

Compatibility with natural aging. Templates at increasing age points were generated with the proposed aging 
model to study the structural change with aging. The BRAINS  dataset27 was chosen to do this experiment as it 
covers a longer span at the elderly age end since the human brain aging  literature23,31,32 indicates that a mature 
brain undergoes minimal cognitive and structural changes up to the age of ≈ 50 and more for the elderly, i.e. 
≈ 60+ . This trend was verified by computing the intensity difference between the current template and the 
first (at age 30) template. This difference essentially is due to age-induced structural change. Figure 5 shows the 
generated sequential templates (first row) and difference between the sequential templates and the first template 
(second row). The difference images facilitate understanding the structural changes with aging. The difference 
appears to be very low for the first few decades relative to the last few decades where changes like ventricular 
expansion occurs. This trend is consistent with the existing information about natural healthy aging.

Growth trend across aging models. Huizinga et al.  in14 proposed a cross-sectional spatio-temporal reference 
model for representing aging. This model does not ensure a diffeomorphic aging deformation and the template 
space representation of a subject image needs a computationally intensive group-wise registration with a train-
ing set to generate the model. In contrast, our model requires only one pairwise registration from a subject to 
the corresponding age-specific template, derived from the model. The aging trends observed in the templates 
derived from our model were compared with those derived  using14; the latter templates are available in http:// 
www. aging brain. nl/ for the age range of 45–92 years. Templates at the same age points were generated with the 
proposed method using the Neurodev dataset. Figure 6, shows sample 2D slices of templates from Ref.14 in odd 

Figure 4.  The aging model computed with Neurodev and BRAINS datasets. Sample forward and backward 
deformations are shown along with the function γ.

Figure 5.  The proposed aging model at different time points(first row) along with the difference image with 
respect to the initial time point (second row).

http://www.agingbrain.nl/
http://www.agingbrain.nl/
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numbered rows, along with the ones derived with the proposed model (from the Neurodev dataset) in even 
numbered rows, for comparison. The comparison at image-level comparison is not meaningful as the templates 
are generated from different data-sets. However, one can observe growth trends. The structural similarity across 
rows in a column appear to have similar trends across age indicating growth trend to be consistent.

Aging model assessment. The generated templates with our model were visually compared with the templates 
given in the Neurodev dataset to understand how well the model represented these templates. The templates for 
the first and last time points in our aging model have undergone maximum deformation compared to those at 
other age points. Hence, such a visual comparison is of interest. The given templates along with our generated 
templates are shown in Fig. 7. The first and last time points for Neurodev are shown as the first image in each 
pair, while the corresponding templates generated by the proposed model are shown as the second image in each 
pair. The derived templates are seen to be visually quite similar to the templates from the two datasets. This simi-
larity was also quantitatively studied using the structural similarity index (SSIM) and mean square error (MSE). 
These are reported in Fig. 7B. The high SSIM and low MSE between the templates derived with the proposed 
model and the given templates show the goodness of fit of the proposed model.

We also assessed the proposed model’s ability to generalise via interpolation/extrapolation experiments. A 
baseline model was developed with all data (14 templates with sampling interval = 5 years) in Neurodev and 
compared with the models developed with fewer templates and age range. Two aging models were constructed 
with 7 templates by skipping alternate templates (sampling interval = 10 years). There are two options to select 7 
points from the 14 points in the set, either by skipping odd index points (27,37, ..., 87 years) or by skipping even 
index points (22, 32, ..., 82 years). In each case, one extreme point (22/87 years) is missed and the range of data 
is changed. From the SSIM and MSE plots in Fig. 7C, it can be noted that under-sampling and missing data in 
critical age points leads to a degradation in the performance of the aging model though this is moderate (less 
than 8 % for SSIM and a maximum MSE of 0.002). The extrapolation capability of the proposed model was also 
studied by constructing an aging model using templates (sampling interval = 5 years) with a reduced age range, 
namely 32 to 77 years. This model, therefore, has missing information at both young (22, 27 years) and elderly age 
(82, 87 years). The SSIM plot shows a dip at the younger and older age points where data is being extrapolated. 
The error however remains moderately low (less than 9% for SSIM and maximum MSE of 0.0016). In summary, 
reducing the sampling rate generally leads to a moderate degradation in the overall performance relative to the 
baseline. Missing data at older age points leads to larger degradation at the elderly age points relative to missing 
data at a younger age.

