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INTRODUCTION 
 

Glioblastoma multiforme (GBM) is the most malignant 

neuroepithelial primary brain tumor [1]. For GBM 

patients, its mean survival time is 15 months after 

diagnosis [2]. HMG-box (high mobility group  

box) domains are associated with the HMG-box 

proteins which influence DNA-dependent processes 

(transcription, replication, and DNA repair) and require 

changing the conformation of chromatin [3].  

 

The HMG-box gene family is a family of TF-encoding 

genes which include a DNA-binding homeobox domain 

[4], such as HOX, FOX, SOX, HMG, and TOX genes. 

There were many studies on HMG-box genes in 

gliomas. HOX gene family was highly expressed in 

GBM cancer stem cells compared with parental lines, 

and HOX-PBX inhibition was a potential therapeutic 

target for GBM patients [5], and HOXD10 was targeted  

 

by hsa-miRNA-23a to inhibit glioma cell invasion [6]. 

Sex-determining region Y (SRY)-related high mobility 

group box of genes was abbreviated as SOX genes [7]. 

Using human glioma-initiating cell (GIC) lines (GIC1 

and GIC2) created from anaplastic oligodendroglioma 

(AO) and GBM, both GIC1 and GIC2 expressed SOX2 

and SOX3, and neither GIC line expressed SOX1 [8]. 

The gliogenesis of GBM was dependent on SoxD 

(SOX5, SOX6 and SOX7) and SoxE (SOX8, SOX9 and 

SOX10) [9]. SOX6 was specifically expressed by IgGs 

in GBM [10]. The moderate expression of SOX10 and 

SOX11 was linked to glioma, whereas the over-

expression of them were associated with GBM [11]. 

SOX9 expression is connected to a poor prognosis of 

GBM patients and with resistance to temozolomide 

[12]. SOX2 / SOX21 axis could function as a tumor 

suppressor during glioma genesis [13]. However, SRY, 

SOX12, SOX15, SOX18, and SOX30 have not been 

reported to be associated with GBM. FOXM1 
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Glioblastoma multiforme (GBM) is the most malignant neuroepithelial primary brain tumor and its mean 
survival time is 15 months after diagnosis. This study undertook to investigate the genome-wide and 
transcriptome-wide analyses of human high mobility group box (HMG-box) TF (transcript factor) families / HOX, 
TOX, FOX, HMG and SOX gene families, and their relationships to GBM. According to the TCGA-GBM profile 
analysis, differentially expressed HOX, FOX, HMG and SOX gene families (62 DEmRNA) were found in this study. 
We also analyzed DEmRNA (HMG-box related genes) co-expressed eight DElncRNA in GBM, and constructed a 
ceRNA network analysis as well. We constructed 50 DElncRNA-DEmiRNA-DEmRNA (HMG-box related genes) 
pairs between GBM and normal tissues. Then, risk genes SOX6 and SOX21 expression were correlated with 
immune infiltration levels in GBM. SOX6 also had a strong association with MAPT, GSK3B, FYN and DPYSL4, 
suggesting that they might be functional members in GBM. 
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overexpression promoted clonogenic growth of GBM 

cells. FOXG1 and SOX2 via transcriptional control of 

core cell cycle and epigenetic regulators to fuel 

unconstrained self-renewal in GBM stem cells [14]. 

SOX9 and FOXG1 co-regulated a subset of EGFR [15]. 

Hsa-miR-338-5p also played a tumor suppressor role in 

glioma by binding FOXD1 [16].  

 

Non-coding RNA plays an important role in post-

transcriptional control of many animals [17, 18]. 

Numerous miRNAs could also bind and regulate SOX 

genes in GBM. SOX5 was over-expressed in GBM 

tissues, SNHG12-miR-195-SOX5 feedback loop could 

regulate the glioma cells’ malignant progression [19]. 

MiR-143, miR-253, miR-452 and miR-145 could down-

regulate SOX2 in GBM, whereas miR-145 worked as a 

tumor-suppressive RNA by targeting SOX9 in human 

glioma cells [20]. SOX7 inhibited GBM tissue and was 

regulated by several miRNAs, such as miR-595 [21], 

miR-24 [22], miR-128 [23] and miR-616 [24].  

 

However, transcriptomic- and genomic- wide 

systematic studies of HMG-box families in GBM is 

lacking. In order to better solve this problem, integrated 

analysis of HMG-box related gene family in GBM 

based on data gathered from GEO and TCGA database. 

We expected to find the DE-HMG-box and related non-

coding RNA in GBM, and discovered the potential drug 

or disease target for GBM. Our findings provided new 

insights into the molecular role and phylogeny of the 

HMG-box families in GBM. 

 

RESULTS 
 

Transcriptomic identification of DEGs between 

GBM and normal tissues 
 

By obtaining data from TCGA database, we re-analyze 

the transcriptomic profiles of TCGA-GBM dataset, and 

174 samples (169 GBM tissues and 5 normal tissues) 

were chosen to obtain DEmRNA (differentially 

expressed mRNA) and DElncRNA (differentially 

expressed lncRNA).  GBM miRNAs expressed profiles 

were downloads from GEO database (GSE90603). 

