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Hyperelastic models have been acknowledged as constitutive equations which reliably model the nonlinear behaviors observed
from soft tissues under various loading conditions. Among them, the Mooney-Rivlin, Yeoh, and polynomial models have been
proved capable of accurately modeling responses of breast tissues to applied compressions. Hyperelastic elastography technique
takes advantage of the disparities between hyperelastic parameters of varied tissues and the change in hyperelastic parameters in
pathological processes. The precise reconstruction of hyperelastic parameters of a completely unknown pathology in the breast
in a noninvasive and nondestructive way using the ultrasound elastography has been scrutinized in this paper. In the ultrasound
elastography, tissue displacement field is extracted from radio frequency signals or images recorded using the ultrasound medical
imaging system; hence the exact displacement field might not be obtained. Our results indicate that the parameters estimated by
manipulating the iterative sensitivity-matrix based method converge to tissue’s real hyperelastic parameters providing appropriate
parameters are assigned to the hypothetical hyperelastic and regularization parameters. Iterative methods have therefore been
proposed to compute proper hypothetical hyperelastic and regularization parameters. Accurate estimates of hyperelastic parameters
of obscure breast pathology have been achieved even from imprecise measurements of displacements induced in the tissue by the
ramp excitation.

1. Introduction

In the past two decades, substantial efforts have beenmade to
bring the novel promising imaging approach “elastography”
proposed by Ophir et al. [1] into clinical use. In contrast
to the common medical imaging methods, elastography
techniques could noninvasively provide qualitative or quanti-
tative information onmechanical characteristics of biological
tissues [2, 3]. Distinct perceptible changes in the mechanical
attributes of a biological soft tissue in varying pathologies
yield the noninvasive detection and classification of its lesions
using elastography techniques. Among them, ultrasound
elastography approaches, which benefit from the superiority
of conventional ultrasound (US) as being a safe, easy-to-use,
inexpensive, nondestructive, noninvasive, widely available,
and versatile medical imaging system, have received consid-
erable attention.

In general, the practicable US elastography methods are
classified on the basis of measured tissue-correlated physical
quantities into [4]:

(1) Strain Imaging: which is capable of qualitatively
imaging Young’s modulus, E, of the tissue by taking
the response of tissue to a quasistatic load into
consideration.

(2) Shear Wave Imaging (SWI): which is capable of
measuring shear wave speed, c𝑠, in the tissue (or its
Young’s modulus, E,) by taking the dynamic response
of tissue to a mechanical vibration or acoustic radia-
tion force into account.

Various praxes, particularly biomechanical characteriza-
tion and imaging, have attributed the significant rise in the
proposal of techniques for estimating linear and nonlin-
ear elastic parameters of materials, i.e., for solving inverse
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problems in elasticity. Invaluable surveys of the relevant
techniques have been provided by

(i) Bonnet and Constantinescu [5],
(ii) Hajhashemkhani et al. [6],
(iii) Guchhait and Banerjee [7].

The aforementioned reviews have respectively discussed:

(i) The formulations and solution methods, specifically
the finite element and boundary element based meth-
ods, which are pertinent to general numerical meth-
ods for solving unspecialized elasticity problems on
complex configurations, namely, least-squares func-
tionals, adjoint solutions, and error in constitutive
equation (ECE) based cost functions.

(ii) Momentous approaches for characterizing mechani-
cal properties, i.e., hyperelastic parameters, of biolog-
ical soft tissues and rubber-like materials with regard
to the testing methods utilized, e.g., indentation
tests, pipette aspiration experiments, propagation of
elastic waves in the medium, inflation experiments,
equibiaxial tensions, and in vivo experiments.

(iii) Prime elastic parameter estimation techniques
involving linear elastic regime and geometrically or
materially nonlinear forward model, for example,
least-square based cost functionals, sensitivity based
tactics, and integral approaches.

