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A machine learning interpretation 
of the contribution of foliar 
fungicides to soybean yield 
in the north‐central United States
Denis A. Shah1*, Thomas R. Butts2, Spyridon Mourtzinis3, Juan I. Rattalino Edreira4, 
Patricio Grassini4, Shawn P. Conley5 & Paul D. Esker6

Foliar fungicide usage in soybeans in the north-central United States increased steadily over the past 
two decades. An agronomically-interpretable machine learning framework was used to understand 
the importance of foliar fungicides relative to other factors associated with realized soybean yields, 
as reported by growers surveyed from 2014 to 2016. A database of 2738 spatially referenced fields 
(of which 30% had been sprayed with foliar fungicides) was fit to a random forest model explaining 
soybean yield. Latitude (a proxy for unmeasured agronomic factors) and sowing date were the two 
most important factors associated with yield. Foliar fungicides ranked 7th out of 20 factors in terms 
of relative importance. Pairwise interactions between latitude, sowing date and foliar fungicide use 
indicated more yield benefit to using foliar fungicides in late-planted fields and in lower latitudes. 
There was a greater yield response to foliar fungicides in higher-yield environments, but less than a 
100 kg/ha yield penalty for not using foliar fungicides in such environments. Except in a few production 
environments, yield gains due to foliar fungicides sufficiently offset the associated costs of the 
intervention when soybean prices are near-to-above average but do not negate the importance of 
disease scouting and fungicide resistance management.

Soybean (Glycine max) is one of the major crops produced in the United States (U.S.), planted on an estimated 
33.9 million ha in 20201. Success in growing soybean depends on multiple management decisions, which rest 
largely on the individual grower or crop manager, including choice of cultivar2,3, sowing date4,5, row width and 
seeding rate6, seed treatments7–9, herbicide program10, nutrient fertilization11,12, irrigation13, drainage14, crop 
rotation and tillage15,16, and foliar fungicide and/or insecticide application17–21.

The decade from 2005 to 2015 saw the use of foliar fungicides in U.S. soybeans double on a per unit area basis 
(g of product applied per ha), and almost triple in terms of total product applied (tonnes) across all so-treated 
fields22. Foliar fungicide applications are not necessarily made in response to the actual threat or presence of 
diseases; prophylactic applications may be made to the perceived future possibility of disease (sometimes as 
an insurance spray) or for so-called plant health benefits (e.g., a “greening effect”23). The accumulated body of 
evidence to date does show that foliar diseases are responsible for measurable financial losses24. Yet at the same 
time, foliar diseases in soybean are, except in a few circumstances, rarely severe when compared to losses due to 
soilborne pathogens25,26. When foliar diseases are absent or at low levels, the consensus from recent field trials 
is that the yield response to foliar fungicides (including the plant health benefit effect) are not sufficient to offset 
the interventional costs16,17,19–21,27–30.

The increase in foliar fungicide use in U.S. soybeans does therefore seem to contradict the scientific research 
showing low economic returns when disease levels are low or absent. A partial explanation may be that research 
moves slower than the adoption of a practice by growers responding to changing economic or marketing forces31. 
The myriad of soybean crop management choices makes it impossible to account for complexity beyond three-
way interactions in designed field trials30,32 which are by practical necessity focused on a few controlled main 
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effects of interest. Moreover, such trials are conducted in a few locations at best, which raises questions about 
the scalability of inference beyond local conditions. Therefore, it is not uncommon for inferences made from 
research trials to conflict across studies, and these inferential discrepancies are often a point of discourse in 
many agronomically-based papers. For example, in three different sets of field experiments in the U.S., foliar 
fungicides increased soybean yield in only three out of 11 site-years33, four out of 12 site-years20, and one out of 
16 site-years in the investigated production systems29. In other studies, there was little to no significant effect on 
soybean yield from foliar-applied fungicides17,34,35.