There were 123 HMG-box genes that exist in TCGA-

GBM. Through the analysis of the TCGA datasets, it 

was found that partial SOX, FOX, HOX, TOX and 

HMG gene families (a total of 62 genes) were 

significantly differentially expressed (|logFC| > 1 and q-

value < 0.05) in our study, relative expression heatmap 

visualization was drawn in Supplementary Figure 1. 

Starting from the left, the first 5 datasets were normal 

tissues, and the remaining 169 were GBM tissues. 

Differentially expressed HMG-box genes were 

displayed via volcano plot (Figure 1). Only five HMG-

box DEGs (FOXP1, FOXO4, SOX7, FOXP2 and 

 

 
 

Figure 1. Differentially expressed HMG-box genes were displayed via volcano chart. 
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TOX2) were downregulated between GBM and normal 

tissues, the others were up-regulated. 

 

To further explore the function of isolated DE-HMG-

box related genes, these 62 DEmRNAs were entered 

into clusterProfiler for GO enrichment. PPI network and 

Reactome and KEGG pathway enrichment analyses 

were built by STRING database and also presents the 

most significant enriched pathways of DE-HMG-box 

related genes in GBM (Figure 2A). Moreover, HMGA2, 

HOX9-11 were enriched in “Transcriptional mis-

regulation in cancer” in the KEGG pathway. From 

Reactome pathway results, we found these genes 

enriched in six pathways, such as HOXA1-4, HOXB2-

4, HOXC4, SOX2, and FOXD3 were enriched in 

“developmental biology”, HMGB1-2 were enriched in 

“Activation of DNA fragmentation factor” (Figure 2A). 

The top ten GO enrichment analysis results (q-value < 

0.05) were shown in Figure 2B, the most significantly 

enriched in “GO:0009952: anterior/posterior pattern 

specification” (Figure 2B). 

 

Identification of HMG-box DEGs co-expressed 

lncRNAs 
 

According to the median risk score, GBM patients in 

TCGA were divided into high- and low-risk groups. We 

performed principle component analysis (PCA) graphs 

on the HMG-box related DEmRNA, co-expressed 

DElncRNA and risk DElncRNA (Figure 3A–3C), green 

dots present low risk, and red dots present high risk in 

GBM patients. The eight HMG-box related lncRNAs 

heatmap employed in constructing the risk scoring 

model and survival information were shown in

 

 
 

Figure 2. Functional enrichment analysis of differentially expressed HMG-box related genes. (A) Integrative analysis of PPI 
network and pathway enrichment analysis (KEGG and Reactome). (B) The top ten of GO enrichment analysis. 
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Figure 3D, 3E. The hazard ratio of eight risk lncRNAs 

is shown in the forest plot (Figure 3F). Of these eight 

lncRNAs, six were detected as high risk (BNC2-AS1, 

AC018450.1, MIR222HG, AC005005.3, AC025171.1, 

AGAP2-AS1, coefficient > 0), while two were 

supportive (SOX21-AS1, ZEB1-AS1, coefficient < 0). 

We also found that the overall survival time of patients 

in the high-risk group was lower than that in the low-

risk group (p-value <1.604e-08, Figure 3G). 

 

A total of 147 DElncRNA (q-value < 0.05) were gained 

as well, of which 44 DElncRNA were up-regulated and 

103 DElncRNA down-regulated. The association 

networks that included the DE-HMG-box gene families 

and their related co-expressed DElncRNA were 

constructed (Figure 4). The resulting lncRNA-mRNA 

association network had 68 interfaces between 38 

lncRNAs and 27 mRNAs. The network showed that 

SOX6 was proposed to be the target of nine lncRNAs, 

FOXO4 was targeted by seven lncRNAs, and three 

mRNAs (HOXD4, SOX11, and SOX6) targeted 

AP002360.3. 

 

CeRNA network construction 

 

We collected TCGA-GBM profiles (lncRNAs and 

mRNAs) and GEO data GSE90603 (miRNAs) in GBM 

through computational analysis to estimate potential 

relationships based on the ceRNA hypothesis to further 

understand their function. We found that 401

 

 
 

Figure 3. The analyses of HMG-box related DEmRNAs co-expressed lncRNA. Principle component analysis (PCA) of HMG-box 
related DEmRNAs was shown in (A), PCA analysis for co-expressed lncRNA in (B); PCA analysis for risk lncRNA was shown in (C). (D) Heatmap 
of risk lncRNA among high and low risk groups. (E) The distribution of co-expressed lncRNA survival status and survival time in model group. 
(F) Forest plot drawing for the independent prognostic value of risk lncRNAs extracted from univariate Cox regression analysis. (G) The 
survival curves of GBM patients in model group. 
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DEmiRNA (differentially expressed miRNA) is 

between seven normal tissues and sixteen GBM tissues 

(282 down-regulated and 119 up-regulated DEmiRNA). 

