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The ability of phagosomes to halt microbial growth is intimately linked to their
ability to acidify their luminal pH. Establishment and maintenance of an acidic lumen
requires precise co-ordination of H+ pumping and counter-ion permeation to offset the
countervailing H+ leakage. Despite the best efforts of professional phagocytes, however,
a number of specialized pathogens survive and even replicate inside phagosomes.
In such instances, pathogens target the pH-regulatory machinery of the host cell in
an effort to survive inside or escape from phagosomes. This review aims to describe
how phagosomal pH is regulated during phagocytosis, why it varies in different types
of professional phagocytes and the strategies developed by prototypical intracellular
pathogens to manipulate phagosomal pH to survive, replicate, and eventually escape
from the phagocyte.
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INTRODUCTION TO PHAGOCYTOSIS

Innate immune cells such as macrophages, neutrophils and dendritic cells (DC) carry out an
astounding variety of functions, ranging from killing invading pathogens to cytokine production,
antigen presentation, and tissue homeostasis. Phagocytosis, an essential response of these cells –
collectively termed professional phagocytes– is an elegant and complex process involving the
recognition, engulfment, and degradation of foreign or dead material, which has unquestionable
importance in innate immunity. Phagocytes are endowed with an assortment of receptors
that initiate the internalization of diverse target particles. Some phagocytic receptors recognize
endogenous patterns on the surface of the foreign target, while others identify their prey indirectly
by interacting with opsonins (serum components) bound to the target’s surface (Flannagan et al.,
2012). Independently of the receptors and ligands involved, their interaction spawns an intricate
intracellular signaling system culminating in the protrusion of the plasma membrane around
the target, leading to its complete envelopment and internalization (Niedergang and Grinstein,
2018). After internalization, phagosomes acquire microbicidal and degradative capacity by a
graded process called phagosome maturation. The nascent phagosome sequentially fuses with early
endosomes, late endosomes, and ultimately, lysosomes, leading to the accrual of vacuolar proton
(H+)-pumping ATPases (V-ATPases), NADPH oxidase, and a variety of microbicidal peptides and
degradative enzymes (Flannagan et al., 2012). Regulation of the phagosomal pH is of importance
for most phagosomal functions. V-ATPases –that are normally enriched in late endosomes and
lysosomes– are gradually acquired by phagosomes during the course of their maturation and are
the source of their luminal acidification; they utilize energy derived from ATP hydrolysis to pump
cytosolic H+ into the phagosome lumen. Regulation of the phagosomal pH is, however, an intricate
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process, also depending on the permeability to counter-ions
and the “leak” of H+ equivalents. Why these events are of
high importance, how they are strictly regulated, and how
pathogens share strategies to subvert phagosomal pH are further
discussed in this review.

WHY IS THERE A NEED FOR
PHAGOSOMAL PH REGULATION?

Phagosomal acidification is a hallmark of phagosome maturation,
and the progressive luminal acidification results from the
gradual increase of active V-ATPases. Various key functions
of professional phagocytes require phagosomal acidification.
For example, phagocytic receptors, including Fcγ receptors,
integrins, and C-type lectin receptors such as dectin-1, are
initially internalized along with the prey but need to be recycled
to the cell surface. pH alters the affinity of the interaction between
the phagocytic receptors and their ligands. The intraphagosomal
acidification enables the dissociation and recycling of phagocytic
receptors back to the plasmalemma (Buckley et al., 2016).

Perhaps more apparent is the role of phagosomal acidification
in facilitating the microbicidal response. Low pH is critical
for the converting of zymogens, such as nucleases, lipases,
and proteases, to their active, degradative form. For example,
cathepsin B is delivered to immature phagosomes as pro-
cathepsin B. Progression to the more acidic mature phagosome
(or phagolysosome) is accompanied by a conformational change
of the pro-cathepsin B followed by its autoactivation and
cleavage, yielding the mature enzyme (Pungercar et al., 2009).
Additionally, the NADPH oxidase requires H+ to generate
hydrogen peroxide (H2O2), an important microbicidal reactive
oxygen species (ROS), inside the phagosome (Figure 1).
Superoxide anions (O2

−), the primary product of the NADPH
oxidase, are spontaneously dismutated into H2O2 in an acidic
environment, consuming luminal H+ (Nauseef, 2019; Figure 1).
Along with chloride (Cl−), H+ are also required for the
generation of hypochlorous acid (HOCl) from H2O2 by
phagosomal myeloperoxidase (MPO) (Figure 1). HOCl is yet
another powerful antimicrobial agent, and similar to H+, a
deficient supply of this anion in phagosomes is linked to defects
in innate immunity (Wang, 2016).