A novel complementary approach to traditional field experiments, given their limited design and inferential 
space, uses grower-supplied data linked in a spatial framework to other data layers representing soil properties 
and weather. The format is expandable as more layers or data become available36. This approach leads to an 
observational database covering wide and diverse geographies, is broad in scope, and possibly capturing complex, 
realistic interactions among agronomic, environmental and crop management variables beyond those which may 
be represented in designed field trials. The challenge, however, is that the multidimensional observational space 
must now be queried for pattern recognition and for drawing inferences from those identified relationships. This 
usually requires a machine-learning (ML) approach rather than traditional statistical methods37.

Traditional statistical models are associated with being interpretable, which in the present context means 
being able to understand, from the human perspective, how each predictor contributes to soybean yield (or loss); 
whereas ML algorithms can be criticized as being opaque (i.e., “black box”38). However, recent advances in ML 
interpretation39 are removing the black box label, so that this class of models, usually associated with predictive 
performance, is becoming more explainable as well. Trust in a model (i.e., understanding why a prediction was 
made) is a very important criterion to stakeholders39. In this paper, a ML algorithm was used to fit a yield predic-
tion model to a grower-derived database on soybean production practices in the north‐central U.S. The model 
was then queried with the objective of understanding how foliar fungicides fit into overall soybean production 
practices in the north-central U.S. and their contribution to yield from an economic standpoint.

Results and discussion
The surveyed, rainfed commercial soybean fields were spread across the U.S. north-central region (Supplemen-
tary Fig. S1 online) with a latitudinal gradient evident for maturity group (MG). The number of fields (n) was 
distributed evenly across the three years (2014: n = 812, 2015: n = 960, 2016: n = 966). Among the 2738 fields, 833 
(or 30.4%) were sprayed with foliar fungicides. Out of the 833 fields sprayed with foliar fungicides, 623 (74.8%) 
had also been sprayed with foliar insecticides.

A t-test estimate of the yield difference between all fields sprayed with foliar fungicides and those which 
were not was 0.46 t/ha (95% confidence interval [CI] of 0.39 to 0.52 t/ha). When t-tests were applied to fields 
within TEDs (the 12 TEDs with the most fields), half of the 95% CIs included zero, indicative of possibly no yield 
increase due to foliar fungicides over unsprayed fields in those TEDs (Supplementary Fig. S2 online). A linear 
mixed model with random slopes and intercepts for the fungicide effect within TEDs returned an estimated yield 
gain of 0.33 t/ha due to foliar fungicide use. A simpler model without random slopes for foliar fungicide was a 
worse fit to the data. Together these basic tests were indicative of heterogenous effects concerning foliar fungicides 
and yield gain, implying other global (regional) and local (field specific) conditions may be involved as factors.

A tuned random forest (RF) model fitted to the entire dataset (all 2738 observations) overpredicted soybean 
yield at low actual yields, and underpredicted at the high-yield end (Supplementary Fig. S3 online). However, as 
99% of the residual values were less than or equal to |0.25 t/ha| which corresponded to less than 7% of the aver-
age yield, we proceeded with the interpretation of the fit RF model. The mean predicted soybean yield (global 
average) was 3.79 t/ha (minimum = 1.13 t/ha, maximum = 6.02 t/ha, standard deviation = 0.81 t/ha, root mean 
squared error between the observed and predicted yields = 0.1 t/ha).

At the global model level, location (latitude; a surrogate for other unmeasured variables) and sowing date 
(day of year from Jan 01) were the two variables most associated with yield (Fig. 1), consistent with the central 
importance of early planting to soybean yield5,13. Soil-related properties (pH and organic matter content of the 
topsoil) were also associated with yield (Fig. 1). Management-related variables such as foliar fungicide, insecti-
cide and herbicide applications were of intermediate importance, and other management variables (row spacing, 
seed treatments, starter fertilizer) were on the lower end of the importance spectrum in predicting soybean yield 
(Fig. 1). Insecticide and fungicide seed treatments were poorly associated with soybean yield increases as has 
been previously shown8,40. The relatively lower importance of row spacing is consistent with previous analyses 
of this variable from soybean grower data6. The dataset we analyzed did not contain enough observations to 
include artificial drainage as a variable, which has been shown to influence soybean yield, presumably by allow-
ing earlier sowing14.