Using miRCode through miRNA response elements, 

eleven specific DEmiRNAs (three down-regulation and 

eight up-regulation) were detected to bind with sixteen 

DElncRNAs (fifteen down-regulation and one up-

regulation).  
 

In order to improve the prediction accuracy, 

TargetScan, SeedVicious and miRanda databases were 

combined to predict nine candidate DEmRNA targets 

for DEmiRNA. Cytoscape software was used to 

visualize a ceRNA network comprising sixteen 

lncRNAs, eleven miRNAs, and nine mRNAs based on 

the interactions between lncRNAs, miRNAs, and 

mRNAs (Figure 5). 
 

Risk score performance, comparison and 

combination of gene-signature 
 

To confirm the performance of the risk score in 

determining the survival rate of GBM patients, we used 

a model based on the prognostic dual genes (SOX6 and 

SOX21) signature to score the risk for each GBM 

patient. Risk genes (SOX6 and SOX21) expression 

levels were positively correlated with the infiltration 

levels of dendritic cells (p-value = 7.524E-08) and 

macrophages (p-value = 0.012) (Figure 6A). ROC curve 

analysis of five-year survival rate was used to evaluate 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The network of lncRNA and HMG-box related 
genes co-expression. The triangles indicate lncRNAs, and 
circles mean mRNAs. The color green means down-regulated 
genes, and red means up-regulated genes.  

the projection potential of two HMG-box-related genes. 

The area under the curve (AUC) of the prognostic 

model based on the properties of the two genes had a 

total survival time of 0.625 at 60 months (Figure 6B). 

Patients were categorized as high risk (n = 76) or low 

risk (n = 76), with the median risk being used as the 

cutoff value for survival analysis. Kaplan-Meier 

analysis showed that the overall survival curves of the 

two groups were significantly different (p-value = 

1.478e-03, Figure 6C). Each patient's risk score (Figure 

6D), survival status (Figure 6E), and spread of gene 

expression levels of both genes (Figure 6F) were also 

analyzed. In order to evaluate the performance of HMG-

related genes as markers, we obtained two gene markers 

(SOX21, HR: 0.970 (95% CI: 0.942–0.999)); SOX6, 

HR: 0.906 (95%) to predict the prognosis of GBM 

patients through forest distribution maps. CI: 0.827-

0.993)) (Figure 6G). Given the increasing association 

between immunological feature and prognosis in GBM 

cancer, we further explored the correlation between 

SOX6 and SOX21 in GBM. We explored whether 

SOX6 and SOX21 expression were correlated with 

immune infiltration levels in GBM. We measured the 

correlations of SOX6 and SOX21 expression with 

immune infiltration levels in GBM from TIMER. SOX6 

expression level has significant positive correlations 

with infiltrating levels of purity, and significant 

negative correlation with dendritic cells in GBM, 

whereas the SOX21 expression level has significant 

negative correlation with neutrophil in GBM (Figure 

6H). Subsequently, we further investigated the 

correlation between SOX6 and SOX21 gene expression 

in GBM patients, and the results showed that there was 

a significant positive correlation between SOX6 and 

SOX21 expression (Figure 6I). Regarding prognosis, 

Kaplan-Meier curves illustrated that GBM with SOX6-

high had a worse prognosis than that with SOX6-low (p 

= 0.023), and with SOX21-high had a worse prognosis 

than that with SOX21-low (p = 6.17E-06) (Figure 6J). 

We also combined the clinical information to visualize 

the expression profiles of SOX6 and SOX21 and found 

that there is a significant difference in SOX6 only in 

terms of age composition (Figure 6K). These findings 

strongly implied that SOX6 might play a specific role in 

immune infiltration in different subtypes of GBM. 

 

Data from the Human Protein Atlas database showed 

that immunohistochemistry staining of SOX6 protein 

was higher in GBM cancer tissue compared with normal 

tissue (Figure 7). 

 

Systematic analysis of SOX gene family and the 

importance of SOX6 in GBM 
 

As a result, a total of 81 SOX members were identified 

in our study and divided into nine groups. Generally, 
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the SoxA group contains SRY, SoxB1 has three 

members (SOX1, SOX2, SOX3), SoxB2 has two 

members (SOX14, SOX21), SoxC has three members 

(SOX4, SOX11, SOX12), SoxD contains SOX5, 

SOX6, SOX13, SoxE contains SOX8, SOX9, SOX10, 

SoxF contains SOX7, SOX17, SOX18, SoxH has 

SOX30, SoxG contains SOX15. As shown in 

Supplementary Figure 2A, the phylogenetic tree was 

constructed based on the SOX proteins using FastTree. 