Besides the clinical applications, the introduction of
numerous innovative strategies to estimate the nonlinear
elastic parameters of materials or to reduce their computa-
tional costs, for instance,

(i) virtual fields method (VFM) [8, 9],
(ii) subdomain inverse finite element technique [10],
(iii) pointwise identification approach [11],
(iv) gradient-based quasi-Newton minimization, adjoint,

and continuation strategies [12],
(v) the minimization-based reconstruction technique

enhanced through material parameter grouping and
user-supplied gradients of the objective function
together with a nonlinear adjoint method [13],

to name but a few, infers the importance of the subject of
study.

As regards our research focus, in brief, a least-square
based cost functional was primarily applied by Iding et al.
in 1974 [14] to estimate hyperelastic parameters of homoge-
neous materials. With respect to the geometrically nonlin-
ear response of soft tissues at large deformations, i.e., the
nonlinearity of the strain-displacement relation, an integral
approach has been proposed by Skovoroda et al. [15] to
reconstruct the elasticity distribution of soft tissue. Sensitivity
based approaches have been applied formerly by Gendy and
Saleeb [16] and recently by Hajhashemkhani and Hematiyan
[6, 17, 18] to estimate hyperelastic parameters of rubber-like
materials and soft tissues. The slope-variation method and

Nelder-Mead algorithm have been applied by O’Hagan and
Samani [19, 20] and Naini et al. [21] to evaluate hyperelastic
parameters of abnormal breast and deflated lung tissues.

With the aim of diagnosing breast cancers through recon-
structing the spatial distributions of linear and nonlinear
elastic parameters in patients with benign and malignant
tumors [22, 23], the inverse nonlinear elasticity problem
has been altered into a minimization problem by Gokhale
et al. [24]. The gradient-based quasi-Newton optimization
method has been applied to minimize the cost function in
consideration of the spatial distribution of material proper-
ties. The adjoint elasticity equations and continuation (in the
material properties) scheme have been employed to calculate
the gradient in reasonable time.

The application of US elastography technique to recon-
struct nonlinear elastic constants of normal and abnormal
breast tissues has been intended in this paper. The response
of breast tissue, with and without the lesion, to a ramp
stimulus (with low rate of increase in the applied load to
ignore the inertia effect) has been simulated with the help of
the finite element (FEM) software, Abaqus FEA. Two iterative
methods founded on the stress-strain relation and sensitivity
matrix have been, respectively, applied to estimate proper
hypothetical and precise real hyperelastic parameters for the
unknown tissues from limited displacement quantities in the
tissues.

The approximate estimation of tissue displacement fields
from the simulatedUS radio frequency (RF) signals, using the
cross-correlation algorithm, impelled us to determine proper
regularization parameter to converge to the real hyperelastic
parameters of the tissue. An analogous iterative tactic has
therefore been employed to compute proper regularization
parameters. The decrease in the errors of elastic parameters
estimated for the tumor, by comparing with the real elastic
parameter estimated for the tumor, is the essence of the
proposed iterative methods which lead to appropriate hypo-
thetical and accurate real hyperelastic constants and suitable
regularization parameter.

2. Materials and Methods

2.1. Hyperelastic ConstitutiveModels. Theresults ofmultitude
experimental scrutinizations of the behaviors of biological
soft tissues, such as the breast and its lesions, have con-
firmed their nonlinear responses to applied stresses [25–27].
The researchers in the continuum mechanics work towards
constructing mathematical models (mathematical equations)
which could [28–30]

(i) realistically represent the behavior of the understudy
material;

(ii) assess the material’s response to the applied load;
(iii) differentiate materials.

