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Abstract: Domain-aware artificial intelligence has been increasingly adopted in recent years to
expedite molecular design in various applications, including drug design and discovery. Recent
advances in areas such as physics-informed machine learning and reasoning, software engineering,
high-end hardware development, and computing infrastructures are providing opportunities to build
scalable and explainable AI molecular discovery systems. This could improve a design hypothesis
through feedback analysis, data integration that can provide a basis for the introduction of end-to-
end automation for compound discovery and optimization, and enable more intelligent searches
of chemical space. Several state-of-the-art ML architectures are predominantly and independently
used for predicting the properties of small molecules, their high throughput synthesis, and screening,
iteratively identifying and optimizing lead therapeutic candidates. However, such deep learning and
ML approaches also raise considerable conceptual, technical, scalability, and end-to-end error quan-
tification challenges, as well as skepticism about the current AI hype to build automated tools. To this
end, synergistically and intelligently using these individual components along with robust quantum
physics-based molecular representation and data generation tools in a closed-loop holds enormous
promise for accelerated therapeutic design to critically analyze the opportunities and challenges
for their more widespread application. This article aims to identify the most recent technology and
breakthrough achieved by each of the components and discusses how such autonomous AI and ML
workflows can be integrated to radically accelerate the protein target or disease model-based probe
design that can be iteratively validated experimentally. Taken together, this could significantly reduce
the timeline for end-to-end therapeutic discovery and optimization upon the arrival of any novel
zoonotic transmission event. Our article serves as a guide for medicinal, computational chemistry
and biology, analytical chemistry, and the ML community to practice autonomous molecular design
in precision medicine and drug discovery.

Keywords: autonomous workflow; therapeutic design; computer aided drug discovery; computa-
tional modeling and simulations; quantum mechanics and quantum computing; artificial intelligence;
machine learning; deep learning; machine reasoning and causal inference and causal reasoning

1. Introduction

Synthesizing and characterizing small molecules in a laboratory with desired proper-
ties is a time-consuming task [1]. Until recently, experimental laboratories have been mostly
human operated; they relied completely on the experts of the field to design experiments,
carry out characterization, analyze, validate, and conduct decision making for the final
product. Moreover, the experimental process involves a series of steps, each requiring
several correlated parameters that need to be tuned [2,3], which is a daunting task, as each
parameter set conventionally demands individual experiments. This has slowed down the
discovery of high-impact small molecules and/or materials, in some case by decades, with
possible implications for diverse fields, such as in energy storage, electronics, catalysis,
drug discovery, etc.
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Moreover, the high-impact materials of today come from exploring only a fraction
of the known chemical space. Larger portions of the chemical space are still uncovered,
and it is expected to contain exotic materials with the potential to bring unprecedented
advances to state-of-the-art technologies. Exploring such a large space with conventional
experiments will take time and a lot of resources [4–7]. In this scenario, complete au-
tomation of laboratories is long overdue and has been used with limited success in the
past [8–12]. The concept of laboratory automation is not new [13]. It was used with limited
success for material discovery in the past. More recently, automation has re-emerged as the
approach of potential interest due to the significant development in computing architecture,
sophisticated material synthesis, and characterization techniques, increasing the success-
ful adoption of deep learning based models in physical and biological science domains.
Automating the computational design of small molecules that integrates physics-based
simulations and optimization with ML approaches is a feasible and efficient alternative
instead; it significantly contributes in expediting autonomous molecular design.

High throughput quantum mechanical calculations, such as density functional theory
(DFT), based simulations are the first step towards this goal of providing insight into
larger chemical space and have shown some promise in accelerating novel molecule
discovery. However, the physics based modeling still requires human intelligence for
different decision-making processes, and for instance, it cannot autonomously guide small-
molecule therapeutic design steps, thus slowing down the entire process. In addition,
the inverse design of molecules is equally difficult with quantum mechanical simulations
alone. The amount of data produced by these high throughput methods is so large that it
cannot be analyzed in real-time with conventional methods. Autonomous computational
design and characterization of molecules is more important in the scenarios where existing
experimental/computational approaches are inefficient [14,15].

One such particular example is the challenge associated with identifying new metabo-
lites in a biological sample from mass spectrometry data, which requires mapping the
fragmented spectra of novel molecules to the existing spectral library, making it slow
and tedious. In many cases, such references libraries do not exist, and an ML-integrated,
automated workflow could be an ideal choice to deploy for the rapid identification of
metabolites and the expansion of the existing libraries for future reference. Such a work-
flow has shown the early ability to quickly screen molecules and accurately predict their
properties for different applications. The synergistic use of high throughput methods in a
closed loop with machine-learning-based methods capable of inverse design is considered
vital for autonomous and accelerated discovery of molecules [11].