We generated a graph to show the SOX protein 

structures by GSDS. According to the result of MEME 

suite, we found that there was a conserved and core 

motif (motif 1) in all SOX proteins, which is HMG-

box domain and contains 79 amino acid residues 

(Supplementary Figure 2B and Supplementary Figure 

2C). All motifs’ logos were shown in Supplementary 

Figure 2B and 2C. It’s noteworthy that motif 10, 2, 5 

only appeared in SoxD group (SOX5, SOX6, and 

SOX13), they might be the domain to identify SoxD 

group. The SOX protein secondary structures showed 

in Supplementary Figure 2D and Supplementary Table 

1. The secondary structures of SOX proteins were 

predicted by SOPM, PHD and PREDATOR methods 

on the NPS@, Network Protein Sequence Analysis 

website. For example, SOX6 was predicted to contain 

38.12% α-helix, 4.45% β-sheet, and 54.89% random 

coil, respectively (Supplementary Table 1). By 

examining the properties of SOX genes for each of the 

four species (Homo sapiens, Mus musculus, Coturnix 
japonica, and Gallus gallus), the grand average of 

hydropathicity (GRAVY) value for those SOX genes 

mainly ranged from -1.080 - -0.206, which were 

higher than Mus musculus -1.984 - -0.207 

(Supplementary Figure 2E and Supplementary Table 

2). We found that the length of amino acids varied 

among species ranging from 204 - 817 nt. The 

distribution of molecular weight (Mol. Wt., kDa) for 

SOX genes ranged from 23.88 - 90.72. The isoelectric 

point (pI) of the SOX genes was from 4.91 - 9.96. 

According to the results of chromosome location, a 

total of 81 SOX gene members were mapped to the 14 

chromosomes (Supplementary Figure 3). 

SOX6 belongs to the SoxD group, based on the high 

expression in GBM, we used the GEPIA2 to obtain the 

top 200 co-expressed genes (Spearman’s correlation >= 

0.68). Then, co-expressed genes network was constructed 

by STRING, and re-drawn by Cytoscape (Figure 8A). To 

analyze the biological classification and pathway of co-

expressed genes, we used Cytoscape’s plugin ClueGO 

app for functional enrichment analyses (p-value <= 0.05). 

GO analysis indicated that the biological processes 

including tau-protein kinase activity (FYN, TTBK1, and 

GSK3B), intermediate filament cytoskeleton organization 

(FYN, DCAF1 and RAF1), negative regulation of 

extrinsic apoptotic signaling pathway via death domain 

receptors (DCAF1, RAF1 and GSK3B), histone H4 

acetylation (KMT2A, MSL2 and EPC1), positive 

regulation of protein localization to synapse (NLGN1, 

NLGN2 and MAPT), microtubule polymerization or 

depolymerization (KIF2A and CLASP2) (Figure 8B). 

Consistent with enrichment of the respective cellular 

component and proposed molecular function (Figure 8C, 

8D). Collectively, these data suggest an essential role of 

SOX6 in regulating cell survival and death mechanisms 

in GBM cancer. 

 

The most important module was obtained using 

MCODE plugin (Figure 8A). We found MAPT, 

GSK3B, FYN and DPYSL4 as co-expressed hub genes. 

Hierarchical clustering of the hub genes was performed 

using the UCSC online tool (Figure 9A), indicating the 

concordant expression pattern across four genes. SOX6 

compared with MAPT, GSK3B, FYN and DPYSL4 had 

the highest correlation coefficients (Spearman’s = 

0.648, 0.765, 0.693 and 0.642) in GBM compared with 

other tumors (Figure 9B). This data demonstrated that 

SOX6 had a strong association with MAPT, GSK3B, 

FYN and DPYSL4, suggesting that they may be 

functional partners in GBM. 

 

DISCUSSION 
 

GBM is an aggressive primary malignant brain tumor, 

and has one of the worst 5-year survival rates among all

 

 
 

Figure 5. CeRNA network construction. The triangles represent lncRNAs, and circles mean mRNAs. The color green means down-
regulated genes, and red means up-regulated genes. 
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Figure 6. Diagnostic studies and survival analysis in risk genes (SOX6 and SOX21). (A) The correlation between the immune-
infiltration abundance in risk genes (SOX6 and SOX21). (B) The receiver operating characteristic (ROC) curve for this model. (C) The survival 
curve is based on dividing the sample according to the median value of the risk value. (D–F) showed survival status of risk SOX6 and SOX21 
among high and low risk groups. (G) Forest plot drawing for the independent prognostic value of risk HMG-box related obtained from 
univariate Cox regression analysis. (H) The correlation between the immune-infiltration abundance and the SOX6/SOX21 expression value.  (I) 
The correlation of mRNA (SOX6, and SOX21) expression values in GBM by TIMER. (J) Survival curves of SOX6 and SOX21 in GBM. (K) The 
expression SOX6 between age of <=41 years and > 41 years.  
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cancers after diagnosis [25]. It is the first time to report 

the role of HMG-box gene families and their related 

DElncRNA and DEmiRNA in GBM. Here, we 

presented a description of GBMs based on the 

integration of the genomic and transcriptomic profiles 

of the HMG-box gene families (such as SOX, HOX, 

FOX, HMG and TOX gene families). 

