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FK506 binding protein 51 (FKBP51), a member of the immunophilin family, is

involved in multiple signaling pathways, tumorigenesis, and chemoresistance.

FKBP51 expression correlates with metastatic potential in melanoma and prostate

cancer. However, the functions of FKBP51, particularly involving the regulation of

cell motility and invasion, are not fully understood. We discovered two novel

interacting partner proteins of FKBP51, i.e., deleted in liver cancer 1 (DLC1) and

deleted in liver cancer 2 (DLC2), using immunoprecipitation and mass spectrome-

try. DLC1 and DLC2 are Rho GTPase-activating proteins that are frequently down-

regulated in various cancers. Next, we demonstrated that overexpression of

FKBP51 enhances cell motility and invasion of U2OS cells via upregulation of

RhoA activity and enhanced Rho-ROCK signaling. Moreover, FKBP51-depleted

cells displayed a cortical distribution of actin filaments and decreased cell motility

and invasion. Consistent with this phenotype, FKBP51 depletion caused a down-

regulation of RhoA activity. Considered together, our results demonstrate that

FKBP51 positively controls cell motility by promoting RhoA and ROCK activation;

thus, we have revealed a novel role for FKBP51 in cytoskeletal rearrangement

and cell migration and invasion.

T he FK506 binding protein FKBP51 (also referred as
FKBP5) is highly expressed in prostate cancer, lym-

phoma, and melanoma; furthermore, FKBP51 expression cor-
relates with metastatic potential in melanoma and prostate
cancer, and its silencing restores resistance to apoptosis in
these two cancers.(1–7) FKBP51 promotes melanoma growth
by modulating TGF-b expression and activating NF-jB,
which induces interleukin-8 (IL-8).(3–5) Moreover, FKBP51
acts as an anti-apoptotic factor in cancer development and
progression by enhancing the telomerase activity of hTERT.(6)

FKBP51 controls androgen-dependent growth of prostate can-
cer by enhancing activity of androgen receptor transcrip-
tion.(8–10) By contrast, some reports have shown that FKBP51
functions as a tumor suppressor.(11,12) The expression of
FKBP51 is downregulated in pancreatic and colon cancer.
FKBP51 and PH domain leucine-rich repeat protein
phosphatase (PHLPP) influence the kinase activity of Akt by
acting as a scaffold complex that promotes the dephosphory-
lation of Akt.(11) FKBP51 knockdown in a xenograft mouse
model that produced a significant increase in tumor burden
when compared with wild type mice.(12) Thus, both the over-
expression and downregulation of FKBP51 have been
detected in several human cancers.
FKBP51 is also an immunophilin co-chaperone for the heat

shock protein 90 (Hsp90) molecular chaperone machine and
has been identified as an important component of steroid
hormone receptor-Hsp90 heterocomplexes.(13–15) FKBP51 is a
regulator of glucocorticoid and progesterone receptor

signaling(16–18) and was recently shown to interact with the
androgen receptor (AR) and estrogen receptor (ER).(19)

This study explores a novel role for FKBP51. To this end, we
attempted to identify new FKBP51 targeting proteins via a mass
spectrometry analysis of anti-FKBP51 immunoprecipitates from
MCF7 cells. We identified deleted in liver cancer 1 (DLC1, also
known as ARHGAP7 and STARD12) and deleted in liver can-
cer 2 (DLC2/ARHGAP37/STARD13), which are structurally
similar and share the same functional domains (sterile a motif
(SAM), Rho-GAP, and START domains).(20–23) Both proteins
are underexpressed in certain cancers, and they suppresses
tumor cell growth by inhibiting RhoA activity via the Rho-GAP
domain.(24–27) Their Rho-GAP activity strongly hydrolyzes
Rho-GTP, weakly hydrolyzes Cdc42-GTP, and has no detect-
able activity against Rac-GTP.(28,29) We determined that over-
expression of FKBP51 increased the active GTP-bound state of
the RhoA protein. GTP-RhoA has a critical role in cell motility
and invasion via actin remodeling.(30,31) Consistent with our
hypothesis, depletion of FKBP51 impaired RhoA activation and
decreased cell motility and invasion via perturbation of
cytoskeleton. Thus, we newly report that FKBP51 regulates
RhoA activation via interactions with DLC proteins.

