
fcvm-09-873582 May 14, 2022 Time: 14:55 # 1

REVIEW
published: 19 May 2022

doi: 10.3389/fcvm.2022.873582

Edited by:
Shizuka Uchida,

Aalborg University Copenhagen,
Denmark

Reviewed by:
Miron Sopic,

University of Belgrade, Serbia
M. Rabiul Hosen,

University of Bonn, Germany
Yoram Vodovotz,

University of Pittsburgh, United States

*Correspondence:
Abhijeet Rajendra Sonawane

asonawane@bwh.harvard.edu

Specialty section:
This article was submitted to
Atherosclerosis and Vascular

Medicine,
a section of the journal

Frontiers in Cardiovascular Medicine

Received: 11 February 2022
Accepted: 19 April 2022
Published: 19 May 2022

Citation:
Sonawane AR, Aikawa E and

Aikawa M (2022) Connections
for Matters of the Heart: Network

Medicine in Cardiovascular Diseases.
Front. Cardiovasc. Med. 9:873582.

doi: 10.3389/fcvm.2022.873582

Connections for Matters of the
Heart: Network Medicine in
Cardiovascular Diseases
Abhijeet Rajendra Sonawane1,2,* , Elena Aikawa1,2 and Masanori Aikawa1,2

1 Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine,
Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States, 2 Center for Excellence in Vascular
Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical
School, Boston, MA, United States

Cardiovascular diseases (CVD) are diverse disorders affecting the heart and vasculature
in millions of people worldwide. Like other fields, CVD research has benefitted from
the deluge of multiomics biomedical data. Current CVD research focuses on disease
etiologies and mechanisms, identifying disease biomarkers, developing appropriate
therapies and drugs, and stratifying patients into correct disease endotypes. Systems
biology offers an alternative to traditional reductionist approaches and provides impetus
for a comprehensive outlook toward diseases. As a focus area, network medicine
specifically aids the translational aspect of in silico research. This review discusses the
approach of network medicine and its application to CVD research.

Keywords: network medicine, cardiovascular disease, systems biology, protein–protein interaction (PPI), gene
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INTRODUCTION

Cardiovascular disease (CVD) is a leading cause of mortality and morbidity worldwide (1). In
2018, the World Health Organization reported that CVD was responsible for 31% of global
deaths (17.9 million deaths each year) (2). In the United States, CVD prevalence was 49%
(126.9 million adults) in 2018 (3). CVD comprises a number of conditions involving the heart
and vasculature, including coronary artery disease (CAD), myocardial infarction (MI), heart
valve disease, aneurysm, peripheral artery disease (PAD), heart failure (HF), cardiac arrhythmia,
cardiomyopathy, stroke, and pericarditis (4). Intermediate risk factors that contribute to CVD
development and progression include hypertension, dyslipidemia, diabetes, obesity, sleep apnea,
and hyperuricemia with serious consequences on the heart and vasculature (5). The risk factors
affecting such conditions are modifiable behavioral factors (e.g., smoking, high cholesterol diet,
high-salt diet, and physical inactivity) combined with non-modifiable predispositions (e.g., age,
race, ethnicity, sex, and genetics). Other major contributors to the burden of CVD include
pollution (6) and other environmental factors (7, 8). Although the long-standing view is that males
are at higher risk for CVD, similar lifetime risk is found in both sexes (9). However, females
have additional risk factors, such as emotional stress and depression, menopause, pregnancy
complications, family history of CVDs, and inflammatory disease, that increase their overall risk
of CVD (10).
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CURRENT CHALLENGES IN
CARDIOVASCULAR DISEASE
RESEARCH

Shared Pathobiology Among Different
Cardiovascular Diseases
While phenotypically diverse, many CVDs share
pathophysiologic intermediaries. For example, atherosclerosis
is a chronic inflammatory condition characterized by plaque
buildup in the intima of blood vessels. This dominant cause
is shared by various vascular diseases through mechanisms,
such as (i) thickening of arterial walls in CAD and PAD,
(ii) plaque rupture and thrombosis in its onset of acute
complications (e.g., MI), and (iii) changes to aortic media
causing aneurysms. However, components of the immune
system underlie atherosclerosis development and aggravation.
Dysregulation of innate immune systems may accelerate
atherosclerosis through mechanisms such as impaired
efferocytosis, sustained macrophage activation, and activation
of the NLRP3 inflammasome (11, 12). Similarly, adaptive
immune mechanisms may promote atherosclerosis through
interferon-γ, tumor necrosis factor-α, and interleukin-17 (IL-
17) (13, 14). While inflammation appears to promote several
atherosclerotic vascular diseases, including CAD, accumulating
evidence suggests various CVDs share inflammation as a
common pathology (Figure 1). Such shared pathologies motivate
a systems-based, holistic view of CVD research, along with
independent studies of different diseases.

Heterogeneity Within the Same Disease
Despite shared pathologies, individual CVDs that affect
different organs and/or tissues naturally display unique sets
of symptoms and outcomes. Within each CVD, increasing
evidence suggests heterogeneity in clinical manifestations
and underlying mechanisms. Diverse clinical presentations
of CAD, including asymptotic stenosis due to atheroma,
angina pectoris due to thrombosis, and ST-segment elevation
MI (STEMI) vs. non-STEMI (15), are some examples of
phenotypic heterogeneity in disease expression. Heterogeneity
in hypertrophic cardiomyopathy (HCM) in patients with
diverse sarcomere-independent morphological features (16) is
another example.

Disease subtyping or phenotyping, as per nosology, derives
from clinical presentations or other observable characteristics
without suggesting underlying mechanisms. It is done by
clustering subjects with similar observable clinical characteristics.
Such phenotypic assessments (i.e., identifying disease attributes
that describe clinical differences in presentation of diseases)
helps refine diagnoses and determine treatment strategy. Akin
to diverse clinical presentation of the same disease in different
patients, heterogeneity also manifests in patients’ drug response,
such as seen in HF with either preserved (HFpEF) or reduced
(HFrEF) ejection fraction. Traditionally viewed as different stages
of the same disease, evidence now indicates that these conditions
may be different disorders, with different etiologies and responses
to therapy. While they share many common risk factors (e.g.,

obesity, hypertension, and diabetes) (17), many drug trials failed
to demonstrate a similar efficacy in HFpEF to what can be
achieved in HFrEF. This discrepancy highlights the importance
of considering pathophysiology, not just clinical presentation,
in disease classification and the subsequent design of clinical
trials (18).