 

Through significant differential expression analysis, we 

found that only 62 of the 123 HMG-box genes were 

significantly differentially expressed in GBM, and only 

five genes were down-regulated and 57 were up-

regulated.  From the expression distribution, this 

showed that most DE-HMG-box genes were 

specifically and highly expressed in GBM and had a 

very important role in enhancing cancer cells growth. 

From the PPI network and functional pathway results in 

this study, we found that partial HOX genes were 

correlated with transcriptional misregulation in cancer, 

activation of anterior HOX genes in hindbrain develop-

ment during early embryogenesis, and developmental 

genetics. DE HMG-box families were closely linked to 

glioma-related tumors.  

Mechanisms utilizing lncRNA have been shown to take 

part in various types of cancer. However, a com-

prehensive analysis of the differential expression 

profiles of DE HMG-box genes co-expressed lncRNA 

network in GBM has been lacking. Using multivariate 

Cox and risk score methods, we detected an eight-

lncRNA signature which was able to classify GBM 

patients into the high-risk group and low-risk group 

with significantly different overall survival (p-value = 

1.604e-08). Comparing our functional analyses with DE 

HMG-box genes, we discovered that eight-lncRNA 

might participate to GBM via development biology. 

Then, we further made a DE-lncRNA-DEmiRNA-DE-

HMG-box network to expose the HMG-box related 

ceRNA mechanism in GBM. For example, in our 

ceRNA network, we found MIR200HG-hsa-miR-146a-

5p-SOX2 / HOXD10 axis in GBM, down-regulated 

lncRNA MIR200HG could competitively bound 

miRNAs (up-regulated),  thereby indirectly encouraging 

targeted SOX2 / HOXD10 upregulation. In HMDD (the 

Human microRNA Disease Database) v3.2 [26], we 

observed that the miRNAs are linked to glioblastoma or 

glioma, and found several connections in miRNA-

 

 
 

Figure 7. Immunohistochemical staining of glioma tissue taken from the Human Protein Atlas showing SOX6-negative tissue 
(male, age 77) and high SOX6 (male, age 47), medium SOX6 (male, age 60), and low SOX6 (male, age 59) expressing glioma 
tissue.  



 

www.aging-us.com 8092 AGING 

 
 

Figure 8. PPI network of SOX6 positive correlation genes and functional analysis of hub genes. (A) PPI network of SOX6 positive 
correlation genes and hub genes were found by MCODE in Cytoscape. (B) GO enrichment of co-expressed genes in biological process, (C) 
molecular function, (D) cellular component. (E) KEGG, Reactome, Wiki pathway enrichment analyses by ClueGO in Cytoscape. 
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Figure 9. Expression of SOX6 and hub genes. (A) The hierarchical clustering of hub genes was generated by the UCSC online database. 
(B) The correlation between SOX6 and DPYSL4 (or FYN, or GSK3B, or MAPT) in different tumors, the correlation of co-expression in GBM was 
shown on the right by TIMER online browser.  
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mRNA binding. The upregulation of hsa-miR-146a and 

inactivation of NF-κB signaling induced the 

sensitization of human glioblastoma cells to TMZ-

induced apoptosis by curcumin [27]. Hsa-miRNA-155 

targeted FOXO3a could promote cell proliferation and 

invasion in glioma [28]. In this study, hsa-miRNA-

155a-3p could combine OIP5-AS, and reduce the 

influence to SOX11, down-regulated MIAT, 

AC010980.2, and EPB41L4A-AS could target up-

regulated hsa-miR-23a-3p, and formed a ceRNA 

network with up-regulated HMGB2 and HMGN2. As 

previously reported, Circ_PTN performed as sponge of 

miR-122, and activated SOX6 expression in glioma 

cells [29]. 

 

We systematically identified the HOX, FOX, SOX, 

TOX and HMG genes in humans, and also took SOX 

gene family as an example to comprehensive analysis of 

the SOX gene family from the phylogeny and protein 

structure. Although the absence of 3D structural data 

and the low accuracy of secondary structure prediction, 

we characterized secondary structures of SOX proteins 

to identify possible structural consequences of amino-

acid substitutions, which indicated that these 

evolutionary changes have altered SOX protein function 

in some way. 

 

In the current study, we initially screened out two 

DEmRNA (SOX6 and SOX21) of the SOX gene family 

that were found to be related to the clinical outcome of 

the GBM patients TCGA database. This study observed 

that up-regulated SOX6 could be targeted by eight 

down-regulated DElncRNAs in GBM tissues. SoxD 

group included SOX5, SOX6 and SOX13, we detected 

that SOX6 and SOX13 were over-expressed in GBM 

patients. SOX6 was expressed most frequently (6/7 or 

86%) in GBM by RT-QPCR experiment [30], and 

expressed in the nuclei by immunohistochemical 

experiment [31]. GBM patients with low SOX6 

expression present higher survival rates than those with 

high SOX6. FOXC1 could play the essential role in 

brain tumor biology and patients with GBM [32]. High 

expression of GATA2 connected with poor prognosis in 

GBM patients and promoted GBM progression by 

EGFR pathway [33]. SOX6 and SOX13 could co-

interact with FOXC1 and GATA2, which might lead to 

aggressive the brain tumors. Hsa-miR-335-5p and hsa-

let-7b-5p were significantly suppressed in GBM tissues 

[34], which targeted SOX13 in current study. We 

speculated that SOX6 might regulate GBM indirectly.  