Phagocytes can also exert microbiostatic or microbicidal
effects by limiting the macro- and micro-nutrients available to
the ingested pathogen while inside the phagosome. To limit
intraphagosomal microbial replication, the membrane-associated
transporter of divalent metal cations natural resistance-associated
macrophage protein 1 (NRAMP1, also known as SLC11A1)
depletes the phagosome of Fe2+, Mn2+, and Mg2+ (Figure 1).
The force driving the efflux of these essential metal ions is
the transmembrane H+ gradient generated by the V-ATPase.
Attesting to its importance, mutations in NRAMP1 impair the
resistance of mice to infections with intracellular pathogens
such as Salmonella, Leishmania, and Mycobacterium (Govoni
and Gros, 1998), and susceptibility to leprosy is linked to the
human NRAMP1 gene (Abel et al., 1998). Luminal H+ are
likewise crucial for nutrient absorption after microbial killing.

For example, amino acids derived from the degradation of
dead microbial or apoptotic cells are transported out of the
phagolysosome into the cytosol via H+-coupled solute carrier
(SLC) transporters (Figure 1).

Protonation of microbial components in the acidic
phagosomal lumen will, in some cases, stimulate acid
stress responses of the microorganism, which can either
facilitate or impair their ability to survive intracellularly
(Guan and Liu, 2020).

Lastly, precise regulation of the phagosomal pH is also
required for optimal antigen presentation, an essential reaction
linking the innate and acquired immune systems. DCs, the
quintessential antigen-presenting cells, must degrade incoming
proteins to generate peptides suitable for presentation to
lymphoid cells. Unrestrained degradation, however, will yield
inappropriately small peptides; thus, an intermediate phagosomal
pH is required to prevent excessive proteolysis of antigens prior
to loading onto MHC class II glycoproteins.

HOW IS PHAGOSOMAL PH
REGULATED?

Phagocytosis can be conceptually divided into two events:
phagosome formation and phagosome maturation. Phagosome
formation refers to the binding of the target particle followed by
the actin-dependent extension of pseudopodia and lamellipodia
that are often circular that encircle and ultimately trap
the prey in a sealed vacuole, the nascent phagosome (see
review (Niedergang and Grinstein, 2018) for how to build a
phagosome). Immediately after closure and scission, the nascent
phagosome’s luminal pH reflects the extracellular pH, as the
bulk fluid inside the lumen originates from the surrounding
milieu. As stated earlier, a gradual maturation process ensues,
whereby early endosomes, late endosomes, and lysosomes fuse
with phagosomes. Phosphoinositides, Rab GTPases, soluble
N-ethylmaleimide-sensitive-factor attachment protein receptors
(SNAREs) and coat/tubulating proteins dictate maturation by
signaling and mediating fusion and fission events at the
phagosomal membrane (Fairn and Grinstein, 2012). These events
ensure that the phagosomal membrane and luminal contents
transition into a degradative and microbicidal structure, while
maintaining its size approximately constant. Fusion of the
late phagosome with lysosomes is a fundamental event. This
is the stage where most of the V-ATPases are acquired, an
event accompanied by the profound luminal acidification that
reaches pH ≤ 5 (Levin et al., 2016). V-ATPases, are large,
multi-subunit complexes that convert chemical energy stored
in ATP into mechanically driven H+ translocation (Forgac,
2007). Clearly, the number of V-ATPases inserted into the
phagolysosomal membrane will be an important determinant
of the rate and extent luminal acidification. However, not all
the V-ATPases will be equally active at all times and the
factors controlling the rate of pumping need to be considered
(Maxson and Grinstein, 2014). Remarkably, little is known
about the regulation of mammalian V-ATPases. Their activity is
affected by the lipid composition of the lysosomal membrane:
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FIGURE 1 | Regulation of phagosomal pH in phagocytes. V-ATPases hydrolyze ATP to pump 3H+ into the phagosome. As the V-ATPase is electrogenic, its
continued operation is dependent on parallel counter-ion influxes. These can be provided by rheogenic anion antiporters like ClC-7 and ClC-3 and/or through cation
efflux via channels such as TPC2 and TRPML1. Conversion of PI(3)P into PI(3,5)P2 by PIKfyve regulates TRPML1, TCP-2 and possibly also the V-ATPase itself.
A number of pathways promote the “leakage” of H+ out of phagosomes. These include monovalent and divalent cation/H+ antiporters (NHE and CHE) or
symporters (NRAMP1), Hv1 H+-selective channels and amino acid-H+ cotransporters of the SLC family. In addition, H+ is consumed during antimicrobial activities
by products of the NADPH oxidase to produce hydroxyl radicals, HOCl, and H2O2. Low luminal pH is required for the autoactivation of various phagosomal
proteases and for protonation of microbicidal effectors.