The strongest pairwise interactions included that between sowing date and latitude. Delayed sowing at higher 
latitudes decreased yield by about 1 t/ha relative to the highest yielding fields sown early in the more southerly 
locations (Supplementary Fig. S4 online). Further examination of the interactions showed that the yield differ-
ence between sprayed and unsprayed fields increased with later sowing, indicative of a greater fungicide benefit 
in later-planted fields (Fig. 2). This would seem to conflict with the results of a recent meta-analysis in which 
soybean yields responded better when foliar fungicides were applied to early-planted fields27, but in that study 
there was also the confounding effect of higher-than-average rainfall between sowing and the R3 growth stage. 
With respect to latitude, the global difference in yield between sprayed and unsprayed fields decreased as one 
moved further north (Fig. 2), suggesting that foliar fungicides were of more benefit when applied to the more 
southerly located fields, which do tend to experience more or prolonged conditions conducive to foliar diseases 
than the northern fields22,24.
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Focusing on model interpretation at the local level, we examined the Shapley φ values (see the “Methods” 
section for more information) associated with foliar fungicide applications for different subsets (s) and cohorts 
(c) of fields within the data (see Supplementary Table S1 online). The 1st subset (s1) was comprised of the 20 
highest-yielding fields among those sprayed with foliar fungicides (s1c1) and the 20 highest-yielding fields among 
those which were not sprayed (s1c2) in each of the 12 technology extrapolation domains (TEDs) in the data matrix 
with adequate numbers of fields for comparisons (see also Supplementary Table S2 online; Supplementary Fig. S5 
online maps the field locations within these 12 TEDs). A TED is a region (not necessarily spatially contiguous) 
with similar biophysical properties41. Predicted yields within these cohorts were mainly above the global aver-
age of 3.79 t/ha, except in TED 602303 (Fig. 3), which corresponded to fields in North Dakota (Supplementary 
Fig. S5). In most cases Shapley φ values for foliar fungicide use exhibited a positive contribution to the yield 
above the global average. If these cohorts of fields represented high-yielding environments within each TED, 
then foliar fungicide sprays contributed positively up to 0.3 t/ha in the yield increase above the global average in 
s1c1. However, among high-yielding fields in s1c2, the penalty for not spraying was less than 0.1 t/ha. This finding 
supports the contention that fungicide sprays are most worthwhile in high-yielding environments. Supplementary 
Fig. S6 online complements Fig. 3 by summarizing the Shapley φ values in another visual format. The overall 
mean predicted yield for the unsprayed (s1c2) fields was slightly higher (by 0.1 t/ha) than that for the sprayed 
(s1c1) fields (Supplementary Fig. S6 online). This difference may have been driven by the higher variability in 
yields among the two cohorts (particularly for TEDs 403603, 602303, 403703, and 303603), or underlying dif-
ferences in other management factors. Also, the number of sprayed fields in each of these four TEDs was at the 
target sampling boundary of 20 fields per TED (Supplementary Table S2 online).

The Shapley φ values for fungicide use were well-separated among the four cohorts of fields of s2 (Fig. 4, Sup-
plementary Table S1 online). The fields within s2 were selected across the entire dataset and not by TED mem-
bership. The lowest-yielding fields (s2c2 & s2c4) were all below the global yield average, whereas the converse was 
true of the highest-yielding fields (s2c1 & s2c3). Among the lowest-yielding fields, foliar fungicides were mainly 
associated with a positive, but less than 0.2 t/ha, effect on yield (s2c2), and other factors were responsible for 
dropping a field’s yield to below the global average. Amongst the highest-yielding fields (s2c1), foliar fungicides 