 

All the mechanism studies are aimed at finding drug 

targets, better prevention and treatment of diseases, 

there have been many studies such as a large number of 

alkylating anticancer agents and mutagens, and might 

be related to DNA replication [35–37]. As the HMG-

box proteins influence DNA-dependent processes 

(transcription, replication, and DNA repair) [3], DE 

HMG-box genes and related DE-lncRNA / DE-miRNA 

in GBM, might serve as a potential drug target for DNA 

loss repair. Existing studies have shown that SOX5, 

SOX9 and SOX6 could be used as a drug target for 

INSULIN and DEXAMETHASONE, for the treatment 

of neurological diseases [38, 39], indicating that the 

combination of drugs and genes can reach the blood-

brain barrier, so whether they could also be used as a 

drug target for solid tumor GBM, needs further research 

and mining by our research group. 

 

CONCLUSIONS 
 

In summary, our study obtained the identification of 

HMG-box families and established a ceRNA network in 

GBM by TCGA and GEO dataset, presenting them as 

potential therapeutic targets for the treatment of GBM. 

Comparing our functional analyses with DE HMG-box 

genes, we identified that eight-lncRNA might contribute 

to GBM via development biology. SOX6 and SOX21 

might represent a prognostic biomarker and potential 

therapeutic target to improve the diagnosis and treatment 

of GBM. SOX6 had a strong association with MAPT, 

GSK3B, FYN and DPYSL4 and might be functional 

partners in GBM. Our study provided useful information 

for further exploration of GBM. Moreover, more GEO 

datasets should be integrated to assess and reduce the bias 

during the analysis process, further experiments should 

validate in vitro and in vivo to make the role of these key 

genes and pathways clear in the development of GBM. 
 

MATERIALS AND METHODS 
 

Database selection and gene expression analysis of 

GBM 
 

The gene expression datasets of GBM were downloaded 

from public database. (1) The Cancer Genome Atlas 

(TCGA) [40] (TCGA-GBM), which collected 169 

GBM tissues and 5 normal tissues, were used to screen 

differentially expressed mRNAs (DEmRNAs) and 

differentially expressed lncRNAs (DElncRNAs) 

between GBM and normal tissues. (2) And the Gene 

Expression Omnibus (GEO) dataset GSE90603 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE90603), the platform for GSE90603 datasets was 

GPL21572, which contained 7 samples from non-tumor 

samples and 16 GBM tumor samples [41], were 

selected to analyze differentially expressed miRNAs 

(DEmiRNAs) between GBM and normal tissues.  
 

Data analyses were performed by R packages, GEO 

dataset  was downloaded by “GEOquery” [42] and 

TCGA-GBM data was gained from website, 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90603
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90603
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differentially expressed genes (DEG) were filtered out 

by “limma” [43], | logFC | > 1 and q-value < 0.05. 

“Ggplot2” [44] and “pheatmap” [45] were used to draw 

diagrams. Within the HMG-box DEGs, we performed 

the functional enrichment analysis of Gene Ontology 

(GO) function using “clusterProfiler” [46]. Survival 

analyses, the correlations with immune infiltration 

levels in GBM were performed by TIMER [47]. 

Immunohistochemical staining of glioma tissue 

extracted from the Human Protein Atlas [48]. 

 

Analysis of DElncRNA-DEmRNA co-expression 

network 
 

DElncRNA-DEmRNA (both genes with fold change > 

2 and q-value < 0.05) co-expression network was built 

to determine the relationships in GBM (the absolute 

value of Pearson correlation coefficient > 0.5 and p-

value < 0.001). The co-expression relationships were 

visually represented as the co-expression network using 

Cytoscape v3.7.2 [49]. 

 

Single and multivariate factor cox analysis, ROC 

and survival curve plot 
 

In order to predict the DEmRNA co-expressed lncRNA 

connected to survival, we performed the single factor 

Cox analysis by R package “survival” [50], risk model 

was calculated as previously reported [51]. According 

to the best risk model obtained by multivariate Cox 

analysis, the survival score was performed, and the 

average number of risk scores of each sample of 

TCGA-GBM data was also calculated. Above-average 

patients belong to the high-risk group, and below-

average patients belong to the low-risk group. The 

Kaplan-Meier method was used to draw the survival 

curves of the two groups. 