In this contribution, we discuss how computational workflows for autonomous molec-
ular design can guide the bigger goal of laboratory automation through active learning
approaches. At first, we assess the performance of current state-of-the-art artificial in-
telligence (AI)-guided molecular design tools, mainly focusing on small molecule for
therapeutic design and discovery. We start with an extensive discussion of popular molec-
ular representation with various formulation and data generation tools used in advanced
ML and deep learning (DL) models. We also benchmark the physics informed predictive
ML by comparing various property predictions, which is critical for small-molecule design.
In the end, we highlighted the cutting edge AI tools to utilize these ML models for inverse
design with desired properties.

2. Results and Highlights
2.1. Components of Computational Autonomous Molecular Design Workflow

The workflow for computational autonomous molecular design (CAMD) must be
an integrated and closed-loop system (Figure 1) with: (i) efficient data generation and
extraction tools, (ii) robust data representation techniques, (iii) physics-informed predictive
machine learning models, and (iv) tools to generate new molecules using the knowledge
learned from steps i–iii. Ideally, an autonomous computational workflow for molecule
discovery would learn from its own experience and adjust its functionality as the chemical
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environment or the targeted functionality changes through active learning. This can
be achieved when all the components work in collaboration with each other, providing
feedback while improving model performance as we move from one step to other.

Figure 1. Closed-loop workflow for computational autonomous molecular design (CAMD) for
medical therapeutics. Individual components of the workflow are labeled. It consists of data
generation, feature extraction, predictive machine learning and an inverse molecular design engine.

For data generation in CAMD, high-throughput density functional theory (DFT) [16,17]
is a common choice mainly because of its reasonable accuracy and efficiency [18,19]. In
DFT, we typically feed in 3D structures to predict the properties of interest. Data generated
from DFT simulations is processed to extract the more relevant structural and properties
data, which are then either used as input to learn the representation [20,21] or as a target
required for the ML models [22–24]. Data generated can be used in two different ways:
to predict the properties of new molecules using a direct supervised ML approach and
to generate new molecules with the desired properties of interest using inverse design.
CAMD can be tied with supplementary components, such as databases, to store the data
and visualize it. The AI-assisted CAMD workflow presented here is the first step in
developing automated workflows for molecular design. Such an automated pipeline will
not only accelerate the hit identification and lead optimization for the desired therapeutic
candidates but can actively be used for machine reasoning to develop transparent and
interpretable ML models. These workflows, in principle, can be combined intelligently
with experimental setups for computer-aided synthesis or screening planning that includes
synthesis and characterization tools, which are expensive to explore in the desired chemical
space. Instead, experimental measurements and characterization should be performed
intelligently for only the AI-designed lead compounds obtained from CAMD.

The data generated from inverse design in principle should be validated by using an
integrated DFT method for the desired properties or by high throughput docking with a
target protein to find out its affinity in the closed-loop system, then accordingly update
the rest of the CAMD. These steps are then repeated in a closed loop, thus improving
and optimizing the data representation, property prediction, and new data generation
component. Once we have confidence in our workflow to generate valid new molecules,
the validation step with DFT can be bypassed or replaced with an ML predictive tool to
make the workflow computationally more efficient. In the following, we briefly discuss the
main component of the CAMD, while reviewing the recent breakthroughs achieved.
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2.2. Data Generation and Molecular Representation

ML models are data-centric—the more data, the better the model performance. A lack
of accurate, ethically sourced well-curated data is the major bottleneck limiting their use in
many domains of physical and biological science. For some sub-domains, a limited amount
of data exists that comes mainly from physics-based simulations in databases [25,26] or
from experimental databases, such as NIST [27]. For other fields, such as for bio-chemical
reactions [28], we have databases with the free energy of reactions, but they are obtained
with empirical methods, which are not considered ideal as ground truth for machine
learning models. For many domains, accurate and curated data does not exist. In these
scenarios, slightly unconventional yet very effective approaches of creating data from
published scientific literature and patents for ML have recently gained adoption [29–32].
These approaches are based on the natural language processing (NLP) to extract chemistry
and biology data from open sources published literature. Developing a cutting edge
NLP-based tool to extract, learn, and reason the extracted data would definitely reduce
timeline for high throughput experimental design in the lab. This would significantly
expedite the decision making based on the existing literature to set up future experiments
in a semi-automated way. The resulting tools based on human–machine teaming is much
needed for scientific discovery.

2.3. Molecular Representation in Automated Pipelines

Robust representation of molecules is required for accurate functioning of the ML
models [33]. An ideal molecular representation should be unique, invariant with respect
to different symmetry operations, invertible, efficient to obtain, and capture the physics,
stereo chemistry, and structural motif. Some of these can be achieved by using the physical,
chemical, and structural properties [34], which, all together, are rarely well documented so
obtaining this information is considered cumbersome task. Over time, this has been tack-
led by using several alternative approaches that work well for specific problems [35–40]
as shown in Figure 2. However, developing universal representations of molecules for
diverse ML problems is still a challenging task, and any gold standard method that works
consistently for all kind of problems is yet to be discovered. Molecular representations
primarily used in the literature falls into two broad categories: (a) 1D and/or 2D repre-
sentations designed by experts using domain specific knowledge, including properties
from the simulation and experiments, and (b) iteratively learned molecular representations
directly from the 3D nuclear coordinates/properties within ML frameworks.