sphingolipids are required for optimal ATP hydrolysis, and lack
of these sphingolipids results in impaired acidification (Chung
et al., 2003). Moreover, the phosphoinositide PtdIns(3,5)P2,
which has gotten much attention lately as a regulator of
phagosomal ion channels, is suggested to be required for
acidification. At least in some systems, absence of PtdIns(3,5)P2
is associated with decreased V-ATPase activity and H+ pumping
rate (Li et al., 2014).

Active V-ATPases transport 3H+ per ATP hydrolyzed; the
V-ATPases deliver H+ across the membrane unaccompanied
by other ions and, as such, are electrogenic. It follows that
counter-ion fluxes must occur in parallel to enable measurable
changes in pH; in their absence, an electrical potential would
be generated that would oppose significant H+ flux. The source
of counter-ion fluxes that neutralize the electrogenic H+ flux
is uncertain; one promising candidate is the influx of Cl− via
channels or rheogenic antiporters (Kornak et al., 2001; Di et al.,
2006; Graves et al., 2008). To our knowledge, counter-ion fluxes
have not been directly analyzed in phagolysosomes. However, as

the phagolysosomal membrane resembles that of lysosomes, it
is reasonable to assume that H+ fluxes are similarly regulated.
Therefore, extrapolation of the knowledge obtained from
lysosomes seems warranted. Some Cl− conductive pathways
function as bona fide channels: these include Cl− intracellular
channels, cystic fibrosis transmembrane conductance regulator
(CFTR), and the volume-regulated anion channel (VRAC or
LRRC8) plasmalemmal regulated channels, the presence and
operation of which in lysosomes is still debated. Others, originally
thought to be conductive channels, were subsequently found to
operate as antiporters: members of the Cl− channel (ClC) family
mediate the uptake of 2 Cl− ions in exchange for a luminal
H+. The resulting charge imbalance renders these antiporters
rheogenic, effectuating the net uptake of one negative charge
when operating in their “normal” forward direction. Some
members of the ClC family, namely, ClC-4, ClC-5, and ClC-
6 are found in early compartments of the endosomal pathway,
whereas ClC-3 is found in early/late endosomes, and ClC-
7 predominantly localizes to lysosomes (Kornak et al., 2001;
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Wang, 2016), and therefore most likely also to phagolysosomes.
At first glance, operation of ClC-7 as a 2Cl−/H+ antiport
would appear counterproductive, as it tends to decrease the
accumulation of luminal H+ that is the objective of the
V-ATPases. However, it should be borne in mind that exchange
of 2 cytosolic Cl− for one luminal H+ results in the net
intraphagosomal gain of 3 negative charge equivalents, and that
V-ATPases translocate 3H+ per functional cycle. Thus, sacrificing
the loss of one H+ to enable the neutralization of the two net H+
gained appears justified.

The role of ClC-7 in establishing the acidification of lysosomes
(and presumably, by extension, of phagolysosomes) can best
be established by knocking out the antiporters. This seemingly
definitive and straightforward approach, however, has yielded
contradictory results, with some authors reporting impairment
of lysosomal acidification (Graves et al., 2008), while others
found no significant effect (Steinberg et al., 2010; Weinert
et al., 2010). It is clear, nevertheless, that the antiporter
is required for the function of lysosomes in at least some
specialized settings since mice deficient in ClC-7 display severe
osteopetrosis and retinal degeneration presumably associated
with improper endolysosomal acidification (Kornak et al., 2001).
It is nevertheless puzzling that ClC-7 knockout mice show
neurodegeneration and severe lysosomal storage disease without
elevated lysosomal pH (Kasper et al., 2005).