However, disease endotyping is defined by distinct functions
and pathobiological mechanisms as well as altered molecular
pathways. Endotyping improves patient stratification, leading
to more accurate diagnoses and tailored therapeutic strategies.
Proper endotyping requires a framework that can integrate
pathways and mechanisms with phenotypic features, molecular
measurements, and demographic data (19–21).

Multifactorial Nature of Cardiovascular
Diseases
Only a few CVDs are monogenic, including
hypercholesterolemia, either familial (mutant gene: LDLR) or
autosomal recessive (mutant gene: ARH); sitosterolemia (mutant
genes: ABCG5/8) (22); and single mutation disorders such as
Marfan syndrome, Loeys-Dietz syndrome, vascular Ehlers-
Danlos syndrome, to name but a few (23). The pathogenesis
of most CVDs is multifactorial and involves many complex
genetical risk factors, including multiple pathogenic genes,
hundreds of single nucleotide polymorphisms (SNPs), copy
number variations, and genetic loci (24). Moreover, the
combinatorial effect of multiple SNPs imparting a strong
heritable component of CVDs indicates the presence of multiple
overlapping pathological mechanisms that remain unidentified.
In the context of CVDs (25, 26), genome-wide association
studies (GWAS) indicate that identifying missing heritability
may require understanding and functional characterization
of risk factors and other intermediate traits leading to disease
development and progression (27).

Cardiovascular diseases involve not only genetic, but also
various environmental and lifestyle factors. These causal
factors determine individuals’ CAD risk and cause multilayer
heterogeneity in CVD patients. Along with genetics, data
from other omics modalities (e.g., transcriptomics, proteomics,
metabolomics, and epigenetics) provide a way to examine the
disruptions and dysregulation caused by disease. While each
type of omics data provides helpful information about changes
in molecular composition or chromatin states, integrating
them into unified models can give valuable insights into
mechanisms underpinning disease pathology (28). The success
of precision medicine in CVDs requires (i) consideration of
complex overlaps of phenotypes and shared pathologies between
different CVDs; (ii) the presence of endotypes within the same
disease; (iii) accounting for heritability through intermediate
risk factors; and (iv) integration of different omics data. Such
an approach should also be able to handle big biomedical
data, incorporate interdisciplinary research methodologies, and
provide a framework to integrate multidimensional information
about the disease.

Network medicine provides a framework that considers
different components and constituents in the system and
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FIGURE 1 | Cardiovascular diseases and some of their subtypes. Immune process lies at the core of most cardiovascular diseases.

integrates them in an architecture that unravels the disease
etiology, facilitates drug target discovery, and enables proper
disease endotyping (21, 29).

NETWORK MEDICINE: A TOOL FOR
CARDIOVASCULAR DISEASE
RESEARCH

Networks are analytical tools that allow us to represent complex
associations between different entities from complex datasets.
Networks may comprise either co-abundance, physical, or
regulatory interactions between different biomolecules such as
messenger ribonucleic acid (mRNA), proteins, or metabolites.
For example, networks may comprise interactions between
genes whose expression patterns are correlated or similar.
In some cases, networks may represent abstract associations
between entities such as genes shared between diseases and
correlations shared between clinical features. Network medicine
is a subfield of network biology, an area of systems biology that
specializes in biomedical applications of network theory, from
understanding etiology to discovering drugs and biomarkers (21,
29–31) (Figure 2).

The network medicine approach is often contrasted with
the traditional reductionist, “magic-bullet” approach of finding
unitary features (e.g., genes, SNPs, or drugs that influence the
phenotype or disease), but each approach complements the
other. Network medicine uses the complex interplay between
disparate entities−molecular, biochemical, or cellular−and binds
them together into consistent substructures, allowing distillation
of relevant biology from the data and providing a glimpse of
higher-order organization in the system under study. The major

difference between the reductionist approach, which reduces the
process into basic units, and the systems-based approach, which
considers biological systems as a whole, is that the systems-based
approach reveals emergent properties observable only when they
are whole and not by their individual constituents (32). On the
surface, the disparities between these approaches exist, but each
approach is incomplete without the other: individual molecular
measurement does not provide holistic context and systems-
level models cannot be built or validated without painstaking
biomedical experiments. By leveraging the large amount of
biomedical data generated, network medicine has ushered in a
new era in biomedicine (33).

Network medicine takes its concepts and terminologies from
the mathematical field of graph theory and from complex
networks where “nodes” are components such as genes and
proteins; the interactions between them are “edges” (34). Such
architecture assimilates information into different components
and explains how they interact with each other within a system.
Studying the network’s structural characteristics allows us to
identify important features of its components. Probing network
properties involves structural or topological characteristics like
degree of the node (the number of its nearest neighbors), the
degree distribution (probability distribution of these degrees
over the entire network), clustering coefficients (measure of the
extent to which nodes in a graph cluster together), shortest path
lengths between the nodes, diameter (shortest distance between
the two most distant nodes), and the presence of giant connected
components (connected component with significant portion
of nodes in the network). Translating these characteristics
to meaningful biological insights is one of the most useful
hallmarks of network medicine. Koutroli et al. discuss the
basic terminology and graph theoretic concepts of networks,
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FIGURE 2 | Overview of Network Medicine in Biomedical Data Analysis and its relation to systems biology.

including general network properties, definitions of centralities,
information about subnetworks and motifs, and various ways of
network visualizations (35).