Figure 6.  Correctness of aging trends captured in the model: Publicly available spatio-temporal  images14 (row 
1, 3, 5) compared with images generated at same time points with proposed aging model using Neurodev data at 
different time points (row 2, 4, 6) Each highlighted row pairs compare same slices as specified in the figure.
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Aging model validation. Model validation was done by analysing the ability of the model to capture natu-
ral deformations and the similarity of model-generated age-specific templates to a set of subject images of the 
same age. Since our model was derived for a cross-sectional setting, we also studied its performance in a longi-
tudinal data setting as it is of interest.

Topology preservation. Since diffeomorphic deformations best fit natural deformations, we considered aging 
related deformation also as a diffeomorphism. Accordingly, our model is defined on a manifold G of diffeomor-
phisms. It is of interest to verify if an extrapolation of the model generates deformations in G itself. This was done 
by extrapolating the aging trend and deriving templates in both younger and older ages. Neurodev data which 
covers that age range of 22–87 (reference template age point, M=77 years) was used for this experiment. The 
templates from extrapolation in both directions were generated for this experiment with Eq. (7). Two templates, 
namely at age 20 and age 100, generated with the proposed model are shown in Fig. 8 along with the global tem-
plate. These are the results of extrapolation from the data given in the BRAINS  dataset27. The topology appears 
to be preserved even when the aging model is extrapolated in both directions implying that the extrapolated 

Figure 7.  (A) Qualitative assessment of templates (first image in each pair) given in the Neurodev dataset 
against those generated by the proposed aging model (second image in each pair). Only the templates for the 
first and last time points are shown. (B) Quantitative assessment with SSIM (top) and MSE (bottom) values 
between given templates and generated templates. (C) Interpolation (left) and extrapolation (right) assessment 
with SSIM (top) and MSE (bottom).
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deformations also belong to G . It can also been that while global similarity (in structure) exists across age, local 
deformations persist. For instance, the ventricle is much smaller at age 20 and enlarges with age, consistent with 
the expected aging trend. The Jacobians of the forward and backward deformations were verified to be positive 
valued.

Validation with segmentation. A localised assessment by segmenting a few structures is of interest in many 
situations. This is generally done using a label transfer process wherein a subject image is aligned to a labeled 
template and the label is transferred. An alignment process that requires smaller deformations indicates that 
the template is structurally very close to the subject image. This will lead to better segmentation. With our age 
model, this involves only a single registration step as shown in Fig. 1 and hence potentially involves the least 
deformation. This is in contrast to the steps required when using the model proposed in Ref.29 which requires 
two registration steps: one to transfer the labels from the global template to the template data that is closest to 
the given subject age, and a second to transfer the template labels to the subject image. Each of these registration 
steps can contribute to error in labeling in addition to the structural dissimilarity of template and subject image. 
An experiment was done to quantitatively compare the accuracy of labeling using the proposed method and 
with Ref.29. From MICCAI 2012 dataset, Ref.38 35 subject images in 18-90 age range along with the ground truth 
labels were used to perform the comparison. The templates corresponding to the subject ages outside the range 
(22–87) years, were constructed by extrapolating the proposed aging model. The accuracy of label transfer from 
a template is highly influenced by the registration method and the global template labels being used. For a fair 
comparison, both models were developed with  Neurodev24 templates and the labeled G was taken to be identical. 
Both methods used DRAMMS-based  registrations39 with identical parameters for label transfer steps. The Dice 
score was used for assessing the segmentation accuracy.

Figure 9 shows the Dice scores and volume comparison for cerebral white matter and 11 combined pairs of 
brain structures for our model and Ref.29. The global template G was labelled using the Harvard–Oxford  atlas40 
and then transferred to the templates derived with the proposed method and Zhang et al.29 as the starting point. 
It should be noted that in Ref.29, a direct manual labelling of G was used. Results of direct label transfer from the 
Harvard–Oxford atlas and G are also included to serve as baseline. The difference in segmentation performance 
between Zhang et al.29, labels transferred from atlas method and the proposed method are not statistically sig-
nificant for almost all structures.

Figure 8.  The central coronal slices of extrapolated age-templates are shown along with the global template 
image.

Figure 9.  Segmentation performance comparison of the proposed method with Zhang et al.29. Baselines 
considered for this experiment are segmentation results via direct transfer from G and direct transfer from 
Harvard–Oxford  atlas40 to the subject images. The average Dice (first row) and volume (second row) are plotted 
for 12 structure pairs.
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This experiment was repeated by replacing the Harvard–Oxford  atlas40 with IBA100  atlas41 for both 
 Neurodev24 and  BRAINS27 datasets. The Dice scores are computed with respect to the ground truth available in 
IBA100  atlas41 for 14 sub-cortical structures and reported in Fig. 10, where the difference in Dice values is sta-
tistically significant for all structures except L-Amygdala. The proposed method’s segmentation performance is 
superior on both datasets for most of the structures. A performance reduction is observed for both the methods 
with the BRAINS dataset compared to Neurodev. This can be due to the fact that Neurodev is densely sampled 
compared to BRAINS. For Zhang et al.29, the average performance reduction with BRAINS is almost twice that 
of the proposed method. This indicates the superior robustness of the proposed aging model to changes in the 
sampling of the age range.