Redundancy with other anion transporters could explain the
apparent discrepancies reported in ClC-7-deficient animals. ClC-
3 also functions as a late endo(lyso)somal 2Cl−/H+ exchanger.
However, due to the strong voltage-dependence of ClC-3, luminal
positive voltage or acidic phagosomal pH could shift the exchange
mode to a conductive Cl− channel (Matsuda et al., 2010;
Stauber et al., 2012). On the other hand, an alternative –but not
mutually exclusive– mechanism could counteract the V-ATPase’s
electrogenic nature. Specifically, it has been suggested that an
efflux of luminal cations (as opposed to the influx of anions)
may serve to neutralize the electrogenicity of H+ pumping via
the V-ATPase. Steinberg et al. (2010) investigated the role of
both anion influx and cation efflux from lysosomes, assessing
their individual contribution to luminal acidification. In their
study, replacement of cytosolic Cl− with impermeant anions
did not significantly alter the rate of V-ATPase pumping. These
authors found that lysosomes acidified similarly in CFTR- and
ClC-7-deficient cells. Instead, they demonstrated that lysosomes
required Na+ and K+ efflux for proper luminal acidification
(Steinberg et al., 2010). A similar efflux of Na+ and K+ could
support (phago)lysosomal acidification.

Besides Na+ and K+, (phago)lysosomes also store Ca2+

(Westman et al., 2019). Lysosomes are thought to accumulate
Ca2+, at least in part, via Ca2+/H+ exchange; accordingly,
V-ATPase inhibition using well-established pharmacological
agents impairs Ca2+ loading. The Ca2+ accumulated by this
ostensibly electroneutral exchange (two H+ are thought to
exchange for each Ca2+) could in principle be released via
conductive pathways, serving as a counter-ion. Lysosomal Ca2+

is predominantly released via TRPML1 and, to some extent, via
two-pore channels (TPC) (Jin et al., 2020). Though not widely
acknowledged in the literature, TPCs are considerably more

permeable to Na+ than Ca2+ (Morgan and Galione, 2014; Guo
et al., 2017). As such, these channels could provide the route
for the efflux of monovalent cationic counter-ions needed to
neutralize the electrogenic H+ pumping. Consistent with this
notion, studies of lysosomal pH in macrophages from mice
lacking TPC-1 and TPC-2 show that lysosomes exhibited elevated
lysosomal pH under starvation (Cang et al., 2013).

Other divalent cations, including Zn2+, Cu2+ and Fe2+ are
also transported across endosomes and lysosomes by carriers
coupled to the H+ gradient, including the above mentioned
NRAMP1 and also NRAMP2. While there has been some
discrepancy regarding the mode of NRAMP coupling (i.e.,
co- vs. counter-transport), it is nevertheless clear that these
transporters are essential for heavy metal homeostasis and
for proper host responsiveness to pathogens (Forbes and
Gros, 2001). In contrast, it is clear that the endomembrane
Zn2+ transporters (ZnT) of the SLC30 family function as H+
antiporters (Baltaci and Yuce, 2018).

The concomitant efflux (“leak”) of H+ from (phago)lysosomes
is another important determinant of their steady state pH.
Multiple pathways contribute to the leak and some are probably
unsuspected at present. Known pathways include the ClC-7
(2Cl−/H+), ClC-3 (2Cl−/H+), and CHE (Ca2+/2H+) antiporters
mentioned above, as well as monovalent cation NHE (Na+ and
or K+/H+) antiporters, H+-conductive channels such as the
voltage-gated Hv1 (El Chemaly et al., 2014), and H+-coupled
amino acid symporters. How active each of these systems is and
how much they contribute to the regulation of pH is not at all
clear, although they are collectively active at steady state. This is
readily demonstrated by the alkalinization initiated immediately
after inhibition of the V-ATPases by specific blockers like
concanamycin or bafilomycin.

The acidifying effects of the V-ATPase are offset by H+
leakage, but also by H+ (equivalent) consumption by metabolic
reactions occurring in the organellar lumen. Especially in
neutrophils, which produce large amounts of ROS, H+ are
consumed inside phagosomes in the course of O2

− dismutation
and during the generation of H2O2 and HOCl. Hydrolytic
reactions involved in cargo degradation are similarly likely to
involve H+ consumption (Figure 1).