Materials and Methods

Cell culture. MCF7 cells were cultured in MEM supple-
mented with 10% FBS, 1% sodium pyruvate, 1% glutamine,
and 0.1% insulin. U2OS and HEK293T cells were cultured in
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Fig. 1. Identification of FKBP51-interacting proteins. (a) MCF7 cell lysates were immunoprecipitated with normal rabbit IgG or anti-FKBP51 anti-
body. The immunoprecipitates were subjected to SDS-PAGE and visualized by CBB staining. The protein bands specific to FKBP51 were analyzed
with LC/MS/MS. In addition to FKBP51, other proteins were identified. (b) MS/MS product ion spectra obtained by nanoflow LC/MS/MS of immuno-
precipitated protein complexes from MCF7 cells using an anti-FKBP51 antibody. (c) MCF7 cell lysates were immunoprecipitated (IP) with rabbit IgG,
mouse IgG, anti-FKBP51, or anti-DLC2. Total cell lysates and immunoprecipitates were analyzed using anti-FKBP51 or anti-DLC2 antibodies.
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DMEM supplemented with 10% FBS. All cells were cultured
at 37°C in a humidified chamber.

Antibodies and reagents. Mouse monoclonal anti-FKBP51
antibody was obtained from Santa Cruz Biotechnology (Dallas,
TX, USA). Rabbit polyclonal anti-FKBP51, mouse monoclonal
anti-FLAG, and rabbit polyclonal anti-StARD13 antibodies
were obtained from Sigma-Aldrich (St. Louis, MO, USA).
Mouse monoclonal anti-HALO antibody was obtained from
Promega (Madison, WI, USA). Mouse monoclonal anti-RhoA
antibody was obtained from Cytoskeleton, Inc. (Denver, CO,
USA). Mouse monoclonal anti-cortactin antibody was obtained
from Merck Millipore (Billerica, MA, USA). Rabbit polyclonal
anti-Smad2 and rabbit polyclonal anti-Phospho-Smad2
(Ser465/467) antibodies were obtained from Cell Signaling
Technology (Danvers, MA, USA). Fluorescent secondary anti-
bodies (Alexa Fluor 488) were obtained from Life Technolo-
gies (Carlsbad, CA, USA). To visualize the actin cytoskeleton,
cells were stained with rhodamine phalloidin (Sigma-Aldrich).
Hoechst staining was used to detect nuclei.

Plasmid constructs. FKBP51 constructs were created by
annealing double-stranded oligonucleotides into the p3xflag-
myc-cmv-23-24_expression_vector. The oligonucleotides 50-T
GCGGCCGCGAATTCAATGACTACTGATGAAGGTGCC-30
and 50-ATCTATCGATGAATTCTACGTGGCCCTCAGGTTT-
30 were annealed and ligated into the vector. The PCR product
was inserted into the EcoRI site of p3xflag-myc-cmv-23-24.
The plasmid was verified by DNA sequencing and protein
expression, and plasmid sizes were confirmed by Western blot
analysis. Halo-RhoA was a Flexi Halo Tag clone from Kazusa
Genome Technologies Inc. (Promega).

siRNA treatment. Cells were transfected in suspension with
20 nM ON-TARGET plus non-targeting siRNA, 20 nM
FKBP51 siRNA duplex (Dharmacon, Lafayette, CO, USA),

and Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA,
USA) as described by the manufacturer.

Immunoprecipitation and Western blot analysis. Immunopre-
cipitation and Western blotting were performed as previously
described.(32) The following antibodies were used for immuno-
precipitation: FKBP51 (sc-271547; Santa Cruz Biotechnology),
StARD13 (HPA035535; Sigma), and Halo (G9281; Promega).
The following primary antibodies were used for immunoblot-
ting: FKBP51 (ab126715; Abcam, Cambridge, UK and A301-
430A; Bethyl Laboratories, Inc., Montgomery, TX, USA),
StARD13 (HPA035535; Sigma), Halo (G9281; Promega), and
b-actin (Sigma). Horseradish peroxidase-conjugated secondary
antibodies (Amersham Biosciences, Amersham, UK) were used
to detect immunoreactive proteins by enhanced chemilumines-
cence (Thermo Scientific, Waltham, MA, USA).