Network Medicine for Multiomic Data
Integration
The advent of high throughput technologies, the decreasing
cost of sequencing, and willingness in public to allow the
use of biomedical data for research through biobanks and
consortia has yielded a vast amount of data from different
omics platforms as well as clinical and phenotypic information.
Network medicine effectively integrates information from
multiple omics data types and extracts meaningful information
and mechanistic understanding from different omics layers
(e.g., transcriptomics, proteomics, genetics, and phenomics)
(Figure 3). Several challenges remain in leveraging these
different omics datatypes, especially during integration (e.g.,
data harmonization, differences in scaling and normalization,
matching genes to proteins and metabolites, and different batch
effects in different omics layers). Krassowski et al. discuss major
considerations during data integration (36). Joshi et al. provide
a detailed discussion about each omics type in the context
of CVD (37). Use of networks to analyze biomedical data
from different omics platforms can be classified in two ways.
One approach involves obtaining information from different
omics layer separately and then assembling it. Because different
biological components work together, information from each
omics layers can provide a facet of the system under study. In
this approach, separate networks are constructed for each omics
layer using a variety of different algorithms, depending upon the
omics type, to establish a relationship among the features. After
analyzing the networks to identify important genes, proteins, or
epigenetic marks relevant to the disease in each omics modality,
the overlapping entities can be used to identify important
biomolecules relevant to the underlying biology (Figure 3A).
We can also identify relationships between different omics layers
using this approach (38).

Another approach to network medicine-based multiomics
integration involves simultaneously analyzing different
components from different omics layers by incorporating
them into unified models. Networks constructed with this
approach may have different types of nodes and the nature of
edges between different node types may differ. For example,
genes, proteins, or epigenetic marks may be connected based
on biological principals, signaling pathways, and central dogma,
along with correlated abundance levels. The edges may be present
among same or different node types such as protein–protein,
protein–DNA, or mRNA–protein. Some network methods use
mathematical inferences as an additional step to give weights to
the interactions (39). This approach is akin to a complex electric
circuit, where different components exchange information to
construct a more coherent output that informs the system under
study, in this case underlying biology of the system (Figure 3B).
It also reflects the complexity of multiomics integration, where
the function of a complete circuit cannot be inferred from its
individual components. However, unlike an electric circuit, this
approach does not need information from all omics sources;
available omics data can be built into coherent models to
probe the system. Examples of this approach include Passing
Attributes between Networks for Data Assimilation (PANDA)
(40), Similarity Network Fusion (SNF) (41), and PAthway
Recognition Algorithm using Data Integration on Genomic
Models (PARADIGM) (42), among others (39). The concept
of multiplex or interconnected networks also falls within this
category (43). Mishra et al. provide a detailed list of variety of
methods and tools for integrative omics (44).

Network Medicine and Artificial
Intelligence
Network medicine, artificial intelligence (AI), and/or machine
learning are at the core of systems biology, which aims to identify
the molecular determinants of disease. Using various classifiers,
machine learning—supervised or unsupervised—is a major tool
for identifying data patterns. Advanced models of machine
learning include deep learning models that allow construction of
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FIGURE 3 | Network medicine approaches for multiomics biomedical data integrations. (A) Networks for individual omics types are constructed and analyzed
separately. Information from each omics layer is aggregated to obtain biological insights. (B) Integrative approach where different omics data are used to infer
interactions between various biomolecules. Different types of biomolecules from an omics platform are connected in coherent network structures, facilitating
information exchange through mechanisms like message passing.
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various architectures of neural networks and innovations in loss
functions, consequently performing different tasks in a variety of
applications. These learning-based approaches are valuable when
identifying diagnostic, predictive, prognostic, or therapeutic
signatures of disease, including biomarkers. Despite many
parallels (e.g., unsupervised machine learning as modularity
detection in networks), significant differences exist between
networks- and learning-based approaches; primary among them
is their black-box nature and lack of interpretability of the latter.
In contrast to linear regression and decision trees, which are
easier to understand and have fewer parameters, deep learning
algorithms base their decision on intricate neural networks with a
huge number of weight parameters. Even knowing all the weights
does not allow comprehension of a model’s behavior, leading to
its black-box nature.

One of the most lucrative outcomes of biomedical big data
analysis is the use of multiomics approach to identify new
molecular or clinical biomarkers of disease. Such biological
signatures could include disease-associated proteins, mutations,
deletions, and copy number variation of genes identified by
various omics platforms. Biomarker discovery has benefitted
greatly from the advent of AI, especially its ability to handle
large multivariate and unstructured clinical data (e.g., electronic
health records and data from imaging modalities such as chest
computer tomography and X-rays). These types of data are
not easily amenable for network medicine approaches due
to their size, complexity, heterogeneity, incompleteness, and
unstructured nature. However, the strength of network medicine
lies in leveraging omics data to find important biomolecules that
serve as “network biomarkers” (45). Such biomarkers are often
identified using genes responsible for network topology changes
due to disease. For example, biomarkers for major adverse
cardiac events were identified using protein interactions and
signaling pathways (46). Other advances include using network-
based models to identify blood-based and circulating biomarkers
(47–49). The following sections discuss some examples in
which network medicine approaches identify CVD biomarkers.
Similarly, AI-based biomarker discovery using deep phenotyping
with multiomics and analysis of digital electrocardiogram and
data from wearable devices shows promising results in HF (50),
left ventricular systolic dysfunction (51, 52), and arrhythmia (53).
Although reviewing specific applications of AI in cardiovascular
contexts exceeds the scope of this review, several interesting
review articles address this area (54–58). Giordano and colleagues
discuss the efficacy and application of machine learning and AI in
clinical decision making when developing personalized models of
patient care (59).

Article Outline
Network medicine has grown tremendously over the years,
producing many successful applications across various disease
areas and pathological landscapes. This growth spurred several
excellent review articles and books that discuss its different
aspects (30, 60–62). Notable among these is a series of articles
by Loscalzo and colleagues and other torchbearers for network
medicine (29, 63, 64) who have discussed different facets of
network medicine approaches that focus on specific disease

areas, including pulmonology (60), pathobiology (65), cardiology
(66, 67), and coronavirus disease 2019 (68–70). These reviews
discuss various concepts, applications, applicability to specific
problems, practices, pitfalls, and above all, the promises of
network medicine.