Validation with simulated longitudinal data. The proposed method was aimed at handling cross-sectional data. 
In order to understand how the model would handle longitudinal data, an experiment was done using simula-
tions as longitudinal data is unavailable. The Shepp–Logan phantom was used for this purpose and the deformed 
phantoms were generated as follows. A few locations on the image were chosen and each selected point and its 
neighborhood were displaced in X and Y directions; the displacement value was sampled from a Gaussian dis-
tribution. The degree of deformation is controlled by the parameters of the Gaussian. A set (S) of fifty randomly 
deformed phantoms were taken (to simulate a cohort) and five copies were made. Deformations with increasing 
degree was applied on these five copies to simulate aging of different subjects. The five sets thus form our longi-
tudinal data. For each of the five sets a template was computed separately using the method suggested in Ref.42. 
The templates were then used as inputs for the proposed model to generate templates at different age points. 
These were then compared against the deformed versions of the Shepp-Logan phantom (proxy ground truth).

Sample images generated by applying the simulated deformations on the Shepp–Logan phantom are shown 
in the first row of Fig. 11. This forms the ground truth. The template images derived with the proposed model 
are shown in the second row. The images in the two rows appear to be very similar to each other at the same 
time points. The template images generated with the proposed model and corresponding γ curve is also shown 
in the same figure. The degree of deformation in the simulated deformation is uniformly increasing with time 
and hence it can be expected that the γ curve will be symmetric with respect to mid-time point. We see that, in 
Fig. 11, this is indeed true. The proposed model captures the applied deformation without much errors from 
the simulated longitudinal data. A slight increase in image-level errors is observed with respect to the given 
data towards the end time points in the model-generated images, which could be due to truncation in Eq. (3).

Discussion
Cross-sectional images at different age points are easier to acquire than that of the same subject. This motivated 
us to develop a method to generate a normative aging model for adults using cross-sectional data. The aging 
model is based on continuous deformation applied to a global average template. Since aging has been shown 
to result in smooth  deformations20,23,31,32 the proposed method uses SVF parametrization for pairwise registra-
tion between Ti s since SVF is limited to capturing only smooth deformations. The composition step extracts 
the consistent trends from the pairwise SVFs and hence, helps to filter out any smooth, non-aging deformation 
captured in the pairwise registration step. Thus, the chance of error accumulation from non-aging deformation 
with the proposed model is quite low. Opting for a two-piece, (forward and backward deformation) strategy 
also aids in reducing the modelling error and chance of error accumulation. Experimental results show that 
our aging model can be used to generate templates at any time point Ti s in a manner that is consistent with the 
natural aging trend observed by other studies.

The proposed aging model has a few limitations. Since it was developed for modelling normative aging in 
the adult brain, modelling cross-sectional data with underlying large or non-monotonically behaving deforma-
tions is not possible and will require a redesign of the deformation calculation step. Since the proposed model 

Figure 10.  A comparison between performance of the proposed method and Zhang et al.29 with  Neurodev24 
and  BRAINS27 datasets. Dice scores are plotted for various structures.
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is data-dependent, the number of scans in each age interval needs to be large enough to generate representative 
templates. Though the definition of ‘large’ remains open, current studies have typically used 20 or more scans at 
every interval. Further, while the model reduces the effect of cross-sectional data induced variations in the aging 
deformation, there is no formal proof as yet that it completely removes the cross-sectional variation. It should 
also added that the proposed model models only the structural variation with aging whereas cortical thickness, 
signal intensity  variation43 etc. have also been used to analyse aging process. Finally, the proposed aging model 
defines a single average growth path and does not attempt to model the cross-sectional aging variations.

A future refinement of the proposed model can be to attempt modelling aging as a distribution of paths about 
an average path. This would however require the availability of scans and not templates at different age points. 
Our current work is directed at developing a public database for this purpose with subject scans at different age 
points.

The spatio-temporal smoothness and consistency assured in the proposed model make it closer to natural 
aging. Consequently, the model has the potential to be used for clinical purposes. Currently, population specific 
aging trends are of interest and this can be generated with the proposed model with minimum effort. The code to 
generate proposed the aging model has been made publicly available at http:// dx. doi. org/ 10. 17632/ nw983 x225c.1.
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