Figure 1.   Importance of management-based variables in a random forest model predicting soybean yield. 
Feature importance was measured as the ratio of model error, after permuting the values of a feature, to the 
original model error. A predictor was unimportant if the ratio was 1. Points are the medians of the ratio over 
all the permutations (repeated 20 times). The bars represent the range between the 5% and 95% quantiles. 
Sowing date was the number of days from Jan 01. Growing degree days and the aridity index were annualized 
categorical constructs used within the definition of technology extrapolation domains (TEDs). Foliar fungicide 
or insecticide use, seed treatment use, starter fertilizer use, lime and manure applications were all binary 
variables for the use (or not) of the practice. Iron deficiency was likewise binary (symptoms were observed or 
not). Topsoil texture, plant available water holding capacity in the rooting zone, row spacing, and herbicide 
program were categorical variables with five, seven, five, and four levels, respectively.
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were associated with between 0.15 and 0.35 t/ha of the yield above the global average. These Shapley φ values 
for the contribution of foliar fungicides are consistent with estimates of the yield response to foliar fungicides 
from a meta-analytic perspective27. Given that the individual yields in s2c1 & s2c3 were 1 to 2 t/ha above the global 
average, other location-driven factors such as early sowing (Fig. 1) were the larger drivers of yield in these cases. 
However, there was only a negligible or small (< 0.1 t/ha) penalty for not using foliar fungicides in high-yield 
situations (s2c3; see also Supplementary Fig. S7 online).

There was some overlap in the fields of s2 and s3 [where s3 consisted of fields within the 90th percentile for yield 
among sprayed fields (s3c1); and the 90th percentile for yield among the unsprayed fields (s3c2) in the dataset], at 
least where high-yielding fields were concerned. All fields in s3 had predicted yields that were above the global 
average (Fig. 5). Yield distributions of the two cohorts within s3 were similar, with the cohorts having near-
identical mean yields. Foliar fungicides contributed to between 0.1 t/ha and 0.35 t/ha to the yield increase above 
the global average, while the penalty (if there was one) for not using foliar fungicides was mainly confined to less 
than 0.05 t/ha, indicating that among the fields of s3c2 spraying was unnecessary (otherwise the penalty would 
have been larger). Overlaying the estimated φ values for fungicide use with MG, sowing date and growing degree 
days showed that these high-yielding fields were mainly in MG II and III, that the fields tended to be planted 
early, and were restricted to GDD groups 03 and 04 (Fig. 5), the latter factor being highly aligned with latitude. 
A formal comparison of the Shapley φ values across cohorts was not attempted because they potentially differed 
in their underlying variables despite similar yield distributions within the lowest- or highest-yield cohorts.

Intuitively, one may have expected the yield increase due to foliar fungicides to be about the same magnitude 
(about 0.1 t/ha) as the yield penalty associated with not using fungicides. The larger yield gain versus the penalty 
may be due to synergistic interactions of foliar fungicides with other management factors. For example, foliar 
insecticides are likely to be applied along with foliar fungicides; conversely, fields that were not sprayed with 
foliar fungicides were unlikely to be sprayed with insecticides as well. Therefore, in subset 4 (s4), we examined the 
Shapley φ values associated with fungicide use among all 210 fields in the data matrix which had been sprayed 
with foliar fungicides but not with foliar insecticides (s4c1), and compared them to the Shapley φ values for foliar 
fungicide use among another cohort of 210 fields (s4c2) which had been sprayed with both foliar fungicides and 
insecticides, where the fields of s4c2 were sampled to match the range of reported yields in s4c1. There was no 
discernable separation of the Shapley φ values between cohorts s4c1 and s4c2 (Supplementary Fig. S8 online), and 
the φ values were consistent with what had been observed with the other subsets of fields.