Immunofluorescence microscopy. The cells were fixed with
3.7% formaldehyde in phosphate-buffered saline (PBS) for
10 min on ice and permeabilized sequentially with 50%, 75%,
and 95% ethanol on ice for 5 min each. The slides were
blocked with a PBS-containing blocking solution for 30 min at
room temperature and then incubated with the primary anti-
bodies, anti-Cortactin and phalloidin-Atto 565 (Sigma-Aldrich)
for 1 h at room temperature. Slides were then washed three
times with PBS for 5 min each and incubated with an Alex-
a488 secondary antibody (Molecular Probes, Eugene, OR,
USA) for 30 min at 37°C. After washing twice with PBS,
DNA was stained with 1 lg/mL of bisbenzimide (Hoechst
33258) in the final PBS wash. The samples were examined
using a TCS SP8 and AF6000 confocal microscope (Leica
Microsystems, Wetzlar, Germany).

Mass spectrometry. MS was performed via LC-MS/MS
(QTRAP 5500 system). Peak lists for the protein database
searches (ProteinPilot; Applied Biosystems, Carlsbad, CA,
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Fig. 2. FKBP51 overexpression increases RhoA
activation. (a) 293T cells were transfected with the
indicated expression vectors for 24 h and then
subjected to the RhoA activation assay. Western
blotting was completed after the pull-down of
activated forms of RhoA in cells expressing FKBP51
or DLC2. (b) Cells expressing FLAG-FKBP51 or Halo-
DLC2 were visualized by anti-Halo and anti-FLAG
antibodies. (c) Corresponding quantification from
independent pull-down experiments (normalization
of the GTP-bound forms to total RhoA) (left figure
and column graph). Data in the column graph are
represented as the mean � SEM (n = 3; FLAG-
FKBP51 and FLAG-mock for the RhoA pull-down
assay).
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USA) were extracted from the resulting data. The peptide
enrichment ratio was calculated to evaluate the certainty of
peptide identification.

Wound-healing assay. Confluent cell monolayers were
wounded (lightly scratched) with a pipet tip. After careful
washing to remove detached cells, the cells were cultured for
24 h. Phase-contrast images were taken every 30 min for 24 h.
The width of the wound was monitored using an FW4000-TZ
time-lapse microscope (Leica Microsystems). For the ROCK
inhibitor (Y27632) assay, cells were treated with the inhibitor
(50 lM) for 24 h and then wounded. Phase-contrast images
were taken immediately after scratching (0 h) and 5 h later.

Cell invasion assays. Cell invasion assays were conducted
with a CytoSelect 96-well cell invasion assay kit according to

the manufacturer’s protocol. A total of 1.5 9 105 cells in
serum-free medium were harvested from a 96-well cell inva-
sion plate from the basement membrane layer. The plate was
then placed in an incubator at 37°C in 5% CO2 for 24 h. Next,
the membrane chamber was transferred to the Cell Harvesting
Tray containing a cell detachment solution. The invasion cells
were stained with a CyQuant GR dye solution, and absorbance
at 480/520 nm was measured with a microplate reader.