 

CeRNA network construction 
 

We then used DElncRNA, DEmiRNA and DEmRNA in 

this study to construct lncRNA-miRNA-mRNA 

associations, as previously reported [18, 52]. (1) 

DElncRNA-DEmiRNA interactions were described by 

miRcode 11 [53]. (2) Using 3’UTR regions for 

targeting, only DEmRNAs predicted by TargetScan 

[54], SeedVicious [55] and miRanda (score ≥150, MFE 

(minimum free energy) <−20 Kcal/mol) [56], were 

considered as target mRNAs, online software Venny 

v2.1.0 (https://bioinfogp.cnb.csic.es/tools/venny/) was 

used to scan the targeting DEmRNAs, and then 

performed the DEmiRNA-DEmRNA pairs. (3) 

According to the above DElncRNA-DEmiRNA and 

DEmiRNA-DEmRNA interactions, the visualization of 

the DElncRNA-DEmiRNA-DEmRNA network was 

built by using Cytoscape v3.7.2 [49]. 

Example: Genome-wide retrieval and identification 

of SOX gene family 

 

The genomic and protein data of human was 

downloaded from NCBI (ftp://ftp.ncbi.nlm.nih.gov/ 

genomes/all/GCF/000/001/405/GCF_000001405.39_G

RCh38.p13). Then, we downloaded the HMM file of 

HMG-box domain with InterPro ID (IPR009071) from 

Pfam v32.0 [57] and ran HMMER v3.2.1 [58] to obtain 

the SOX genes from the complete genome with e-value 

cutoff 1.8e-21 as previously reported [7]. 

 

SOX genes were mapped on chromosomes by 

Idiographica v2.4 [59]. The theoretical molecular 

weight (kDa), pI (isoelectric points), amino acids length 

and GRAVY (Grand Average of Hydropathy) values 

were evaluated using the ExPASy ProtParam platform 

(http://web.expasy.org/protparam/) [60], and then drawn 

violin plots by “easyGgplot2” [61] to illustrate the 

comparative relationship in human, mice, chicken and 

quail [62].  

 

After finding and downloading SOX sequences, we 

used MAFFT v7.429 [48] to align the SOX genes, and 

constructed ML (maximizing the tree’s likelihood) 

tree by FastTree v2.1 [49]. Gene structures were 

drawn by GSDS v2.0 [50]. Motifs reported on  

SOX protein data via MEME v5.0.5 [51]. SOX 

secondary structure was built by Secondary structure 

by NPS@: Network Protein Sequence Analysis online 

service [52]. 
 

Data mining for SOX6 and co-expressed hub genes 
 

GEPIA2 (Gene Expression Profiling Interactive 

Analysis) [68] was used to analyze the gene expression 

correlation by TCGA-GBM data. The Spearman 

method was used to find the correlation coefficient. PPI 

network was constructed by STRING v11 [69]. 

Cytoscape’s plugin CluGO was used for functional 

enrichment analyses (GO, KEGG, Reactome, and Wiki 

pathway) [70]. Cytoscape’s plugin MCODE was 

applied for finding linked regions based on topology 

(MCODE score > 5, degree cutoff =2, node score cutoff 

= 0.2, max depth = 100, k-score =2). We plotted the 

heat map of SOX6 and co-expressed hub genes by 

University of California Santa Cruz (UCSC) browser 

[71], and the correlation of these genes was drawn by 

TIMER [47]. 
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SUPPLEMENTARY MATERIALS 
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Supplementary Figure 1. Heatmap for HMG-box related genes between GBM and normal tissue in TCGA. Starting from the left, 
the first 5 datasets were normal tissues, and the remaining 169 were GBM tissues. 
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Supplementary Figure 2. Structures analyses of SOX gene family in humans. (A) Phylogenetic and protein structures analyses of 
SOX gene family in humans. (B and C) SOX motif prediction. (D) SOX protein secondary structures in humans. The α-helix, β-sheet and 
disordered loop regions are drawn in blue, red and purple, respectively. (E) Protein properties for SOX genes identified from Homo sapiens, 
Mus musculus, Coturnix japonica, and Gallus gallus.  
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Supplementary Figure 3. Distribution of the SOX gene family on human chromosomes. 
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Supplementary Tables 

 

Supplementary Table 1. The composition of SOX protein secondary structures in humans. 

Group Type Alpha helix (%) Beta sheets (%) Random coil (%) 

SOXA SRY 36.27 3.92 56.37 

SOX1 33.76 4.6 58.57 

SOX2 15.14 3.15 79.18 

SOX3 31.39 3.14 62.33 

SOX14 21.25 2.92 73.33 

SOX21 37.68 4.35 55.8 

SOX4 24.05 4.64 67.51 

SOX11 28.12 5.22 62.59 

SOX12 28.25 1.9 66.67 

SOX5 35.02 5.46 56.86 

SOX6 38.12 4.45 54.89 

SOX13 30.87 4.18 63.34 

SOX8 15.7 3.81 79.37 

SOX9 14.93 1.77 81.73 

SOX10 19.74 6.01 71.03 

SOX7 22.94 0.77 74.23 

SOX17 21.26 2.17 74.4 

SOX18 28.91 2.34 67.97 

SOXH SOX30 11.83 7.81 77.68 

SOXG SOX15 19.31 1.72 78.54 
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Supplementary Table 2. Predictions for protein properties for SOX from four species. 