A partial economic analysis estimated the net realized profit associated with foliar fungicide use on the respec-
tive cohorts within subsets of fields. The profitability of foliar fungicides in the fields of s1c1 (20 highest-yielding 
sprayed fields within the 12 TEDs with the most fields in the dataset) is shown in Fig. 6. It should be noted that 
the soybean price on which Fig. 6 is predicated reflects the high prices being experienced currently (as of Spring 
2021), which are at their highest levels in at least the last five years. Assuming a price of US$576.30/t, fungicides 
were overwhelmingly profitable in all but four TEDs (403603, 602303, 403703, 303603) in which the average 

Figure 2.   Two-way partial dependence plots of the global effects of (i) foliar fungicide use and sowing date (left 
panel), and (ii) foliar fungicide use and latitude (right panel) on soybean yield. The black plotted curves are the 
yield differences between fields that were sprayed or not sprayed with foliar fungicides. Smoothed versions of 
the curves are shown in blue.
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return (with respect to fungicide use) was less than US$7.50/ha. For these four TEDs, confidence intervals for 
the mean financial return per ha after accounting for fungicide costs indicated returns could be negative (loss), 
zero, or up to US$26.50/ha, depending on the individual field (Supplementary Figure S9 online). Considering 
these were the highest-yielding fields within TEDs, there was the risk of losing money on fungicide sprays in 
these four TEDs. Obviously, environment mattered (compare with Supplementary Figures S5 and S6 online), and 
with the four TEDs listed above the most noticeable feature was their higher-latitude locations relative to fields 
in other TEDs. Among other things, higher latitude is associated with cooler weather and shorter accumulation 
of GDD. Underlying yield potential factors (early sowing, PAWR, GDD, AI) contributed to higher predicted 
yield. Higher-yielding environments were more likely to also realize a larger contribution of foliar fungicides to 
yield above the global average (Supplementary Figure S6 online), thereby leading to the profitability of spraying.

The financial return on spraying the fields in s2c2 (100 lowest-yielding fungicide-sprayed fields) was negative, 
except in a few individual cases (Supplementary Figure S10 online). The mean net return due to foliar fungicides 
for s2c1 (100 highest-yielding fungicide-sprayed fields) was US$74.63/ha (95% CI US$69.02 to US$80.66 per ha), 
whereas for s2c2 the return was -US$26.24/ha (95% CI -US$33.63 to -US$19.71 per ha).

Considering the two cohorts of s3 (unsprayed and sprayed fields in the 90th percentile for yield), there was a 
small financial penalty to not using foliar fungicides in high-yield environments. Not spraying high-yield fields 
(s3c2) was associated with a mean loss of -US$10.17/ha (95% CI -US$12.50 to -US$7.83 per ha). Yet, spraying 
high-yield fields (s3c1) was associated with a mean gain of US$65.60 (95% CI US$61.28 to US$70.38 per ha). The 
trends were consistent when other soybean price points were assumed for any of the subsets examined (Sup-
plementary Figures S11, S12, S13 online).

The soybean price required to at least break even on a (fixed) fungicide investment cost of US$61.90/ha was 
a nonlinear function of φ. At a realized Shapley φ value of 0.1 t/ha in response to foliar fungicides, soybean 
price would have to be at least US$619.00/t to recover the costs of fungicides and their application, dropping to 
US$309.50/t, US$206.33/t, and US$154.75/t for Shapley φ value of 0.2 t/ha, 0.3 t/ha and 0.4 t/ha, respectively.

The percentage of U.S. soybean hectarage treated with foliar fungicides rose from 1 to 11% between 2004 
and 201542, which is a yearly increase of 0.91%. Assuming the average gain of 0.221 t/ha due to foliar fungicides 
among sprayed fields in the 90th percentile for yield (s2c1), we estimated a yield gain of 2 kg ha−1 year−1 attributed 
to the adoption of foliar fungicide (221 × 0.91/100). This translated to 6% of the estimated annual yield gain in 
U.S. soybean (33 kg ha−1 year−1) attributable to foliar fungicide use in high-yield environments.

Figure 3.   Shapley phi values attributed to foliar fungicide use for two cohorts of fields within the 12 technology 
extrapolation domains (TEDs) with the most fields. Within each TED, the cohorts are the 20 highest-yielding 
fields among those sprayed with foliar fungicides and the 20 highest-yielding fields among those which were 
unsprayed.
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As foliar disease data were not available, we can only say that a decision was made to use foliar fungicides 
in about one-third of the fields, but cannot say why growers chose to spray, which could be any one of (or a 
combination) of cost effectiveness, perceived benefit (disease control or plant health effects) or forecast disease 
risk. Whatever the reason, the estimated yield gains (above the global average) attributed to foliar fungicides 
made spraying profitable under several soybean price scenarios, but the yield potential environment is an impor-
tant consideration as highlighted by a loss on fungicide investment in some TEDs. Our finding that fungicide 
profitability was not universal may account for some of the discrepancies among field trials mentioned in the 
Introduction.