RhoA activation assay. RhoA activation was assessed with a
Rho Activation Assay Biochem Kit according to the manufac-
turer’s protocol. Full-length FLAG-FKBP51 and RhoA-Halo
proteins were expressed in 293T cells. GTP-RhoA was isolated
from cell extracts using glutathione-sepharose beads coated
with a rhotekin Rho binding domain (RBD) expressed as a
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Fig. 3. Cell motility and invasion assay following
overexpression of FKBP51. (a) U2OS cells were
transfected with FLAG-FKBP51 or the FLAG-mock
expression vector for 24 h. Next, proliferation was
measured using the WST-1 assay. Relative
fluorescence units (RFU) indicate the relative
amount of proliferation. Column graphs show the
mean � SEM from six samples. (b) U2OS cells were
transfected with FLAG-FKBP51 or the FLAG-mock
expression vector for 24 h and then subjected to
the wound-healing assay. Phase contrast images are
shown for 0 and 24 h. The dotted lines indicate
cells at the start of the experiment, and white lines
show the tips of migrated cells after 24 h. (c)
Column graphs show the mean � SEM from three
samples. (d) U2OS cells were transfected with FLAG-
FKBP51 for 24 h and then treated with the ROCK
inhibitor Y-27632 (50 lM). After the 24-h inhibitor
treatment, cells were subjected to the wound-
healing assay. Phase contrast images are shown for
time points 0 and 5 h. The dotted lines indicate
cells at the start of the experiment, and the white
lines show the tips of migrated cells after 5 h.
Column graphs show the mean � SEM from four
samples. (e) U2OS cells were transfected with FLAG-
FKBP51 or the FLAG-mock expression vector for
24 h and then subjected to the cell invasion assay.
Relative fluorescence units (RFU) indicate the
relative amount of proliferation. Column graphs
show the mean � SEM from three samples.
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GST fusion. An equal volume of cell lysate was incubated
with Rhotekin-RBD Protein Beads at 4°C for 1 h. Next, the
beads were rinsed with wash buffer. The samples were eluted
and subjected to Western blotting with anti-RhoA.

ROCK activity assay. U2OS cells were transfected with
FLAG-FKBP51 or mock (FLAG) vector in medium with 10%
FBS for 48 h at 37°C and 5% CO2. After PBS washes, the
cells were suspended in a sonication buffer (50 mM Tris–HCl,
pH 8.0, 1 mM ethylenediaminetetraacetic acid [EDTA], 1 mM
EGTA) containing protease inhibitors (Sigma-Aldrich). The
samples were then processed with sonication for 15 s followed
by centrifugation (14 000 g for 30 min) to obtain cell extract.
The protein content was determined using a protein assay kit
(Bio-Rad Laboratories, Hercules, CA, USA). The crude
extracts were applied to a HiTrap Q HP column (GE Health-
care Life Science, Buckinghamshire, UK) that was equilibrated
with Q-buffer (20 mM Tris–HCl, pH 8.0, 0.5 mM EDTA,
1 mM EGTA, 5 mM beta-glycerophosphate, 2 mM NaF,
2 mM Na3VO4, 5 mM beta-mercaptoethanol) containing
50 mM NaCl. The protein was eluted with a linear gradient of
NaCl (0.05–0.6 M) in Q-buffer. The collected 1-mL fractions
were then washed with Q-buffer. ROCK protein in fractions
were detected with immunoblotting using an anti-ROCK1 anti-
body. ROCK activity was measured using the fraction contain-
ing ROCK1 with a Cyclex Rho-kinase Assay Kit (MBL,
Nagoya, Japan) according to the manufacturer’s protocol. The
inhibitory effect of the ROCK inhibitor on ROCK activity was
evaluated with the direct addition of Y27632 (10 lM) to the
ROCK1 fraction. The kinase activity in the vehicle control
was defined as 1 (n = 3).

Statistical analysis. A Student’s t-test was used to evaluate
the data from the proliferation, migration, and invasion assays.

P-values of <0.05 were considered statistically significant. All
statistical analyses were performed using SPSS software (IBM,
Armonk, NY, USA).