Expert-engineered molecular representations have been extensively used for pre-
dictive modeling in the last decade, which includes properties of the molecules [41,42],
structured text sequences [43–45] (SMILES, InChI), molecular fingerprints [46], among
others. Such representations are carefully selected for each specific problem using domain
expertise, a lot of resources, and time. The SMILES representation of molecules is the main
workhorse as a starting point for both representation learning as well as for generating
expert-engineered molecular descriptors. For the latter, SMILES strings can be used directly
as one hot encoded vector to calculate fingerprints or to calculate the range of empirical
properties using different open source platforms, such as RDkit [47] or chemaxon [48],
thereby bypassing expensive features generation from quantum chemistry/experiments
by providing a faster speed and diverse properties, including 3D coordinates, for molec-
ular representations. Moreover, SMILES can be easily converted into 2D graphs, which
is the preferred choice to date for generative modeling, where molecules are treated as
graphs with nodes and edges. Although significant progress has been made in molecular
generative modeling using mainly SMILES strings [43], they often lead to the generation
of syntactically invalid molecules and are synthetically unexplored. In addition, SMILES
are also known to violate fundamental physics and chemistry-based constraints [49,50].
Case-specific solutions to circumvent some of these problems exist, but a universal solution
is still unknown. The extension of SMILES was attempted by more robustly encoding
rings and branches of molecules to find more concrete representations with high semanti-
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cal and syntactical validity using canonical SMILES [51,52], InChI [44,45], SMARTS [53],
DeepSMILES [54], DESMILES [55], etc. More recently, Kren et al. proposed 100% syntacti-
cally correct and robust string-based representation of molecules known as SELFIES [49],
which has been increasingly adopted for predictive and generative modeling [56].

Figure 2. Molecular representation with all possible formulation used in the literature for predictive
and generative modeling.

Recently, molecular representations that can be iteratively learned directly from
molecules have been increasingly adopted, mainly for predictive molecular modeling,
achieving chemical accuracy for a range of properties [34,57,58]. Such representations as
shown in Figure 3 are more robust and outperform expert-designed representations in drug
design and discovery [59]. For representation learning, different variants of graph neural
networks are a popular choice [37,60]. It starts with generating the atom (node) and bond
(edge) features for all the atoms and bonds within a molecule, which are iteratively updated
using graph traversal algorithms, taking into account the chemical environment informa-
tion to learn a robust molecular representation. The starting atom and bond features of the
molecule may just be one hot encoded vector to only include atom-type, bond-type, or a
list of properties of the atom and bonds derived from SMILES strings. Yang et al. achieved
the chemical accuracy for predicting a number of properties with their ML models by
combining the atom and bond features of molecules with global state features before being
updated during the iterative process [61].

Molecules are 3D multiconformational entities, and hence, it is natural to assume that
they can be well represented by the nuclear coordinates as is the case of physics-based
molecular simulations [62]. However, with coordinates, the representation of molecules
is non-invariant, non-invertible, and non-unique in nature [35] and hence not commonly
used in conventional machine learning. In addition, the coordinates by itself do not
carry information about the key attribute of molecules, such as bond types, symmetry,
spin states, charge, etc., in a molecule. Approaches/architectures have been proposed
to create robust, unique, and invariant representations from nuclear coordinates using
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atom-centered Gaussian functions, tensor field networks, and, more robustly, by using
representation learning techniques [34,58,63–66], as shown in Figure 3.

Chen et al. [34] achieved chemical accuracy for predicting a number of properties with
their ML models by combining the atom and bond features of molecules with global state
features of the molecules and are updated during the iterative process. The robust repre-
sentation of molecules can also only be learned from the nuclear charge and coordinates of
molecules, as demonstrated by Schutt et al. [58,63,65]. Different variants (see Equation (1))
of message passing neural networks for representation learning have been proposed, with
the main differences being how the messages are passed between the nodes and edges and
how they are updated during the iterative process using hidden states ht

v. Hidden states at
each node during the message passing phase are updated using

mt+1
v = ∑ Mt(ht

v, ht
w, ht

vw), ht+1
v = St(ht

v, mt+1
v ) (1)

where Mt and St are the message and vertex update functions, whereas ht
v and ht

vw are
the node and edge features. The summation runs over all the neighbor of v in the entire
molecular graph. This information is used by a readout phase to generate the feature vector
for the molecule, which is then used for the property prediction.

Figure 3. The iterative update process used for learning a robust molecular representation either based on 2D SMILES or 3D
optimized geometrical coordinates from physics-based simulations. The molecular graph is usually represented by features
at the atomic level, bond level, and global state, which represents the key properties. Each of these features are iteratively
updated during the representation learning phase, which are subsequently used for the predictive part of model.