Lastly, it is worth mentioning that the lysosomal pH will
inevitably be affected by changes in the pH of the surrounding
cytosol. In this regard, it was recently reported that phagosomal
acidification is dependent on the activity of the plasma membrane
bicarbonate transporter SLC4A7, which determines the cytosolic
pH. Knockout of SLC4A7 leads to cytosolic acidification
and an associated impairment in phagosomal maturation,
v-ATPase function, and acquisition of the NADPH oxidase
(Sedlyarov et al., 2018).

HOW DO PROFESSIONAL PHAGOCYTES
AND THEIR PHAGOSOMES DIFFER IN
PH REGULATION?

Macrophages, DCs and neutrophils all internalize pathogens,
apoptotic and necrotic debris with varying efficiency and for
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different purposes (Flannagan et al., 2012; Westman et al.,
2020a). Depending on their localization and on environmental
stimuli, phagocytes respond by undergoing cell polarization
into distinct functional phenotypes. For macrophages these
phenotypes can be divided into classically activated (M1-like)
macrophages and alternatively activated (M2-like) macrophages.
Naturally, macrophage polarization affects the properties of
their phagosomes. M1-like macrophages (classically activated
by LPS + IFNγ) are associated with engulfment and killing of
pathogens, while M2-like macrophages (alternatively activated
by IL-4) prioritize efferocytosis. The buffering capacity and H+
leakage permeability remain relatively unaltered between the two
subtypes, which, however, show drastic changes in V-ATPase-
dependent H+ pumping (Canton et al., 2014). In M1-like
macrophages, the elimination of pathogens via NADPH oxidase
activity is given priority at the expense of delayed acidification.
Accordingly, M1-like macrophages show alkaline oscillations
caused by H+ consumption upon O2

− dismutation, and the ROS
generated delay the acquisition of V-ATPases. In contrast, M2-
like macrophages, have reduced NADPH oxidase activity, rapidly
acidify to clear apoptotic and necrotic debris.

Phagosomes formed by neutrophils are less acidic than those
of macrophages and DCs (Nordenfelt and Tapper, 2011). Similar
to phagosomes of M1-like polarized macrophages, neutrophil
phagosomes are more alkaline for various reasons, all related to
phagosomal ROS generation. Firstly, ROS production increases
the permeability of the phagosomes, leading to increased H+
leak. Secondly, as in M1-like macrophages, O2

− dismutation
associated with the robust NADPH oxidase activity consumes
the majority of phagosomal H+. As the lumen remains neutral
or even slightly alkaline, H+ enter the phagosome via voltage-
gated Hv1 channels to facilitate the continuous production of
high amounts of ROS. Lastly, H2O2 has been shown to impair
V-ATPase recruitment to the neutrophil phagosome, further
excluding it from the phagosome, which consequently decreases
H+ influx (Jankowski et al., 2002; El Chemaly et al., 2014).

Phagocytosis plays a significantly different role in DCs
compared to macrophages and neutrophils. Their primary
role as professional antigen-presenting cells is to alert the
immune system of the ongoing infection, rather than clearing
the invading microorganisms. How DCs process antigenic
epitopes directly affects the efficiency of their presentation to
T cells (Delamarre et al., 2005). DCs sample the extracellular
environment, engulf protein- and lipid-containing material,
and process and present antigens to lymphocytes, which is
essential for their differentiation, clonal expansion, and antibody
production. In comparison to macrophages, the phagosomes
of DCs acidify to a lower extent. Accordingly, phagosomes
of DCs acquire lower amounts of the V-ATPase, and luminal
H+ are continuously consumed by products of the NADPH
oxidase. Moreover, the oxidase tightly regulates the level of
proteolysis in the phagosomes of DCs. The consequence of the
intermediate phagosomal pH and decreased protease activity is a
more moderate digestion of epitopes, required for processing and
presentation of microbial antigens (Mantegazza et al., 2008).