Results

Analysis of FKBP51-binding proteins using mass spectrome-

try. To identify new FKBP51-binding partners, we subjected
lysates prepared from MCF7 cells to immunoprecipitation with
an anti-FKBP51 antibody. Immunoprecipitated protein com-
plexes were subjected to SDS-PAGE and analyzed by CBB
staining (Fig. 1a). Bands distinct from the control were cut
and digested with trypsin and then analyzed by tandem mass
spectroscopy LC/MS/MS (QTRAP 5500 system). Analysis of
the tryptic peptides revealed the presence of DLC1 (ARH-
GAP7/STARD12), DLC2 (ARHGAP37/STARD13), the gluco-
corticoid and progesterone receptors, and Hsp90 proteins,
including FKBP51 (Fig. 1b and Fig. S1a). These proteins were
not detected in the samples immunoprecipitated with normal
rabbit IgG. The glucocorticoid receptor, progesterone receptor,
and Hsp90 are known to interact with FKBP51, which func-
tions as a co-chaperone with Hsp90 for glucocorticoid and pro-
gesterone receptors. The immunoprecipitation of MCF7 cell
lysates using the anti-DLC2 antibody detected the FKBP51
protein (Fig. 1c). DLC1 and 2 show GAP activity that specifi-
cally inhibits RhoA function. The Rho-GAP domain is highly
conserved between DLC1 (residues 1078-1284) and DLC2
(residues 663-867) (Fig. S1b). These results suggest that both
DLC proteins, which exhibit high homology in their GAP
domains, are novel FKBP51-associated proteins.

Overexpression of FKBP51 influences Rho-GAP activity. Given
that FKBP51 and DLCs (1 and 2) associate in cells, we
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Fig. 4. FKBP51 silencing decreases RhoA
activation. (a) U2OS cells were transfected with
Halo-RhoA for 24 h followed by treatment with
siRNA-FKBP51 or siRNA-control for 48 h. Cells were
then subjected to the RhoA activation assay. We
completed a Western blot analysis of the pulled-
down activated forms of RhoA after depletion of
FKBP51. (b) The corresponding quantification of
independent pull-down experiments is shown
(normalization of the GTP-bound forms to total
RhoA). Column graphs are represented as the
mean � SEM (n = 3; siRNA-FKBP51 and siRNA-
control for the RhoA pull-down assay). (c) Cells
expressing endogenous FKBP51 or Halo-DLC2 were
visualized by anti-FKBP51 and anti-Halo antibodies.
Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) was used as a loading control.
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speculated that FKBP51 affects GAP activity. To determine
whether FKBP51 influences Rho-GAP activity, we examined
GAP assays using recombinant proteins. GTP-RhoA was
assessed semiquantitatively by Western blotting, and the data
were used to calculate Rho activation [(GTP-RhoA/Total RhoA-
Halo) 9 100] (Fig. 2a). Cells expressing FLAG-FKBP51 or
Halo-DLC2 were visualized with anti-Halo and anti-FLAG anti-
bodies (Fig. 2b). Western blot analysis revealed an approximate
2.5-fold increase in Rho activation in FLAG-FKBP51-overex-
pressing 293T cells when compared with FLAG overexpressing
control cells (Fig. 2a,c; lanes 1 and 2). By contrast, Rho activa-
tion in Halo-DLC2-overexpressing 293T cells was decreased
when compared with control cells (Fig. 2a; lanes 2 and 3). These
results suggest that the interaction of FKBP51 with GAP proteins
decreases GAP activity, thus increasing GTP-RhoA expression.

Overexpression of FKBP51 enhances cells motility and inva-

sion. To determine whether FKBP51 overexpression correlates
with cell motility and invasion, we expressed FLAG-FKBP51
in U2OS cells (Fig. S2a). Cell numbers were measured using a
water-soluble tetrazolium-1 (WST-1) assay. The relative fluo-
rescence units (RFU) indicate the relative level of proliferation.
Column graphs show the mean � SEM from six samples. In
U2OS cells, the expression of FLAG-FKBP51 had no effect on
proliferation (Fig. 3a and Fig. S2b). A confluent monolayer of
U2OS cells was scratched, and cell motility was measured in a
wound-healing assay using time-lapse microscopy (Fig. 3b).
Phase contrast images are shown for 0 and 24 h. The dotted
lines indicate cells at the start of the experiment, and white lines
show the tips of migrated cells after 24 h. Bar graphs show the
proportion of cell motility as the mean � SEM from three sam-
ples (Fig. 3c). U2OS cells transfected with FLAG-FKBP51
exhibited significantly increased motility relative to cells trans-
fected with the FLAG-mock vector (P = 0.017, Student’s t-test;
n = 3). The ROCK inhibitor Y-27632 decreased cell motility
(P < 0.01, Student’s t-test; n = 4) (Fig. 3d). Cell invasion was
measured using the CytoSelect 96-well collagen I cell invasion
assay (Cell Biolabs, San Diego, CA, USA). Invasive cells pass
through the basement membrane layer, whereas noninvasive
cells remain in the upper chamber. After removal of non-inva-
sive cells, invading cells were stained and counted. Column
graphs show the mean � SEM from three samples (Fig. 3e).
Cell invasion was increased by overexpression of FLAG-
FKBP51 (P = 0.034, Student’s t-test; n = 3).