These approaches, however, require a relatively large amount of data and computa-
tionally intensive DFT optimized ground state coordinates for the desired accuracy, thus
limiting their use for domains/datasets lacking them. Moreover, representations learned
from a particular 3D coordinate of a molecule fail to capture the conformer flexibility on its
potential energy surface [66], thus requiring expensive multiple QM-based calculations
for each conformer of the molecule. Some work in this direction based on semi-empirical
DFT calculations to produce a database of conformers with 3D geometry has been recently
published [66]. This, however, does not provide any significant improvement in predictive
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power. These methods, in practice, can be used with empirical coordinates generated from
SMILES using RDkit/chemaxon but still require the corresponding ground state target
properties for building a robust predictive modeling engine as well as optimizing the
properties of new molecules with generative modeling.

Moreover, in these physics-based models, the cutoff distance is used to restrict the
interaction among the atoms to the local environments only, hence generating local rep-
resentations. In many molecular systems and for several applications, explicit non-local
interactions are equally important [67]. Long-range interactions have been implemented in
convolutional neural networks; however, they are known to be inefficient in information
propagation. Matlock et al. [68] proposed a novel architecture to encode non-local features
of molecules in terms of efficient local features in aromatic and conjugated systems using
gated recurrent units. In their models, information is propagated back and forth in the
molecules in the form of waves, making it possible to pass the information locally while
simultaneously traveling the entire molecule in a single pass. With the unprecedented
success of learned molecular representations for predictive modeling, they are also adopted
with success for generative models [57,69].

2.4. Physics-Informed Machine Learning

Physics-informed machine learning (PIML) is the most widely studied area of applied
mathematics in molecular modeling, drug discovery, and medicine [58,63,65,70–76]. De-
pending upon whether the ML architecture requires the pre-defined input representations
as input features or can learn their own input representation by itself, PIML can be broadly
classified into two sub-categories. The former is well covered in several recent review
articles [70–75]. We will focus only on the latter, which has been increasingly adopted in
predictive machine learning recently with unprecedented accuracy for a range of properties
and datasets. A number of related approaches for predictive feature/property learning
have been proposed in recent years under the umbrella term graph-based models so-called
graph neural networks (GNNs) [77–79] and extensively tested on different quantum chem-
istry benchmark datasets. GNN for predictive molecular modeling consists of two phases:
representation learning and property prediction, integrated end-to-end in a way to learn
the meaningful representation of the molecules while simultaneously learning how to
use the learned feature for the accurate prediction of properties. In the feature-learning
phase, atoms and bond connectivity information read from the nuclear coordinates or
graph inputs are updated by passing through a sequence of layers for robust chemical
encoding, which are then used in subsequent property prediction blocks. The learned
features can than be processed using dimensionality reduction techniques before using
them in a subsequent property prediction block, as shown in Figure 4.

In one of the first works on embedded feature learning, Schütt et al. [63] used the
concept of many body Hamiltonians to devise the size extensive, rotational, translational,
and permutationally invariant deep tensorial neural network (DTNN) architecture for
molecular feature learning and property prediction. Starting with the embedded atomic
number and nuclear coordinates as input, and after a series of refinement steps to encode
the chemical environment, their approach learns the atom-centered Gaussian-basis function
as a feature that can be used to predict the atomic contribution for a given molecular
property. The total property of the molecule is the sum over the atomic contribution. They
demonstrated chemical accuracy of 1 kcal mol−1 in the total energy prediction for relatively
small molecules in the QM7/QM9 dataset that contains only H, C, N, O, and F atoms.
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Figure 4. Physics-informed ML framework for predictive modeling. It takes into account the properties obtained from
quantum mechanics-based simulation or from experimental data to ultimately generate features in addition to the standard
process used in benchmark models (e.g., message passing neural network (MPNN).

Building on DTNN, Schütt et al. [58] also proposed a SchNet model, where the
interactions between the atoms are encoded using a continuous filter convolution layer
before being processed by filter generating neural networks. The predictive power of
their model was further extended for electronic, optical, and thermodynamic properties
of molecules in the QM9 dataset compared to only the total energy in DTNN, achieving
state-of-the-art chemical accuracy in 8 out of 12 properties. The improved accuracy was
observed over a related approach of Gilmer et al. [37], known as message passing neural
network (MPNN), on a number of properties except polarizability and electronic spatial
extent. In contrast to the SchNet/DTNN model, which learns atom-wise representation of
the molecule, MPNN learns the global representation of molecules from the atomic number,
nuclear coordinates, and other relevant bond-attributes and uses it for the molecular
property prediction. It is critical to mention that MPNN is more accurate for the intensive
properties (α, 〈R2〉) where the decomposition into individual atomic contributions is not
required. The performance of SchNet is further improved by Jørgensen et al. [80] by making
edge features inclusive of the atom receiving the message.