Many other interesting reviews and books discuss various
aspects of network medicine in general and in the context
of CVD. While some focused on discussing different omics
technologies and how network methods can be leveraged to
analyze them, others discussed individual network projects in
detail or the philosophical underpinnings of the field, providing a
context for understanding the contributions of network medicine
to biomedical advances. The present review article is at the cross-
roads of these ideas. We do not provide a chart of network
methods, but rather try to inculcate an understanding that
will empower researchers to select a specific network medicine
approach, depending on data type, disease context, and outcome
expectation. For this purpose, we rely on our previous review
article (71), which discusses network medicine in the context of
analyzing biomedical big data from different omics platforms.
We also classified network medicine research into three different
paradigms: (i) an interactome of protein–protein interactions
(PPIs) with other omics data to elucidate disease context, (ii)
pattern analysis in the co-abundance of measured analytes in
disease, and (iii) deciphering gene regulation principles through
phenotype-specific networks (Figure 4). Here, we use that
classification template to discuss the application of network
medicine and review several examples and applications in CVD
contexts. While these paradigms provide a bird’s eye view of
the field, we will cover CVD applications where PPIs and co-
expression networks are used together.

NETWORK MEDICINE PARADIGMS FOR
CARDIOVASCULAR DISEASE
RESEARCH

Applying Protein–Protein Interactions in
Cardiovascular Diseases
Large-scale efforts to collect data have yielded far-reaching effects
on biomedical research. For example, the Human Genome
Project mapped the human genome and the Encyclopedia of
DNA Elements (ENCODE) (72) provided functional elements of
the genome. Consortia such as the Human Protein Atlas (HPA)
and Genotype-Tissue Expression (GTEx) provided detailed
atlases of human proteome and transcriptome in different tissues,
respectively. Data from these efforts provided a comprehensive
“parts-list” of cellular machinery that approaches like network
medicine can assemble. Similarly, high-throughput mapping of
protein—protein interactions (PPIs) is a significant milestone in
biomedical research (72–77). PPIs are networks with proteins
as nodes and interactions between them as connections. PPIs
are a collection of interactions between proteins measured in
various ways, including a yeast-two-hybrid system (78, 79),
co-immunoprecipitation followed by mass spectrometry (80,
81), literature curation (82), or collection of various evidences
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FIGURE 4 | Schematic of three paradigms for combining biological networks with phenotype-specific biomedical data, such as a set of disease genes and
transcriptomic profiles for case and control groups. (A) Identification of disease-associated network components within the interactome. (B) Co-expression-based
network modeling to identify disease biomarkers. (C) Constructing phenotype-specific GRNs to identify perturbations and condition-specific regulatory changes.
Figure borrowed from Sonawane et al. (71).

(83–87). Primarily, PPIs are undirected because the direction of
interactions between proteins is undefined. Previously, paradigm
1 of our earlier review article discussed different features of
PPIs in detail (Figure 4A). Here, we recap some important
features and mention the studies that have implemented them
in the cardiovascular context. We do not intend to provide an
exhaustive compendium of all the studies, but rather intend to
discuss a few exemplar research studies to elucidate the efficacy
of the approach.

Using Topological Properties of Nodes in
Protein–Protein Interaction Networks
Protein–protein interactions can be used to study the importance
of proteins via networks’ topological properties, such as
“hubness” (i.e., nodes, or proteins, whose links with other
nodes are higher than average) (88), and to identify densely
interconnected subsets of proteins in the given biological
context (89). Even though PPIs are incomplete (90, 91) and
biased to contain edges of more extensively studied proteins,
leveraging them helps identify important proteins in each disease
context via the topological properties of individual nodes in
the networks (92). Centrality measures like degree, closeness
(i.e., the proximity a node to all other nodes), betweenness
(i.e., the number of shortest paths traversing a node) allow

study of the role a node (protein) plays in the information
flow of the network (e.g., PPI) (93). The centrality properties
of the nodes can be used to identify potential drug targets.
For example, removing nodes may have a high impact on the
stability of the disease network, thus indicating the lethality
of the target. Certain combinations of centrality measures can
elucidate the role of specific proteins in the PPI. Nodes with
low degree and high betweenness indicate they are “connector-
nodes” that bridge disjointed network neighborhoods, possibly
representing different diseases, phenotypes, or pathways. Several
examples of applying the network properties of PPIs to CVD
exist (94). For example, NEDD9 critically connects adaptive
and pathogenic fibrosis in the context of CVD found via its
betweenness centrality (95). Sun et al. used centrality measures
to compare various disease categories, providing novel ways
to evaluate potential drug targets (96). Other applications of
nodes’ topological properties to CVDs include heart failure (97),
calcified aortic valve disease (CAVD) (98, 99), rheumatic heart
valve disease (100), and ischemic stroke (101). Like network
properties of individual genes, leveraging pathways’ properties
can glean the hierarchical structure of disease organization. For
example, control centrality identified the statistical significance
of 66 pathways in type 2 diabetes (102). This approach also
identified the peroxisome proliferator-activated receptor alpha
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(PPARα) pathway as a potential causal factor, and thus a drug
target in vein graft disease (103).

When combined with phenotype-specific proteomics
data, PPI networks also participate in identifying new
molecular pathways or biomarkers of CVD. For example,
extracting a cardiovascular-specific subnetwork along with mass
spectrometry data enabled “knowledge-integrated biomarker
discovery” in CVD (46). As discussed previously, the topological
properties (e.g., centralities and modules) of nodes within a
network can aid investigation of their biomarker status.

Integrating PPIs with gene expression levels, protein
abundances, and genotype information may aid the study of
disease heterogeneity and enable precision medicine in CVD.
Combining patient-specific genotype and clinical data into
PPI networks to obtain patient-specific genotype–phenotype
relationships is critical for personalized medicine (66). For
example, genetic variants can be mapped onto disease modules
to create personalized networks, or “reticulotypes” (65, 68, 104).
Maron et al. used the reticulotypes approach to construct an
individualized network that distinguishes between hypertrophic
and dilated cardiomyopathy (104). In respiratory diseases
such as asthma (105), allergy (106), and chronic obstructive
pulmonary disease (107), improved endotyping can be replicated
in cardiovascular applications (108). Leopold et al. discussed
endotyping in the context of CVD (109).