pI GRAVY Length Mol.Wt. Species 

9.7 -0.375 391 39.02 Homo_sapiens 

6.19 -0.825 466 49.91 Homo_sapiens 

4.91 -0.702 441 46.68 Homo_sapiens 

5.08 -0.96 315 34.12 Homo_sapiens 

6.25 -0.766 622 69.23 Homo_sapiens 

9.68 -0.585 240 26.49 Homo_sapiens 

9.78 -0.843 233 25.25 Homo_sapiens 

6 -0.633 414 44.12 Homo_sapiens 

8.16 -0.589 384 40.89 Homo_sapiens 

9.74 -0.742 317 34.31 Homo_sapiens 

9.74 -0.206 276 28.58 Homo_sapiens 

9.78 -0.29 446 45.21 Homo_sapiens 

6.81 -0.701 448 49.88 Homo_sapiens 

6.87 -0.483 474 47.26 Homo_sapiens 

6.38 -0.745 751 82.58 Homo_sapiens 

6.95 -0.809 787 87.24 Homo_sapiens 

6.2 -0.687 388 42.20 Homo_sapiens 

6.49 -0.77 446 47.31 Homo_sapiens 

6.31 -1.007 509 56.14 Homo_sapiens 

9.55 -0.968 204 23.88 Homo_sapiens 

9.7 -0.379 391 39.05 Mus_musculus 

9.74 -0.724 319 34.41 Mus_musculus 

9.78 -0.332 450 45.44 Mus_musculus 

7.15 -0.539 440 45.04 Mus_musculus 

5.92 -0.767 714 79.13 Mus_musculus 

6.95 -0.824 787 87.32 Mus_musculus 

6.01 -0.671 380 41.49 Mus_musculus 

6.64 -0.796 464 49.88 Mus_musculus 

6.31 -1.021 507 56.08 Mus_musculus 

6.12 -0.827 466 49.95 Mus_musculus 

4.96 -0.727 395 42.63 Mus_musculus 

5.14 -0.929 314 34.08 Mus_musculus 

6.03 -0.745 613 68.17 Mus_musculus 

9.68 -0.587 240 26.52 Mus_musculus 

9.68 -0.842 231 25.31 Mus_musculus 

5.85 -0.569 419 44.65 Mus_musculus 

7.6 -0.565 377 40.90 Mus_musculus 

9.74 -0.207 276 28.61 Mus_musculus 

8.83 -0.575 782 83.94 Mus_musculus 

7.34 -1.984 395 49.49 Mus_musculus 

9.7 -0.495 373 37.93 Gallus_gallus 

9.77 -0.78 312 34.10 Gallus_gallus 

9.66 -0.712 316 34.01 Gallus_gallus 

9.68 -0.63 240 26.67 Gallus_gallus 

9.74 -0.22 280 28.80 Gallus_gallus 

7.71 -0.65 428 43.11 Gallus_gallus 
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5.72 -0.818 396 43.50 Gallus_gallus 

8.44 -0.72 285 31.26 Gallus_gallus 

6.13 -0.733 737 80.99 Gallus_gallus 

6.66 -0.825 817 90.72 Gallus_gallus 

6.13 -0.801 612 68.18 Gallus_gallus 

6.46 -0.788 470 50.83 Gallus_gallus 

6.23 -1.078 494 54.85 Gallus_gallus 

6.2 -0.851 461 49.86 Gallus_gallus 

6.21 -0.524 410 42.60 Gallus_gallus 

6.49 -0.766 418 46.23 Gallus_gallus 

6.79 -0.769 377 41.22 Gallus_gallus 

6.09 -0.536 642 69.47 Gallus_gallus 

9.7 -0.505 373 37.92 Coturnix_japornica 

9.96 -0.641 404 44.22 Coturnix_japornica 

9.68 -0.715 316 34.03 Coturnix_japornica 

9.68 -0.63 240 26.67 Coturnix_japornica 

9.74 -0.218 280 28.77 Coturnix_japornica 

7.1 -0.658 427 43.11 Coturnix_japornica 

4.92 -0.77 396 43.18 Coturnix_japornica 

7.65 -0.805 285 31.27 Coturnix_japornica 

6.15 -0.746 773 85.08 Coturnix_japornica 

6.66 -0.817 816 90.57 Coturnix_japornica 

6.13 -0.81 612 68.32 Coturnix_japornica 

6.37 -0.82 470 50.90 Coturnix_japornica 

6.16 -1.08 495 55.04 Coturnix_japornica 

7.47 -0.788 565 60.97 Coturnix_japornica 

6.68 -0.58 387 40.39 Coturnix_japornica 

6.4 -0.791 418 46.22 Coturnix_japornica 

6.62 -0.759 377 41.16 Coturnix_japornica 

6.07 -0.49 638 68.85 Coturnix_japornica 

 