Monocytes circulating in the bloodstream supply peripheral
tissues with monocyte-derived macrophages and DCs. Besides

participating in the clearance of circulating platelets, monocytes
can also internalize pathogens, a phenomenon that might play
a protective role during disseminated bacterial infection and
sepsis. Accordingly, certain monocytic populations increase their
phagocytic activity during early stages of sepsis (Döring et al.,
2015). Yet, remarkably little is known about how monocytes
establish and regulate their phagosomal pH (Döring et al., 2015).

Cells other than mammalian innate immune cells can also
ingest foreign particles. A well-studied example is Dictyostelium
discoideum, a soil-dwelling ameba which feeds on bacteria (Dunn
et al., 2018). Indeed, several important findings of phagocyte
behavior have been unveiled studying D. discoideum, which has
been used as a model system because many of its genes are
homologous to human genes. As in mammalian phagocytes, the
D. discoideum phagosome creates an antimicrobial environment
via V-ATPase-dependent acidification, delivery of hydrolytic
enzymes, generation of ROS, and regulation of metal ions
fluxes (Dunn et al., 2018). The D. discoideum phagosome
acidifies within 10–30 min by fusing with endo-lysosomes,
that deliver V-ATPases (Clarke et al., 2002). Lysosomes of
D. discoideum have been reported to acidify to ≤pH 3.5
(Marchetti et al., 2009) and it has therefore been suggested that
their phagosomes could reach a comparable level of acidity.
However, others report that D. discoideum phagosomes reach
pH ≈5.0 (Rupper et al., 2001a,b; Sattler et al., 2013), similar to
that of mammalian phagosomes. Following processing of their
contents, D. discoideum phagosomes give rise to a post-lysosomal
structure containing non-digestible bacterial remnants. Of note,
this post-lysosome has a neutral pH as the V-ATPases, together
with lysosomal enzymes, are removed for reuse by a mechanism
involving the WASH complex (Carnell et al., 2011). The
luminal contents of such post-lysosomes are expelled from the
cells by exocytosis.

HOW DO PATHOGENS HIJACK
PHAGOSOMAL PH?

Even though phagocytes are efficient in killing most pathogens
(Figure 2A), several species can survive and adapt after
phagocytic uptake. Mechanisms for survival differ, but
many unrelated pathogens focus their efforts on preventing
phagosomal acidification. Some pathogens prevent the
V-ATPase-dependent H+ accumulation by interfering with
the endolysosomal fusion machinery (Figure 2B); others
escape the phagosome. Inhibition of lysosomal fusion is a
strategy shared by several distantly related bacteria including
Mycobacterium spp. and Salmonella spp. (Buchmeier and
Heffron, 1991; Russell, 2001). M. tuberculosis (Mtb) can arrest
lysosomal insertion into phagosomes (at least partially) by
producing the phosphatases SapM and MptpB. These target
different phosphatidylinositol derivates that signal and direct
phagosomal maturation (Walpole et al., 2018). Moreover,
Mtb secretes the glycolipids phosphatidylinositol mannosides
(PIM) and lipoarabinomannan (ManLAM), which redirect
lipid-mediated trafficking by acting as decoys of mammalian
lipids (Chua et al., 2004; Mishra et al., 2011). Mtb was also
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FIGURE 2 | Strategies employed by pathogens to subvert or adapt to the acidic phagosomal pH. (A) Phagosome maturation leads to luminal acidification and
subsequent killing of the internalized prey. (B) Mycobacteria and Salmonella enterica arrest phagosome maturation by impairing endo-lysosome insertion into the
maturing phagosome. (C) Legionella pneumophila secretes into the host cytosol the effector sidK that binds and inhibits H+ pumping by the V-ATPase, leading to
impaired acidification. (D) Listeria monocytogenes secretes the pore-forming toxin listeriolysin O and phospholipases, leading to a rupture of the phagosomal
membrane. (E) Candida albicans survives and grows as filaments inside the acidic phagosome. The C. albicans-containing phagosome expands and remains acidic
for hours before permanent rupture causes H+ leakage.

reported to regulate phagosomal acidification by interfering
with the retention of the V-ATPases at the phagosomal surface
(Wong et al., 2011). S. enterica employs a type III secretion
system (TTSS) to inject bacterial effectors, including SopB, into
the cytosol. Although the enzymatic activity of SopB is still
under debate, it is clearly involved in the impairment of the
maturation of the Salmonella-containing phagosome (Norris
et al., 1998; Hernandez et al., 2004; Mallo et al., 2008). Shigella
flexneri similarly inserts effectors into its host cells using a TTSS.
One of its main effectors, IpgD, is a homolog of S. enterica SopB
and similarly dephosphorylates plasmalemmal and phagosomal
phosphoinositides (Niebuhr et al., 2002).