We do emphasize that foliar fungicides should not be applied indiscriminately, divorced from disease scout-
ing or forecasting, integrated pest management and environmental principles. The price to be paid in terms of 
environmental damage43 and loss of product efficacy due to the evolution of fungicide resistance within foliar 
pathogen populations44,45 should be weighed against the yield penalty associated with not using foliar fungicides 
in high-yield environments. For the unsprayed fields in the 90th percentile for yield (s3c2), the average penalty 
associated with not spraying was 17.7 kg/ha, which works out to be US$10.62/ha at a high price of US$600/t.

Conclusions
Most previous studies have shown little economic benefit associated with foliar fungicide application in soybean. 
However, our analysis, based on thousands of field observations, suggests that, except for a few production envi-
ronments located in the northern fringe of the U.S. north-central region, there was an economic benefit to using 
foliar fungicides in soybean production when prices are near or above average. Nevertheless, foliar fungicides 
should always be used judiciously in an integrated program that weighs their economic benefits against their 
environmental consequences.

Methods
Soybean management database.  The data matrix consisted of grower-supplied agronomic practices 
and average yield (adjusted to 13% moisture content) for 2738 non-irrigated soybean fields in the years 2014 
to 2016 across 11 states in the U.S. north-central region: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, 
Nebraska, North Dakota, Ohio, South Dakota, Wisconsin (Supplementary Fig.  S1 online). The study’s data 
were parsed from questionnaire responses returned by soybean growers13,36 which, despite being survey-based, 
are reliable46. The grower-supplied data were augmented with variables representing technology extrapolation 
domains (TEDs) which define regions with similar climate and soils; as well with soil properties data41. This data 
structure was a fusion from different sources47 linked by GPS coordinates. The data used in the current study 
were a subset of the larger database13,36, and contained 20 agronomic, cultural and management practices with 

Figure 4.   Shapley phi values attributed to foliar fungicides for four cohorts of soybean fields. The cohorts are (i) 
the 100 highest-yielding fungicide-treated fields, (ii) the 100 lowest-yielding fungicide-treated fields, (iii) the 100 
highest-yielding unsprayed fields, and (iv) the 100 lowest-yielding unsprayed fields. The insert table summarizes 
the minimum (Min), maximum (Max) and mean predicted yields (t/ha) for each of the four cohorts. Point color 
represents whether fields were sprayed or unsprayed, whereas point shape represents whether fields were in the 
lowest-yielding or highest-yielding cohorts.
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no missing values (the variables are listed in Supplementary Table S3 online). The data fell into 96 TEDs; the 12 
TEDs with the most observed fields consisted 1688 rows (or 61.7%) of the data. Note again that the analyzed data 
represented rainfed (non-irrigated) soybean fields. Growers did not report on product name, chemistry, or rates 
of application for any of the pest control inputs they used (fungicidal, insecticidal, nematicidal, whether seed 
or foliar applied), and therefore the only level of detail available was whether such products were used or not.

Basic statistical exploration.  At the global level, a t-test was done to compare soybean yield between all 
fields which had been sprayed with foliar fungicides and those which had not. Separate t-tests comparing yields 
between sprayed and unsprayed fields were also done for each of the 12 TEDs with the most fields in the data 
matrix. A linear mixed model was fit to yield as a function of foliar fungicide use (a binary explanatory variable) 
with random intercept and slopes for the foliar fungicide effect within TEDs. The emphasis with these tests was 
on the estimation of effect size and not on P values, because the large number of fields in some comparisons 
inevitably meant very small yield differences between sprayed and unsprayed fields would have been deemed 
statistically significant in any case.