Proteins do not work in isolation; rather, they work together
to perform different biological functions. In the PPI network,
the presence of a high degree of clustering and topological
modules (i.e., groups of proteins connected more among each
other than with other randomly selected sets of proteins) reflects
the formation of such protein complexes (29, 110). Often, such
modules or clusters are specific to biological functions (111,
112). Various algorithms can identity modules and subnetworks.
As discussed in depth by Lazareva et al., these methods
use different strategies (e.g., greedy algorithms, evolutionary
algorithms, diffusion-flows, or random walks), each with their
own strengths and weakness (113).

Studying Disease Biology Using Protein–Protein
Interaction Networks
Protein–protein interactions networks are undirected and, by
design, lack disease context (114). In most cases, “seed” genes,
identified through GWAS; differential abundance of analytes,
such as proteins or genes; or various other means introduce
disease context in the PPI network. The idea that each disease has
a unique discrete subnetwork (115), and that such subnetworks
overlap and share pathobiological mechanisms, has had a broad
impact on the study of disease biology (116). The unified manner
of viewing different diseases together has revolutionized the
field (117).

Further, PPIs have been incorporated into a larger framework
of multilevel networks containing interactions between genes,
diseases, proteins, and drugs (118), and have been used to find
associations between various CVDs (119). For example, some
studies investigated GWAS-based seed genes in the context
of subnetworks of PPIs in CAD (120–122). Ghiassian and
colleagues performed one of the more interesting applications

of disease biology on PPI in the context of CVD (117). Their
study identified crosstalk between the molecular mechanisms
underlying the inflammatory, thrombotic, and fibrotic processes
that use endophenotype-specific modules as well as macrophages
as key mediating cell types in these modules (117). A recent
study used disease modules to investigate the pathobiology of
the calcification process in the context of identifying several
genes that overlapped with three other mechanisms (i.e.,
inflammasome, thrombosome, and fibrosome) (123). A different
study examined disease subnetworks that use PPI in autophagy,
a cellular process linked to hypertensive heart disease; the
networks provided a global view of autophagy pathways,
including candidate interacting proteins (124). PPI networks
have allowed us to uncover pathways that drive abnormal
development of the heart’s anatomical structures in congenital
heart diseases (125, 126). In addition, PPI-based disease modules
have been implemented in the context of calcific aortic valve
disease (99). For example, we obtained proteomic subnetworks of
calcific and fibrosa layers from calcified aortic valves and studied
them in the context of metabolic, cardiovascular, inflammatory,
and malignant diseases in humans using network closeness. This
showed that the calcific stage subnetwork was closer to vasculitis,
dermatomyositis, systemic lupus erythematosus, pulmonary
embolism, pulmonary fibrosis, intracerebral hemorrhage,
Takayasu arteritis, hypercholesteremia, bronchiolitis obliterans,
non-alcoholic fatty liver disease, atherosclerosis, myocardial
infarction, and hypercholesteremia. These important findings
help overcome the incompleteness of PPIs, and allow for the
study of diseases based on shared expression patterns and
comorbidities. Another interesting aspect of the study was the
leveraging of topological properties of nodes in the networks, as
described above. The betweenness centrality of the calcific stage
and the fibrosa layer stage network showed that fibronectin-1,
along with PSMD3 and PSMA1, have high betweenness in both
networks; all are known to contribute to CAVD (99). This study
also provided a high-resolution spatiotemporal atlas of the
combined valvular tissue, layer, and cell proteome as well as a
comprehensive repository of the molecular drivers of CAVD.

Interactome and Drug Discovery
Protein–protein interactions network analysis also aids in the
discovery of drug targets. Drug target discovery is a multifaceted
and multicomponent process involving meticulous steps of
progression target identification and prediction, followed by
mechanistic validation studies that eventually lead to drug
candidate design, screening, and clinical trials (127). Traditional
methods of target or drug discovery are hypothesis-driven or
biochemistry-informed. The brute-force methods of individually
testing many drug candidates lead to high cost and have a
high potential of failure. Reductionism in conventional drug
discovery presents several challenges (68, 128). The systems-
based approach differs from conventional means by efficiently
integrating data and then studying the systemic effects of a drug
by developing concepts like molecular disease networks (29).
The strength of network medicine lies in its ability to integrate
multiple sources of evidence and omics layers and identify
potential targets of repurposed drugs, off-target effects, and
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mechanisms of action alongside empirical evidence needed for
drug development (67, 129, 130). In contrast to the hypothesis-
driven approach of drug discovery, which involves formulating
a linear hypothesis and testing it with conventional means (e.g.,
genetically altered mouse strains), the systems-based approach
utilizes unbiased omics, bioinformatics, and network analysis
to predict clinical impact, ultimately accelerating the process
and increasing the success rate. For example, our group studied
inflammation in the context of chronic kidney disease, a major
cardiovascular threat, to explore mechanisms by which indoxyl
sulfate promotes macrophage activation (131). We demonstrated
that unbiased proteomics analysis provided different clusters
of proteins that shared an expression pattern over time. We
studied the clusters using “network-closeness” to proteins of
different diseases that use protein interaction networks to
provide the disease context of the clusters. We showed that
proteins in such clusters implicate significant associations with
atherosclerosis and myocardial infarction, and that Notch
signaling acts as a key regulator of pro-inflammatory macrophage
activation by indoxyl sulfate, a uremic toxin. In the same study,
in vitro mechanistic experiments further demonstrated that
OAT/OATP-family transporters and the ubiquitin-proteasome
pathway mediate indoxyl sulfate-induced Delta-like ligand 4-
Notch signaling and macrophage activation (131).