Knockdown of FKBP51 influences Rho-GAP activity. We
assessed whether the knockdown of FKBP51 affects GAP
activity. We knocked down FKBP51 expression in U2OS cells
and examined the levels of GTP-RhoA using a pull-down
assay. A Western blot analysis revealed that RhoA activity
was decreased in FKBP51 siRNA-transfected cells compared
with control siRNA-transfected cells (Fig. 4a,b). Cells express-
ing FLAG- FKBP51 or Halo-DLC2 were visualized by anti-
Halo, anti-FKBP51 and anti-GAPDH antibodies (Fig. 4c).
These results indicate that knocking down of FKBP51 induces
RhoA inactivation.

Knockdown of FKBP51 prevents cell motility and invasion. We
next assessed whether the knockdown of FKBP51 inhibited
cell motility and invasion. We treated U2OS cells with
siRNA-FKBP51. FKBP51 knockdown did not affect cell pro-
liferation for 72 h, as determined by the WST-1 assay (Fig. 5a
and Fig. S3a). Each sample was subjected to SDS-PAGE, fol-
lowed by immunoblot analysis with anti-FKBP51 (Fig. S3b).
b–actin was used as a loading control. We compared the
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images are shown for 0 and 24 h. The dotted lines indicate cells at
the start of the experiment, and white lines show the tips of migrated
cells after 24 h. (c) Column graphs show the mean � SEM from three
samples. (d) U2OS cells were treated with siRNA-FKBP51 or siRNA-con-
trol for 48 h and then subjected to the cell invasion assay. Relative
fluorescence units (RFU) indicate the relative amount of proliferation.
Column graphs show the mean � SEM from three samples.
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motility and invasion of U2OS cells treated with siRNA-
FKBP51 to cells treated with the siRNA-control. Cell motility
was measured in a wound-healing assay using time-lapse
microscopy (Fig. 5b). Phase contrast images are shown for 0
and 24 h. Cells treated with siRNA-FKBP51 exhibited signifi-
cantly reduced motility (Fig. 5c) and invasion (Fig. 5d), com-
pared with cells treated with the siRNA-control (motility;
P = 0.031 [FKBP51-1 vs control] and 0.001 [FKBP51-2 vs
control], Student’s t-test; n = 3, invasion; P = 0.041
[FKBP51-1 vs control] and 0.0001 [FKBP51-2 vs control], Stu-
dent’s t-test; n = 4). These data demonstrate that FKBP51
plays a functional role in promoting cell motility and invasion.

Knockdown of FKBP51 prevents RhoA activity and alters the

actin cytoskeleton. GTP-RhoA plays a key role in cytoskele-
ton reorganization and the formation of actin stress fibers.(33)

Thus, we investigated whether the knockdown of FKBP51
altered the actin cytoskeleton, which was visualized by stain-
ing cells with phalloidin-ATTO565. siRNA control cells
showed cytoplasmic bundles of actin fibers. By contrast,
siRNA FKBP51-treated cells showed markedly reduced bun-
dles and the cortical localization of F-actin (Fig. 6a-c; panels