Random forest modeling.  The modeling workflow is shown in Supplementary Fig. S14 online. The data 
matrix was split (80:20) into training (2191 observations) and test (547 observations) sets. The training set was 
used to tune a random forest (RF) model with soybean yield as a continuous response to the 20 variables as 
predictors. Three RF model parameters, for the minimum number of observations in a terminal node (min.
node.size), fraction of observations that are sampled for each tree (sample.fraction) and the number of candi-
date predictors for each split (mtry), were tuned simultaneously using a sequential model-based optimization 
strategy48 in the R tuneRanger package (version 0.4). Sampling was done without replacement. The tuned RF 
model was evaluated by predicting yield on the test set, after which it was refit to the full data matrix using the R 
ranger package (version 0.11.2). The number of trees was fixed at 3000 for stability in permutation-based vari-
able importance measures48. The fit of the finalized RF model to the full data matrix was evaluated by plotting the 
residuals versus the predicted yield. The RF model was then interpreted using model-agnostic approaches39,49.

Figure 5.   Shapley phi values attributed to foliar fungicides for two cohorts of high-yielding soybean fields: 
the 90th percentile for yield among fungicide-treated (sprayed) fields, and the 90th percentile for yield 
among unsprayed fields. Point shape indicates whether the field was treated with fungicides (Sprayed) or not 
(Unsprayed). Data points are colored by (a) soybean maturity group, (b) sowing date, as the number of days 
from Jan 01, (c) growing degree days (GDD), as defined in the TED construct. Five GDD categories were 
represented in the data, although only two of those (03, 04) were present in the cohorts plotted. 01 = 0 to 
2670 °C; 02 = 2671 to 3169 °C; 03 = 3170 to 3791 °C; 04 = 3792 to 4829 °C; 05 = 4830 to 5949 °C.
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Global model interpretation.  A permutation-based approach was used to assess feature (predictor) 
importance50. This approach is more principled than the Gini impurity score because Gini-based metrics are 
biased with RF models50. In this method, each feature’s values are permuted (shuffled) and then the loss in model 
performance is measured. Those features which are important will be associated with a larger drop in model per-
formance compared to that for features that are not as important in predicting soybean yield. Performance loss 
was measured by the mean absolute error (mean squared error is another choice). Importance was summarized 
by the ratio (FI = errp/erro) of the model error after permuting the feature (errp) to the original model error (erro). 
The permutations were repeated 20 times. Feature importance was summarized visually by plotting the median 
of FI, and the 5% and 95% quantiles.

Local model interpretation.  Shapley values (φ) are an application of coalitional (cooperative) game the-
ory to machine learning51. In the present context, the goal was to compute the contributions of the features based 
on the difference between the predicted yield for a single field and the global average, with an emphasis on the 
impact of foliar fungicide use in soybean fields. For any one observation, the φ values are an estimate of how 
much a predictor contributed to the difference between an individual field’s predicted yield and the predicted 
yield averaged across all fields in the data matrix. In other words, say the predicted yield for field i is xi above 
the global average. Shapley values estimate the average marginal contribution of each feature to xi, with the 
understanding that not all features (for that field) may have contributed equally, if at all, and that some may have 
contributed negatively. Estimating Shapley values exactly is a computationally expensive process49, and for this 
study they were approximated via Monte Carlo sampling (1000 iterations for each field) as implemented in the 
Shapley function of the R iml package (version 0.9.0).