Similarly, we used a systems-based approach to identify new
regulators of macrophage activation through stimuli such as
interferon-γ (IFN-γ) and IL-4. First, we identified proteins
that increased and decreased in pro-inflammatory or in anti-
inflammatory macrophages, respectively, and embedded them
onto protein interaction networks. Next, we studied the closeness
of these proteins to clusters of other diseases and determined
that CAD was the closest disease cluster. Again, this approach
derives credence from the aspect that disease genes do not act
in isolation or randomly, but rather in consonance with similar
biological pathologies. Subsequently, we used in vitro and in vivo
validations, including single-cell analysis revealing heterogeneity,
and established the role of ADP-ribosylation proteins PARP9
and PARP14 in human primary macrophages (127). The study
also opened a new path toward global, unbiased assessment
of ADP-ribosylated proteins in activated cells and tissues by
using high-resolution mass spectrometry, which also involves
network medicine for assessing biological significance (132,
133). Li and colleagues present another example of extensively
applying network theory to drug discovery for CVD (119).
They examined multilayer interactions between CVD drugs,
targets, and genes to identify relationships between different
cardiovascular disorders (119).

Correlation-Based Network Approaches
to Investigate Cardiovascular Disease
Pathology
As discussed previously, phenotypic context does not come
naturally to the interactome or PPI because they are a
static map of protein interactions. Disease context must be
embedded onto them through seed genes or proteins. By design,
co-expression-based networks are built by using measured

analytes in the disease or phenotypic context. In our previous
review, paradigm 2 discussed different ways to leverage co-
abundance information to construct co-expression networks that
use a variety of network methods and correlation measures
(Figure 4B). Identifying biomolecules expressed at similar
levels can provide insight on their cooperative function or
how they co-regulate each other or other constituents of
the biological process (134–136). Among many methods that
calculate co-expression networks, weighted gene correlation
network analysis (WGCNA) remains among the most widely
used methods in cardiovascular medicine. WGCNA builds co-
expression networks by calculating the correlation between
genes and organizes the network based on identified highly
correlated clusters of genes. After identifying the “eigengene”
(i.e., the first principal component of the expression matrix
of the corresponding module) of each cluster as representative
of that cluster, WGCNA determines its associations with
disease or other clinical phenotypes, thus revealing which
cluster is most informative of the given phenotype. Numerous
applications of this method have been applied in a variety
of CVD areas. For cardiac hypertrophy and failure, co-
expression module analysis identified ZIC2 as a regulator of
failing myocardium (137). Another study investigated cardiac
hypertrophy by using co-expression analysis and micro-RNA
(miRNA) data to identify the involvement of PPARα in sex
differences (138). Regarding septic cardiomyopathy, WGCNA
identified the critical role of various genes (139) in obesity-related
cardiomyopathy (140), hypoplastic left heart syndrome (141),
viral myocarditis (142), and ischemia-reperfusion in patients
undergoing coronary artery bypass graft surgery (143). Some
studies of pulmonary arterial hypertension imparted critical
understanding of its pathogenesis by using gene co-expression
networks (144–153). Analysis of transcriptomics networks in
nearly 3,600 individuals with blood pressure measurement
identified SH2B3 as a key regulator of blood pressure (154).
In a major investigation, Bertero and colleagues used network
analysis to implicate miRNA-130/301, which targets PPARγ

in different cell types, in the development of pulmonary
hypertension (155). In the context of hypertension, a comparison
of co-expression hub genes and miRNA revealed important
associations in the interaction between gene co-expression and
miRNA (144). Others applied WGCNA analysis to diseases
such as non-syndromic thoracic aortic aneurysm (156) and
acute aortic dissection (157) using module trait association
analysis. Genotyping and transcriptomics data from the MAGnet
consortium helped Cordero and colleagues determine that
PPP1R3A regulates HF pathology (158). Furthermore, a co-
expression network investigation revealed central transcriptional
regulators in macrophage activation under different stimuli,
which is an important research problem in atherosclerosis
development and progression (159).

Using Correlation Networks With Protein–Protein
Interactions to Identify Key Driver Nodes
In addition to identifying disease modules and “eigengenes”,
researchers frequently pair co-expression networks analysis
with PPIs to identify modules’ molecular regulators. Key

Frontiers in Cardiovascular Medicine | www.frontiersin.org 9 May 2022 | Volume 9 | Article 873582

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-873582 May 14, 2022 Time: 14:55 # 10

Sonawane et al. Network Medicine in Cardiovascular Diseases

driver analysis (KDA) is innovative in this regard (160–162).
KDA projects relevant disease modules (e.g., clusters from
WGCNA) onto reconstructed Bayesian regulatory networks.
The inference step of the Bayesian regulatory gene network
(163) provides directionality to gene–gene interactions in co-
expression modules that use text mining, which is then leveraged
to determine the hierarchical order between genes, leading to
identification of the most essential genes—the key driver genes
(KDGs)—as master regulators of the modules under study (164,
165). SWItchMiner (SWiM) is another promising approach
that integrates co-expression networks with PPIs (166). SWiM
provides phenotype-relevant proteins that can act as therapeutic
targets that function as a switch between different phenotypic
states (e.g., proteins that can transition disease networks to
control networks). Used to study ischemic and non-ischemic
cardiomyopathy and other diseases, SWiM allowed construction
of a new way of studying human disease networks that employ
switch genes as molecular determinants of the diseases (167).