2, 4, and 6). The knockdown of FKBP51 showed the forma-
tion of lamellipodia visualized by cortactin staining (Fig. 6a,
b; panels 1 and 3), unlike the siRNA control (Fig. 6c; panel
5). The fraction of abnormal cells (exhibiting a collapse of
F-actin fibers) was 69.6 � 12.2% in the knockdown cells and
12.4 � 6.6% in the control cells (Fig. 6e). F-actin was quan-
tified by measuring the intensity of phalloidin fluorescence
using an EnSpire plate reader (PerkinElmer, Waltham, MA,
USA). The fluorescence intensity of phalloidin-labeled actin
was reduced in siRNA FKBP51-treated cells when compared
with the siRNA control (Fig. 6f). These results indicate that
FKBP51 is required for the organization of the actin
cytoskeleton.

ROCK activity in FLAG-FKBP51-expressing U2OS cells. To focus
on the mechanism by which FKBP51 promotes in vitro cell
motility and invasion of cancer cells, we investigated the
potential downstream targets of Rho activity. There are two
major effectors for Rho signaling, ROCK and mDia. The bal-
ance of these two signaling molecules determines stress fiber
formation and membrane ruffles. Rho-mDia signaling produces
membrane ruffles through Rac activation, and this signaling is
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Fig. 6. Inhibition of stress fiber formation by
FKBP51 knockdown. (a–d) Staining of F-actin with
phalloidin-ATTO565 (red) and cortactin (green) in
U2OS cells treated with siRNA-FKBP51 or siRNA-
control. Nuclei were stained with Hoechst 33258
(blue). The areas indicated by the boxes are
magnified in the right panels. Control siRNA-
treated U2OS cells stained for F-actin displayed all
three categories of actin stress fibers (dorsal stress
fibers, yellow; transverse arc, white; and ventral
stress fibers, blue). (e) The graph shows the mean
fraction (�SD) of cells with inhibited stress fibers
based on three independent experiments (n = 50).
(f) U2OS cells were treated with FKBP51 siRNA for
48 h and then stained with phalloidin-Atto 565.
The fluorescence intensity was measured with an
EnSpire plate reader (PerkinElmer). Relative
fluorescence units (RFU) indicate the relative
amount of F-actin. Column graphs show the
mean � SEM from four samples.
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suppressed by Rho-ROCK activity, which is required for stress
fiber formation. To determine whether FKBP51 influences
Rho-mDia or Rho-ROCK signaling, we assessed the formation
of membrane ruffles and actin stress fiber by immunostaining
with a cortactin antibody and phalloidin-ATTO565, respec-
tively. We observed differences in the formation of membrane
ruffles between FLAG-FKBP51-expressing U2OS cells and
mock-treated cells (Fig. 7a). FLAG-FKBP51-expressing cells
showed decreased membrane ruffles when compared with
mock-treated cells. To investigate whether FKBP51 overex-
pression altered Rho-ROCK activity, ROCK1 protein was frac-
tionated with anion-exchange chromatography (Fig. 7b). The
expression of FLAG-FKBP5 significantly activated ROCK

activity in an immunoblot assay, and this effect was attenuated
by a specific ROCK inhibitor Y27632 and a lack of ATP
(Fig. 7c, n = 3, P < 0.05).

Discussion

In this study, we discovered a new molecular pathway for the
regulation of RhoA activity. Specifically, FKBP51-deficient
cells contained a disrupted cytoskeleton with altered actin
stress fibers (Fig. 6). Actin stress fibers can be divided into
three different classes based on their subcellular location and
role in cell motility: ventral stress fibers, dorsal stress fibers,
and transvers arcs.(34) Ventral stress fibers are part of the major
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contractile machinery in many interphase cells and lie along
the base of the cell.(34) Transverse arcs are actin filament bun-
dles that form a periodic actinin-myosin II pattern and convey
contractile force to the surrounding environment through their
connections with dorsal stress fibers.(35) The formation of ven-
tral stress fibers, dorsal stress fibers, and transvers arcs were
inhibited in FKBP51-deficient cells compared to in siRNA
control-treated cells (Fig. 6a–d).
Our study revealed that the overexpression of FKBP51 led