In another related model, Chen et al. [34] proposed an integrated framework with
unique feature update steps that work equally well for molecules and solids. They used
several atom attributes and bond attributes and then combined it with the global state
attribute to learn the feature representation of molecules. It was claimed that their method
is outperforming the SchNet model in 11 out of 13 properties, including U0, U, H, and G in
the benchmark QM9 dataset. However, they trained their model for respective atomization
energies (P − nXXp, P = U0, U, H, and G) in contrast to the parent U0, U, H, and G trained
model of Schnet. Based on our extensive assessment, a fair comparison of the model should
be made between the similar quantities. These models also demonstrated that a model
trained for predicting a single property of molecules with a graph-based model will always
outperform the model optimized for predicting all the properties simultaneously. Other
variants of MPNN are also published in the literature with slight improvements in accuracy
for predicting some of the properties in the QM9 dataset over the parent MPNN [61,80].
The key features of a few benchmark models with their advantages and disadvantages are
listed in Table 1. One particular approach is of Jorgenson et al. [80], where they extended the
SchNet model in a way that the message exchanged between the atoms depends not only
on the atom sending it but also on the atom receiving it. The comparison of mean absolute
errors obtained from some of the benchmark models with their target chemical accuracy
are reported in Table 2. This shows that the appropriate ML models, when used with
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the proper representation of molecules and a well-curated accurate dataset, a well-sought
state-of-the-art chemical accuracy from machine learning can be achieved.

Table 1. Highlights and benchmark of predictive ML methods, their comparison, including their key features, advantages,
and disadvantages.

Methods Key Feature Advantage Drawbacks

MPNN [60]

• Message exchanged between the
atoms depends only on the
feature of the sending atom and
the corresponding edge features
and is independent of the
representation of the atom
receiving the message

• Generate global representation
of the molecule

• Predicted property of the
molecule is the function of
global representations of the
molecule

• Generate messages centered on
the atoms

• Achieved chemical accuracy
in 11 out of 13 properties in
QM9 data

• Performs well for intensive
properties

• Including the state of the
message-receiving atom
(dubbed as pair message)
increases the property
prediction error

• The message passed
from atom A to atom B
can be transmitted back
to atom B, resulting in
noise

d-MPNN [61]

• Learns molecular representation
centered on bonds instead of
atoms

• Update on MPNN that
combines the learned
representation with the prior
known fixed atomic, bond, and
global molecular descriptors

• Avoid noise resulting from the
message being passed along
any path by using directed
messages

• Use only SMILES string to
generate input representation

• Does not use spatial
information as a part of
input features

SchNet [58]

• Learns the atomistic
representations of the molecules

• The total property of the
molecule is the sum over the
atomic contributions

• Learns representations only by
using the atomic number and
geometry as atom and bond
features, respectively

• Improves the performance on
8 out of 13 properties in QM9
data compared to MPNN

• Performs relatively well
compared to MPNN for
extensive properties

• Requires only the nuclear
charge and nuclear
coordinates for learning input
representations

• Relatively poor
performance for
intensive properties
compared to MPNN

• Use optimized 3D
coordinates

MEGNet [34]

• Learns the global
representations of the molecules

• Uses several atomic and bond
properties of the atom and bond
as atom and bond features

• Adds the global state attribute
of molecule in addition to atom
and bond feature

• Improves the performance on
all the extensive properties
compared to MPNN and
SchNet

• Works equally well for
molecules and solid

• Provides good accuracy with
RDkit-generated 3D
coordinates

• Larger error for
intensive properties
compared to MPNN

• It calculates MAE errors
for atomization energies
of U0, U, H, and G and
compares with MAE on
U0, U, H, and G of
SchNet

SchNet-edge [80]
• Edge feature also depends on

the features of the atom
receiving the message

• Improves the accuracy of the
model over SchNet/MPNN in
all the properties in the QM9
dataset

• Requires optimized 3D
coordinates
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Table 2. Mean absolute errors obtained from several benchmark methods on 12 different properties using the QM9 molecular
dataset. Bold represents the lowest mean absolute errors among the models. * represents the property trained for respective
atomization energies. Target corresponds to the chemical accuracy for each property desired from the predictive ML models.

Property Units MPNN SchNet-Edge SchNet MegNet Target

HOMO eV 0.043 0.037 0.041 0.038 ± 0.001 0.043
LUMO eV 0.037 0.031 0.034 0.031 ± 0.000 0.043
band gap eV 0.069 0.058 0.063 0.061 ± 0.001 0.043
ZPVE meV 1.500 1.490 1.700 1.400 ± 0.060 1.200
dipole moment Debye 0.030 0.029 0.033 0.040 ± 0.001 0.100
polarizability Bohr2 0.092 0.077 0.235 0.083 ± 0.001 0.100
R2 Bohr2 0.180 0.072 0.073 0.265 ± 0.001 1.200
U0 eV 0.019 0.011 * 0.014 0.009 ± 0.000 * 0.043
U eV 0.019 0.016 * 0.019 0.010 ± 0.000 * 0.043
H eV 0.017 0.011 * 0.014 0.010 ± 0.000 * 0.043
G eV 0.019 0.012 * 0.014 0.010 ± 0.000 * 0.043
Cv cal (mol K)−1 0.040 0.032 0.033 0.030 ± 0.000 0.050