This article reviews some exemplary applications in CVD
that use co-expression networks. Several studies investigated
CAD using co-expression networks and KDGs extensively
(168–170). For example, Zhao and colleagues devised an
integrative approach to incorporate genotype information and
transcriptomic profiles along with tissue-specific gene regulatory
networks to identify potential key regulators of CAD (171).
Further investigation of liver-specific gene regulatory networks
revealed MAFF as an important key driver and transcription
factor (TF) regulator of low-density lipoprotein receptors in
CAD (172). Talukdar et al. used multi-tissue co-expression
network modules and correlation between module eigengenes to
identify KDGs in CAD (173). Large-scale data collection efforts
focusing on CAD, such as the Stockholm Atherosclerosis Gene
Network (STAGE) (174) and its continuation, Stockholm-Tartu
Atherosclerosis Reverse Networks Engineering Task (STARNET),
collected genetic and transcriptomic datasets from seven vascular
and metabolic tissues (i.e., liver, subcutaneous adipose, visceral
abdominal adipose, skeletal muscle, blood, atherosclerotic-
lesion-free internal mammary artery, and atherosclerotic aortic
artery) from 600 CVD patients. These studies accelerated “multi-
tissue multiomics” integrative analysis (175–178). Comparative
analysis of STAGE and STARNET co-expression networks
showed broad reproducibility of results (179). Other important
studies, such as the Integrated Personal Omics Profiling
study (180) and the Pioneer 100 Wellness Project (181),
accelerated CVD research in multiple directions. Leon-Mimila
and colleagues provided a detailed review of various biomedical
data collections in CVD, along with the omics information and
integration results (28). Another study used similar approaches to
investigate how antiretroviral therapy for HIV affects CAD (182).

Cardiovascular disease shares the same risk factors as
cardiometabolic diseases including type 2 diabetes, chronic
kidney disease, and non-alcoholic fatty liver disease. Hence,
studying these diseases in the context of different tissues
allows us to understand their common molecular framework.
Notably, Cohain et al. used STARNET’s co-expression modules to
investigate the conflicting roles of lipid and glucose metabolism
in diabetes and CAD (183). While most co-expression analyses
conclude by alluding to the roles of important genes in a module

and their regulators in just one system, they replicated relevant
multi-tissue, co-expression network modules (i.e., liver glucose
and lipid determining) in three different studies, including
an obesity cohort, GTEx, and a mouse model (183). Such
multi-system confirmation adds due credence to downstream
analysis and provides confidence for validated targets (183).
Along with CVDs, the STARNET database is a useful resource
to study cardiometabolic diseases. Koplev and colleagues used
STARNET to construct co-expression-based gene networks
between cardiometabolic diseases and CAD (184). Similarly,
Shu et al. explored shared regulatory networks between type
2 diabetes and CVD and also identified 15 KDGs, including
HMGCR, CAV1, IGF1, and PCOLCE, for both diseases (185).

Correlation network analysis is not restricted to
transcriptomics data, and several studies show innovative
application to other omics data (186, 187). For example, our
group constructed co-abundance networks of proteins for
IFN-γ and IL-4 stimulated in the human macrophage-like
cell line THP-1, demonstrating that proteomics can identify
GBP1 and WARS as potential regulators of pro-inflammatory
signaling. Using a WGCNA framework, DNA methylation data
elucidated associations between carotenoids and plasma lipid
concentrations (187). Another study investigated modules in
protein co-expression networks from human serum to find
associations with various diseases like coronary heart disease,
HF, and type 2 diabetes, and “eigenproteins” to predict future
events and disease progression (188). An investigation of the
topological properties of network proteins yielded new insights
into hub properties, which were studied earlier primarily in
protein–protein interaction networks but seldom in protein
co-expression networks (189). However, applying WGCNA-like
approaches to proteomics data requires consideration of the
distribution, missingness, thresholding, and normalization for
identifying relevant disease-specific modules (186).

Leveraging Gene Regulatory Networks
to Understand Cardiovascular Disease
Pathology
Because co-expression networks themselves are symmetrical
(i.e., do not include directionality between interactions),
directionality pertaining to regulator and effector nodes require
inclusion by design. Gene regulatory networks (GRN) comprise
interactions between effector nodes, such as TFs, other signaling
proteins, and receiver nodes that are genes (Figure 4C).
While there is no consensus on the proper definition of GRN,
most networks that include co-expression between genes use
this broad terminology. Gene regulation studies primarily
investigate the regulatory potential of TFs in cellular, tissue,
or disease contexts. Many algorithms have been proposed to
leverage different omics datatypes, primarily transcriptomics and
transcription factor binding, to infer gene regulatory networks.
To establish directionality between gene–gene interactions,
suggested strategies include model-based approaches like
Boolean networks, Bayesian network models; similarity-based
approaches like linear and non-linear co-expression; and
conditional mutual-information network models. Most apply
to bulk data such as the Algorithm for the Reconstruction
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of Accurate Cellular Networks (ARACNE) (190) and context
likelihood and relatedness (191), but some methods include
single-cell data such as the SCENIC method (192), the GENIE3
algorithm, and the SCODE method (193). Methods, including
PANDA (40), that explicitly model the role of transcription
factor to infer their regulatory gene targets using message
passing between co-expression and the interactome are useful
across many diseases (194–197), sex-specificity (198), and the
regulatory architecture of healthy human tissues (199). This
message-passing approach now includes a variety of multiomics
data types such as miRNA in PANDA using MicroRNA
Associations (PUMA) (200), chromatin accessibility in Seeding
PANDA Interactions to Derive Epigenetic Regulation (SPIDER)
(201), and genotypes in Estimating the Genetic Regulatory Effect
on TFs (EGRET) (202). In the context of CVD, an investigation
of mitral valve disease that used PANDA to explore the role of
serotonin 5-HT dysregulation on mitral valve interstitial cells
revealed increased expression of 5-HTR2B and 5-HT receptor
signaling (203).

Regulatory networks centered on transcription factors have
played an important role in CVD research. Macrophage
activation has an important implication in atherosclerosis.
Network analysis of macrophage activation in response to
bacterial lipopolysaccharide (LPS) revealed the role of activating
transcription factor 3 and NRF-2 during inflammatory response
(204). Using GRNs to integrate gene expression, histone
modifications in promoters and enhancers, and TF motifs in
different human tissues, Schmidt and colleagues showed that
expression levels of relevant genes correlated with chromatin
accessibility in different tissues (205). Another study used GRNs
to explore the role of Toll-like receptors in transcriptional
control of macrophage activation (206). A similar approach
was considered for studying epigenetic architecture, histone
modifications, and gene expression in pulmonary arterial
hypertension (207). GRN analysis has aided the study of
atherosclerotic plaques (208, 209) and heart failure (158).
Moreover, differential network analyses are useful tools when
describing the sources of dysregulation between two phenotypes
(31, 210) (Figure 4C).