to a significant increase in RhoA activation (Fig. 2) and cell
motility (Fig. 3), compared with controls, suggesting that the
GAP activity of DLC1/2 may be inhibited by FKBP51. Treat-
ment with siRNA-DLC2 increased wound healing and cell
motility in MCF7 cells(36) and increased migration in human
endothelial cells. These effects were attenuated by silencing
RhoA.(37) DLC1 loss is sufficient to promote migratory behav-
ior in breast cancer cells.(38) A RhoA pull-down assay demon-
strated a remarkable reduction in RhoA activity in transiently
DLC2-transfected cells.(20) Furthermore, the formation of actin
stress fibers in DLC2-GAP expressing cells was significantly
inhibited compared with in non-transfected cells.(24) In our cur-
rent study, the knockdown of FKBP51 significantly decreased
RhoA activation (Fig. 4) and cell motility (Fig. 5), but did not
influence DLC1/2 expression (data not shown), when com-
pared with the control, suggesting that the GAP activity of
DLC1/2 is enhanced by the silencing of endogenous FKBP51.
Among Rho effectors, the role of ROCK and mDia in stress
fiber formation is well documented. ROCK is a major mediator
of Rho-mediated actin cytoskeletal structures, including stress
fibers, whereas mDia catalyzes actin nucleation and polymer-
ization.(39,40) ROCK and mDia antagonize each other during
Rho-dependent Rac activation, and the balance of these two
pathways determines the pattern of stress fibers.(41) A recent
study revealed that active RhoA-Rhotekin and S100A4 forms a
complex; however, the role of Rhotekin in Rho-mediated
downstream signal transduction leading to actin cytoskeleton
reorganization remains largely unknown.(42) In this study, we
investigated the potential downstream targets of RhoA activity
induced by the overexpression of FKBP51. Our results showed

that ROCK activity was enhanced by the expression of FLAG-
FKBP51. Thus, FKBP51 overexpression promotes Rho-ROCK
signaling over Rho-mDia signaling, which leads to the forma-
tion of actin stress fibers.
Our results suggest that FKBP51 affects GAP activity. The

underlying mechanism by which FKBP51 inhibits GAP activ-
ity remains unclear. However, we identified DLC1 and DLC2
from immunoprecipitation with an anti-FKBP51 antibody and
subsequent mass spectroscopy (Fig. 1, Fig. S1). Association
with 14-3-3 proteins inhibits DLC1 GAP activity and facili-
tates Rho signaling.(43) Protein kinase D (PKD) stimulates the
association of DLC1 with the phosphoserine-binding 14-3-3
proteins through recognition motifs that include Ser327 and
Ser431.(43) We identified PKD in our immunoprecipitation
experiments with an anti-FKBP51 antibody (data not shown).
Thus, FKBP51 may be involved in the regulation of PKD-
mediated DLC1 phosphorylation (Ser327 and Ser431). The
inhibitory mechanism of GAP activity via FKBP51 requires
further study. Moreover, investigating whether FKBP51
directly binds to the GAP domain of DLC1/2 may reveal the
mechanism for its inhibitory effect on GAP activity. These
results raise the interesting possibility that FKBP51 is associ-
ated with metastatic migration and the invasion of tumor cells
via a novel RhoA-based pathway. In addition, we would argue
that the high expression of FKBP51 in several cancer cells
gives rise to metastatic potential.
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Fig. S1. DLC1 was identified as a FKBP51 partner and has common signature with DLC2.

Fig. S2. The expression level of transfected FLAG-FKBP51 in U2OS cells and cell proliferation data (Supporting data related to Fig. 3).

Fig. S3. The expression level of FKBP51 in U2OS cells treated with each siRNA reagents and cell proliferation data (Supporting data related to
Fig. 5).

Fig. S4. U2OS cells treated with siRNA-FKBP51 or siRNA-control, or transfected with FLAG-FKBP51 or FLAG vector (Mock) for 24 h. Each
samples was subjected to SDS-PAGE followed by an immnuoblot analysis with anti-DLC1/2 antibodies, b-actin was used as a loading control.
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