2.5. Inverse Molecular Design

To achieve the long overdue goal of exploring a large chemical space, accelerated
molecular design, and generation of molecules with desired properties, inverse design is
unavoidable. It is generally known that a molecule should have specific functionalities for
it to be an effective therapeutic candidate against a particular disease, but in many cases,
new molecules that host such functionalities are not easily known with a direct approach.
Furthermore, the pool where such molecules may exist is astronomically large [81–83]
(approx. 1060 molecules), making it impossible to explore each of them by quantum
mechanics-based simulations or experiments.

In such scenarios, inverse design is of significant interest, where the focus is on quickly
identifying novel molecules with desired properties in contrast to the conventional, so-
called direct approach where known molecules are explored for different properties. In
inverse design, we usually start with the initial dataset, for which we know the structure
and properties, and map this to a probability distribution and then use it to generate
new, previously unknown candidate molecules with desired properties very efficiently.
Inverse design uses optimization and search algorithms [84,85] for the purpose and, by
itself, can accelerate the lead molecule discovery process, which is the first step for any
drug development. This paradigm holds even more promise when used in a closed
loop with synthesis, characterization, and different test tools in such a way that each
of these steps receives and transmits feedback concurrently, thus improving each other
over time. This has shown some promise recently by substantially reducing the timeline
for the commercialization of molecules from its discovery to days, which is otherwise
known to span over a decade in most cases. In one recent work, Zhavoronkov et al. [1]
designed, developed, and tested a workflow that integrates deep reinforcement learning
with experimental synthesis, characterization, and test tools for the de novo design of
drug molecules as potential inhibitors of the discoidin domain receptor-1 in 21 days. Such
a paradigm shift in the design of drugs is possible only because of recently developed
deep generative model architectures. Here, we briefly discuss some of the breakthrough
architectures along with the recent applications in drug discovery.

Variational autoencoders [86] (VAEs) and its different variants have been extensively
used for generating small molecules with optimal physio-chemical and biological proper-
ties. VAEs consist of an encoder and decoder network, where the encoder functions as a
compression tool for compressing high-dimensional discrete molecular representations to
a continuous vector in low-dimensional latent space, whereas the decoder recreates the
original molecules from the compressed space. Within VAEs, recurrent neural networks
(RNN) [87] and convolution neural networks (CNN) [88] are commonly used as encoding
networks, whereas several RNN-based architectures, such as GRU and LSTM, are used
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as the decoder network. RNN independently has also been used to generate molecules.
Bombarelli et al. [86] first used VAEs to generate molecules in the form of SMILES strings
from latent space while simultaneously predicting their properties. For property prediction,
they coupled the encoder–decoder network with the predictor network, which uses the
vector from latent space as an input. SMILES strings generated from their VAEs do not
always correspond to valid molecules. To improve on this, Kusner et al. [89] proposed a
variant of VAEs known as the grammar VAE that imposes a constraint on SMILES gener-
ation by using context-free grammars rules. Both of these works employed string-based
molecular representations. More recent works have focused on using molecular graphs
as input and output for variational auto-encoders [90] using different variants of VAEs,
among others [89–91], such as stacked auto-encoder, semi-supervised deep autoencoders,
adversial autoencoder, and Junction Tree Variational Auto-Encoder (JT-VAE), for generat-
ing molecules for drug discovery. In JT-VAE [91], tree-like structures are generated from
the valid sub-graph components of molecules and encoded along with a full graph to
form two complementary latent spaces: one for the molecular graph and another for the
corresponding junction tree. These two spaces are then used for hierarchical decoding,
generating 100% valid small molecules. Further improvement on this includes using JT-
VAE in combination with auto-regressive and graph-to-graph translation methods for valid
large-molecule generation [92].