An emerging target of CVD therapeutics is non-coding RNAs,
especially due to their stability in plasma and confinement
in extracellular vesicles. Additionally, miRNAs and long non-
coding RNAs (lncRNAs) serve as biomarkers of CVD (211–213).
Particularly, lncRNAs regulate macrophage functions and thus
play a significant role in CVD pathophysiology (214). Some
studies determined a regulatory relationship between different
mRNAs and non-coding RNAs (215, 216). Network medicine can
investigate such an interplay of non-coding regulatory network
mechanisms (217).

FUTURE PERSPECTIVES ON NETWORK
RESEARCH IN CARDIOVASCULAR
DISEASE

Thus far, network-based studies in CVD have identified key
molecular protagonists in disease progression. Many studies also

identified changes to biological networks as sensors or mediators
of the underlying pathobiology. Disease modules and their
shared features between different diseases provide insight into a
larger organization of molecular networks in different diseases,
highlighting both unique and overlapping pathobiologies and
instigating new ways to study diseases.

In certain areas, network medicine progress can aid CVD
research, especially by resolving molecular mechanisms to infer
proper endophenotypes. Like most complex diseases, CVD
involves multiple common signaling and molecular pathways
that are shared between different diseases. Combining these
pathways can allow construction of unified disease networks.
For example, one study performed endotyping in asthma by
combining Ig-E, IL-5, IL-4, and IL-17 pathways (106). Similar
networks can be constructed for specific CVDs (e.g., CAD or
calcific aortic valve disease) by combining relevant pathways and
signaling cascades. Importantly, unified networks are amenable
dynamical simulations using Boolean logic transitions, where
environmental stimuli or genotype risk can be incorporated
as inputs and activation of specific pathways can be observed
as the output (218). This approach will allow proper patient
stratification, because the discriminating responses will come
from the set of activated pathways rather than clinical outcomes.
Another potential application involves studying macrophage
activation by combining different biological pathways relevant
to different stimuli (e.g., IFNγ, LPS, or IL-4). The networks
will reflect different dynamic states, which may help illuminate
the underlying mechanisms behind the spectrum of macrophage
inflammatory response.

By combining network medicine with machine learning and
AI, disease endotyping of various CVDs has great potential.
Methods such as LIONESS allow construction of sample-specific
networks, which permit association of demographic and clinical
characteristics with each sample network. When applied to
CVD, we can construct gene correlation networks for different
subjects in the dataset and compare changes in edge-weights
between different groups (e.g., disease and control) to find
differentially changed interactions. While these networks differ
from reticulotypes, which are genotype driven, sample-specific
networks can aid precision medicine approaches in CVD.

Additionally, CVD research may benefit from integrative
and diverse omics types in network models. Implementing
methods such as Multi-omics Factor Analysis (MOFA) (219) and
Similarity Network Fusion (SNF) (41) can illuminate molecular
mechanisms underpinning distinct CVDs. In the context of
gene regulation, combining the chromatin architecture through
assays such as DNase-sequencing, ATAC-seq, or other epigenetic
marks (e.g., DNA methylation) using SPIDER (201) to construct
phenotype-specific gene regulatory networks can yield important
regulators of disease biology. Enhancers play a crucial role in gene
regulation and often act as an intermediary between genotype
and phenotype relations; however, finding the genes they regulate
is very challenging. Using GRN models with information about
3D organization of the genome (e.g., Hi-C) to find topologically
associated domains combined with histone modifications on the
DNA will allow us to identify not only enhancers in different cell
types, but also the genes they regulate.
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Combining and extending methods like PANDA and PUMA
can explore the regulatory relationship between mRNA–miRNA–
lncRNA by modeling different mechanisms of action. Such multi-
dimensional networks will facilitate new therapeutic strategy for
CVD and help understand its development.

Along with the number of technologies that identify diverse
omics types, considerable success has been achieved at the
cellular level in terms of these measurements. By allowing
both hypothesis-driven and unbiased screening of newer cell
types in the population, single-cell RNA sequencing technology
has become almost a mainstay in various experimental
explorations (220). Similarly, single-cell ATAC-sequencing and
single-cell multiomics platforms with simultaneous ATAC-seq
and gene expression can help construct regulatory networks for
different cell states or types, allowing concomitant inference
of regulatory landscape behind the expression profiles. In the
context of CVD, a large amount of single cell multiomics
data has already been generated. New network methods to
study gene regulation using single cells will provide a fine
perspective on various cell types and cell states affected by
disease pathologies.

One of the most promising outcomes of the growing
application of network medicine approaches in various diseases,
including CVD, is the impetus to target discovery and well-
designed clinical trials. Network medicine, along with machine
learning-based approaches, provides a solid framework for
identifying disease mediator biomolecules as drug targets.
Moreover, the network view of drug development, which
incorporates topological and functional modules of disease
subnetworks, will allow repurposing already-approved drugs by
finding alternate targets.

CLOSING THOUGHTS

Despite its roots in graph theory and social networks, use
of a network framework in biology formally began around
the same time as publication of a draft human genome. In
principle, the last 20 years of scientific progress in a variety of
technological breakthroughs in data generation have outpaced
the development of analytical frameworks required to process the

vastness and depth of biomedical big data. Network medicine
derives its methodological advancements from innovations in
the field of social network analysis and complex network
theory in physics. This vast area involves different facets and
different types of networks, some elaborated in this review.
Often, networks are (mis)used as merely a visualization tool
to demonstrate differentially expressed genes or proteins and
display functional enrichment analysis results; in other cases, we
use complicated mathematical structure to extract information
from a network, thus making it an esoteric construct restricted to
specialists. Both problems may have limited the allure of network
medicine. With increasing interdisciplinarity of scientists in
cardiovascular research, network medicine is well poised to study
the complexity, ontology, and epistemology of biomolecules in
CVD context and to provide translational benefits.
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