Some pathogens survive in phagosomes by directly targeting
the V-ATPase. Legionella pneumophilia, the causative agent of
Legionnaires’ Disease, allows phagosomes to mature but not
acidify. The bacterium produces several effectors to create a
niche supportive of its replication. Amongst these is sidK,
which Legionella secretes into the cytosol where it directly
binds to the V-ATPase, inhibiting its function (Zhao et al.,
2017; Figure 2C). Listeria monocytogenes escape phagosomes
by secreting listeriolysin O and phospholipases (Smith et al.,
1995; Nguyen et al., 2019; Figure 2D). Other intraphagosomal
pathogens, such as H. pylori, Mtb, and Candida albicans have
been reported to produce and secrete NH3, which in principle can
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bind to and buffer phagolysosomal H+, leading to phagosomal
alkalinization (Schwartz and Allen, 2006; Song et al., 2011;
Vylkova and Lorenz, 2014). Similarly, Mtb was proposed to
release an antacid compound in an attempt to neutralize acidic
phagosomes (Buter et al., 2019). However, the C. albicans-
containing phagosome was recently shown to be permeable to
NH3. Instead, it was demonstrated that C. albicans yeast convert
into filaments that grow inside acidic phagosomes and that
phagosomal alkalinization resulted from phagosomal H+ leakage
caused by the associated mechanical strain (Westman et al.,
2018). Whether the NH3-mediated buffering hypothesis applies
in the cases of H. pylori and Mtb remains to be confirmed.

Other pathogens transcriptionally adapt to survive and grow
within the microbicidal and nutrient-deprived environment of
the phagosome. C. albicans, Staphylococcus aureus, and Coxiella
burnetti all adapt to the microbicidal phagosome. Instead of
interfering with phagosomal pH, these unrelated microorganisms
use a convergent strategy, adapting metabolically to the nutrient-
deprived environment inside acidic phagolysosomes (Lorenz
et al., 2004; Voth and Heinzen, 2007; Flannagan et al., 2016).
Like innate immune cells, engulfed microbes depend on amino
acid/H+ symporters for nutrient acquisition and therefore
require an inward H+ gradient. Most bacteria can pump excess
H+ out of their cytoplasm to maintain pH homeostasis (Guan
and Liu, 2020), and many manage to grow and even replicate
within phagosomes. However, their intraphagosomal growth
does not necessarily lead to phagosomal escape. In this regard, it
was recently demonstrated that when subjected to the mechanical
stress imposed by growing microorganisms, phagosomes have
means to expand their surface area. This remarkable response
is mediated by a secondary wave of lysosome insertion that
maintains phagosome integrity and preserves the microbiostatic
environment (Westman et al., 2020b; Figure 2E).

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

While the ability of phagosomes to acidify has been appreciated
for more than a century, since Metchnikoff made his pioneering

observations, the underlying determinants and its biological
significance remain incompletely understood. The importance
of the luminal acidification is highlighted by the convergent
strategies developed by diverse pathogens to neutralize or bypass
it. They appreciated these subtleties long before researchers did
and developed means to manipulate the luminal pH to secure
their survival and proliferation.

As should be apparent from this review, our understanding
of phagosomal pH regulation and its role in immune function
are woefully incomplete. While we have made major progress
in understanding some aspects of pH regulation during
phagosome maturation, we are just beginning to appreciate
the existence and importance of phagosome resolution and
know little about pH regulation at this stage. Also, as pathways
connecting phagocytosis, microbial survival within phagosomes,
and metabolic reprogramming in both host and pathogen
are progressively revealed, the role of pH in these processes
needs to be evaluated in detail. Indeed, metabolite transport
and utilization are both exquisitely pH sensitive events. As
such, the establishment and regulation of the luminal pH
should remain a central component of future studies of host-
pathogen interactions.

Lastly, it is worth emphasizing that past studies on pH
regulation have been essentially limited to in vitro and ex vivo
studies using isolated cells. We anticipate that advances in
intravital imaging will extend these analyses to more complex,
physiological settings.
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