We studied the Shapley values within different subsets (s) of fields in the data matrix, consisting of different 
cohorts (c) described as follows (see Supplementary Table S1 online). In subset 1 (s1), cohorts were selected from 
each of the 12 TEDs with the most fields in the data matrix, where within each of those TEDs the 1st cohort 
consisted of the 20 highest-yielding fields among those sprayed with foliar fungicides (s1c1) and the 2nd cohort 
consisted of the 20 highest-yielding fields among those which were not sprayed (s1c2). The four cohorts of subset 
2 were the 100 highest-yielding fungicide-treated (sprayed) fields (s2c1), the 100 lowest-yielding sprayed fields 
(s2c2), the 100 highest-yielding unsprayed fields (s2c3), and the 100 lowest-yielding unsprayed fields (s2c4), among 
all fields. There were two cohorts in subset 3, chosen from all fields in the data matrix: the 90th percentile for 
yield among sprayed fields (s3c1); and the 90th percentile for yield among the unsprayed fields (s3c2). A final 
subset (s4) consisted of two cohorts, the first being the 210 fields which had been sprayed with foliar fungicides 
but not with foliar insecticides (s4c1). The second cohort of s4 (s4c2) was made up of a random sample of 210 of 
the 623 fields which had been sprayed with both foliar fungicides and foliar insecticides, with yields restricted 
to be within the range of yields in s4c1.

Figure 6.   Partial economic analysis on the 20 highest-yielding, foliar fungicide-treated fields in the 12 
technology extrapolation domains (TEDs) with the most fields. Return is the value of the yield increase 
attributed to foliar fungicides minus the cost of chemical and application. Soybean price fixed at US$576.30 per 
tonne (as of Jan 31 2021). Chemical and application costs fixed at US$61.90/ha. Individual fields are represented 
by the smaller symbols. The larger symbols are the mean returns for each TED.
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For each of the defined subsets, the φ values associated with foliar fungicide use were plotted against the dif-
ference between the predicted yield for the field and the global yield average. The distributions of the φ values 
within each cohort was also plotted.

The φ values associated with foliar fungicide use were interpreted as follows. If foliar fungicide applications 
had no effect, then the φ value for that feature would be zero for the field. If the predicted yield for a sprayed field 
was greater than the global average yield, then a positive fungicide φ value was an estimate of how much of the 
yield increase (above the global average) was due to fungicide application. If, however, a sprayed field’s yield was 
below the global average then a positive fungicide φ value estimated how much the spray contributed to raising 
the yield in a situation in which other features contributed more heavily to a yield reduction (to below the global 
average). That is, the fungicide was not able to counterbalance the negative effects that other features had on 
yield. For any sprayed field, a negative fungicide φ value would indicate a yield reduction (loss) due to spraying, 
perhaps due to very high disease pressure or wheel damage6. Finally, for unsprayed fields a positive φ value for the 
fungicide feature would counterintuitively indicate that yield benefitted from not spraying, whereas a negative φ 
value for the fungicide feature would estimate how much yield was penalized by not applying a foliar fungicide.

The complete code for the analysis, including other global (ALE, ICE) and local (LIME) interpretation meth-
ods (shown in Supplementary Figure S14) is provided at https://​github.​com/​PSUPl​antEp​idemi​ology/​ML_​Soybe​
an_​Scien​tific​Repor​ts/​tree/​v1.0).

Economic return to foliar fungicides.  The Shapley φ values associated with foliar fungicide use were 
used in a partial economic analysis to estimate the net profit (loss) realized by applying foliar fungicides to the 
soybean crop. Soybean price (price) was fixed at the price as of Jan 31, 2021 (US$576.30/t). The combined cost 
of fungicide plus its application (chem.cost) was also held fixed, at US$61.90/ha19. For unsprayed fields, chem.
cost = 0. As the φ values are on the same scale as yield (i.e., t/ha), the net value (net.val) on the yield increase (loss) 
due to foliar fungicides was net.val (US$/ha) = price × φ. Then the net profit (net.profit) associated with spraying 
the soybean crop with foliar fungicides was net.profit (US$/ha) = net.val–chem.cost. Bias corrected and acceler-
ated (BCa) bootstrap confidence intervals52 were calculated for mean net profit estimates.

Setting net.profit = 0 and solving for price gave the minimum soybean price required to break even on the 
costs of foliar fungicide applications given a realized φ value. That is, the break-even price (price0) was given by 
price0 = chem.cost/φ. This latter equation showed that price0 was a nonlinear decreasing function of φ, conditional 
on chem.cost being fixed. price0 was estimated for different φ values represented by the cohorts.
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