Generative adversarial networks (GANs) are another class of NN popular for generat-
ing molecules [93–95]. They consist of generative and discriminative models that work in co-
ordination with each other where the generator is trained to generate a molecule and the dis-
criminator is trained to check the accuracy of the generated molecules. Kadurin et al. [95]
successfully first used the GAN architecture for de novo generation of molecules with
anti-cancer properties, where they demonstrated higher flexibility, more efficient training,
and processing of a larger dataset compared to VAEs. However, it uses unconventional
binary chemical compound feature vectors and requires cumbersome validation of output
fingerprints against the PubChem chemical library. Guimaraes et al. [96] and Sanchez-
Lengeling et al. [97] used a sequence-based generative adversarial network in combination
with reinforcement learning for molecule generation, where they bias the generator to
produce molecules with desired properties. The works of Guimaraes et al. and Sanchez-
Lengeling et al. suffer from several issues associated with a GAN, including mode collapse
during training, among others. Some of these issues can be eliminated by using the re-
inforced adversarial neural computer method [98], which extends their work. Similar to
VAEs, GANs have also been used for molecular graph generation, which is considered
more robust compared to SMILES string generation. Cao et al. [94] non-sequentially and
efficiently generated the molecular graph of small molecules with high validity and novelty
from a jointly trained GAN and reinforcement learning architectures. Maziarka et al. [92]
proposed a method for graph-to-graph translation, where they generated 100% valid
molecules identical with the input molecules but with different desired properties. Their
approach relies on the latent space trained for JT-VAE and a degree of similarity of the
generated molecules to the starting ones can be tuned. Mendez-Lucio et al. [99] proposed
conditional generative adversarial networks to generate molecules that produce a desired
biological effect at a cellular level, thus bridging the system’s biology and molecular design.
A deep convolution NN-based GAN [93] was used for de novo drug design targeting types
of cannabinoid receptors.

Generative models, such as GANs, RNNs, and VAEs, have been used together with
reward-driven and dynamic decision making reinforcement learning (RL) techniques in
many cases with unprecedented success in generating molecules. Popova et al. [100]
recently used deep-RL for the de novo design of molecules with desired hydrophobicity
or inhibitory activity against Janus protein kinase 2. They trained a generative and a
predictive model separately first and then trained both together using an RL approach
by biasing the model for generating molecules with desired properties. In RL, an agent,
which is a neural network, takes actions to maximize the desired outcome by exploring the
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chemical space and taking actions based on the reward, penalties, and policies setup to
maximize the desired outcome. Olivecrona et al. [101] trained a policy-based RL model for
generating the bioactives against dopamine receptor type 2 and generated molecules with
more than 95% active molecules. Furthermore, taking an example of the drug Celecoxib,
they demonstrated that RL can generate a structure similar to Celecoxib even when no
Celecoxib was included in the training set. De novo drug design has so far only focused
on generating structures that satisfy one of the several required criteria when used as a
drug. Stahl et al. [102] proposed a fragment-based RL approach employing an actor-critic
model for generating more than 90% valid molecules while optimizing multiple properties.
Genetic algorithms (GAs) have also been used for generating molecules while optimizing
their properties [103–106]. GA-based models suffer from stagnation while being trapped
in at the regions of local optima [107]. One notable work alleviating these problems is
by Nigam et al. [56], where they hybridize a GA and a deep neural network to generate
diverse molecules while outperforming related models in optimization.

All of the generative models discussed above generate molecules in the form of
2D graphs or SMILES strings. Models to generate molecules directly in the form of 3D
coordinates have also recently gained attention [57,108,109]. Such generated 3D coordinates
can be directly used for further simulation using quantum mechanics or by using docking
methods. One of such first models is proposed by Niklas et al. [57], where they generate
the 3D coordinates of small molecules with light atoms (H, C, N, O, F). They then use the
3D coordinates of the molecules to learn the representation to map it to a space, which is
then used to generate 3D coordinates of the novel molecules. Building on this for a drug
discovery application, we recently proposed a model [69] to generate 3D coordinates of
molecules while always preserving the desired scaffolds, as depicted in Figure 5. This
approach has generated synthesizable drug-like molecules that show a high docking score
against the target protein. Other scaffold-based models to generate molecules in the form
of 2D graphs/SMILES strings are also published in the literature [110–114].

Figure 5. Generative model such as 3D-scaffold [69] can be used to inverse design novel candidates
with desired target properties starting from core scaffold or functional group.

Recently, with the huge interest in the development of architecture and algorithms
required for quantum computing, quantum version of generative models such as the
quantum auto-encoder [115] and quantum GANs [116] have been proposed, which carry
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huge potential, among others, for drug discovery. The preliminary proof of concept
work of Romero et al. [115,116] shows that it is possible to encode and decode molecular
information using a quantum encoder, demonstrating generative modeling is possible with
quantum VAEs, and more work, especially in the development of supporting hardware
architecture, is required in this direction.

2.6. Protein Target Specific Molecular Design

The efficacy and potency of generated molecules against a target protein should be
examined by predicting protein–ligand interactions (PLIs) and estimating key biophysical
parameters. Figure 6 shows some of the computational methods frequently used in the
literature (independently or together) for PLI prediction. Computationally, high throughput
docking simulations [117–119] are most efficient and are used to numerically quantify and
rank the interaction between the protein and ligand in terms of a docking score. These
scores are based on the binding affinity of the ligand with the protein target and are used
as the primary filter to narrow down high-impact candidates before performing more
expensive simulations. Docking simulations are commonly used in combination with more
accurate approaches to avoid false positives for pose prediction. Molecular mechanics (MM)
simulations are another popular choice [120] but lack the accuracy that is generally required
for making concrete decisions. Recently, all atoms molecular dynamics (MD) and hybrid
QM/MM approach are increasingly adopted for studying protein–ligand interactions.
It considers QM calculations for simulating the ligands and vicinity of protein where it
docks while uses MM for simulating the rest of protein structure, providing improved
accuracy over classical MM/docking simulations. Performing QM simulation even only
for ligands and protein vicinity is computationally very expensive compared to relatively
quick docking simulations. To expedite, QM simulations for ligands/protein vicinity can be
replaced with state-of-art ML-based predictive model that has recently achieved chemical
accuracy in predicting several properties of small molecules.

Figure 6. Molecular modeling methods used to study protein–ligand interactions including molecular docking simulations,
molecular mechanics methods, hybrid Quantum Mechanics/Molecular Mechanics simulations, and deep learning models
for the activity and affinity prediction.

In this regards, several deep learning architectures have been used for efficient and
accurate predictions of PLI parameters. These models vary among each other depending
upon how protein or ligands are represented within the model [121–124]. For instance,
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Karimi et al. [125] proposed a semi-supervised deep learning model for predicting binding
affinity by integrating RNN and CNN, wherein proteins are represented by an amino
acid sequence and ligands in the form of SMILES strings. Other studies have used graph
representations of ligand molecules with a string-based sequence representation of pro-
teins [126,127]. Recently, Lim et al. [128] used a distance-aware GNN that incorporates 3D
coordinates of both ligands and protein structures to study PLI outperforming existing
models for pose prediction. The development and deployment of robust and accurate PLI
models within a closed loop should be conducted in a way that encodes 3D coordinates
of both protein and generated ligand molecules while simultaneously including and dif-
ferentiating each ligand–residue interaction. This is important for accurately predicting
the desired PLI interactions and biophysical parameters while designing high throughput
novel molecules. It will contribute to efficiently narrow down the candidates during lead
optimization, which ultimately will be subjected to further experimental characterization
before it can be used for pre-clinical studies

3. Conclusions and Future Perspectives

The success of current ML approaches depends on how accurately we can represent
a chemical structure for a given model. Finding a robust, transferable, interpretable, and
easy-to-obtain representation that obeys the physics and fundamental chemistry of the
molecules that work for all different kinds of applications is a critical task. If such a spatial
representation is available, it would save lot of resources while increasing the accuracy
and flexibility of molecular representations. Efficiently using such representations with
robust and reproducible ML architectures will provide a predictive modeling engine that
would be ethically sourced with molecules metadata. Once a desired accuracy for diverse
molecular systems for a given property prediction is achieved, it can routinely be used as
an alternative to expensive QM-based simulations or experiments. In the chemical and
biological sciences, a major bottleneck for deploying ML models is the lack of sufficiently
curated data under similar conditions that is required for training the models. Finding
architecture that works consistently well enough for a relatively small amount of data
is equally important. Strategies such as active learning (AL) and transfer learning (TL)
are ideal for such scenarios to tackle problems [129–133]. Graph-based methods for end-
to-end feature learning and predictive modeling have been successfully used on small
molecules consisting of lighter atoms. For larger molecules, robust representation learning
and molecule generation parts must include non-local interactions, such as Van der Waals
and H-bonding, while building predictive and generative models.

Equally important is developing and tying a robust, transferable, and scalable state-of-
the-art platform for inverse molecular design in a closed loop with a predictive modeling
engine to accelerate the therapeutic design, ultimately reducing the cost and time required
for drug discovery. Many of the ML models used for inverse design use single biochemical
activity as the criteria to measure the success of a generated candidate therapeutic, which
is in contrast to a real clinical trial, where small-molecule therapeutics are optimized for
several bio-activities simultaneously, leading to multi-objective optimization. Our contri-
bution serves as inspiration to develop a CAMD workflow that should be engineered in a
way to optimize multiple objective functions while generating and validating therapeutic
molecules. Validation of all the newly generated lead molecules for a given target or
disease-based models, if characterized by experiments or quantum mechanical simulations,
is an very expensive task. We need to find ways to auto-validate molecules (using an
inbuilt robust predictive model), which would be ideal to save resources and expedite
molecular design. In addition, CAMD workflows should be able to quantify the uncer-
tainty associated with it using statistical measures. For an ideal case, such uncertainty
should decrease over the time as it learns from its own experience and reason in series of
closed-loop experiments.

Currently, CAMD workflows are generally built and trained with a specific goal
in mind. Such workflows need to be re-configured and re-trained to work for different
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objectives in therapeutic design and discovery. Designing and engineering a single au-
tomated CAMD setup for multiple experiments (multi-parameter optimization) through
transfer learning is a challenging task, which can hopefully be improved based on the
scalable computing infrastructure, algorithm, and more domain-specific knowledge. It
would be particularly very helpful for the domains where a relatively small amount of
data exist. Having such a CAMD infrastructure, algorithm and software stack would
speedup end-to-end antiviral lead design and optimization for any future pandemics, such
as COVID-19.
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