Hyperelastic constitutive models have made us competent at
representing the nonlinear elastic responses of soft tissues to
(large) strains. The constitutive theory of hyperelastic materi-
als regards both the nonlinearity in the material behavior and
considerable changes in the shape of material [31–33].
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The strain energy density function, aka stored energy
function, characterizes the energy absorbed by the homoge-
neous material in consequence of its deformation. Certain
strain energy density functions are utilized to describe hyper-
elastic materials. As regards the deformation gradient tensor,
F, (1) defines the strain energy function,𝑊, as a function of
F,

𝑊 = 𝑊(F) . (1)

The invariants of deformation, F, aka strain invariants of
deformation, make mapping the area and volume between
the deformed and reference configurations possible.The first,
second, and third invariants of deformation, 𝐼1, 𝐼2, and 𝐼3, are
computed by the use of (2) for unconstrained isotropic elastic
materials,

𝐼1 = tr (F) = 𝐹11 + 𝐹22 + 𝐹33,
𝐼2 = 1

2 (𝐹𝑖𝑗𝐹𝑗𝑖 − 𝐹𝑖𝑖𝐹𝑗𝑗) ,
𝐼3 = det (F) = J.

(2)

The left and right Cauchy-Green deformation tensors, B
and C, are computed using

B = FF𝑇, (3)

C = F𝑇F. (4)

The principal invariants of B and C are calculated as follows:

𝐼B1 = tr (B) ,
𝐼B2 = 1

2 [(𝐼B1 )
2 − tr (B2)] ,

𝐼B3 = det (B) ≡ (detF)2 ,
(5)

𝐼C1 = tr (C) ,
𝐼C2 = 1

2 [(𝐼C1 )
2 − tr (C2)] ,

𝐼C3 = det (C) ≡ (detF)2 .
(6)

As represented for B in (7), for incompressible materials,
different sets of principal invariants of B and C are applied,

𝐼B1 = 𝐼B1𝐽2/3 ,

𝐼B2 = 𝐼B2𝐽4/3 ,
𝐽el = √det (B).

(7)

Equation (8) specifies the Cauchy stress tensor of an
unconstrained isotropic elastic material in terms of strain
invariants, 𝐼1, 𝐼2, and 𝐼3,

𝜎 = 𝛼0I + 𝛼1B + 𝛼2B2,
𝛼0 = 2𝐼1/23 𝜕𝑊

𝜕𝐼3 ,

𝛼1 = 2𝐼−1/23 (𝜕𝑊𝜕𝐼1 + 𝐼1
𝜕𝑊
𝜕𝐼2 ) ,

𝛼2 = −2𝐼−1/23 𝜕𝑊
𝜕𝐼2 .

(8)

The comprehensive compilations of the relations associated
with the hyperelasticity theory have been provided by Bower
[34], Felippa [35], and Holzapfel and Ogden [36]. On account
of the unity of 𝐼3 (and therefore 𝛼0=0), the Cauchy stress
tensor relationship for incompressible materials simplifies to

𝜎 = −𝑝I + 2𝜕𝑊𝜕𝐼1 B + 2
𝜕𝑊
𝜕𝐼2 (𝐼1B − B2) , (9)

where 𝑝 refers to the arbitrary hydrostatic pressure, i.e.,
the Lagrange multiplier which compels the incompressibility
constraint.

With the aim of accurately modeling the nonlinear elastic
behaviors observed from soft tissues, a multitude of strain
energy functions have been introduced in the literature. The
functions have been defined in terms of

(i) strain invariants, for instance, 𝐼1, 𝐼2, and 𝐼3 or 𝐼1, 𝐼2,
and J,

(ii) hyperelastic parameters, 𝐶𝑖𝑗.
The functions extend from the well-known long-established
Neo-Hookean and Mooney-Rivlin models (originated
respectively by Treloar [37] in 1943, and Rivlin and Saunders
[38] in 1951) to the recently inaugurated models, as the ones
proposed by Nolan et al. [39] in 2014, Chen et al. [40] in 2015,
and Carniel and Fancello [41] in 2017. On the basis of the
outcomes of several investigations, which have been referred
in Section 3.1, three strain energy functions,

(i) Mooney-Rivlin model (special first-order form of
generalized Rivlin model),

(ii) Yeoh model,
(iii) Second-order generalized Rivlin model, aka (second-

order) polynomial model,

could precisely model the behavior of breast tissues. The
mentioned models are, respectively, formulated (in simplified
forms since J=1 for incompressible tissues) by

𝑊 = 𝐶10 (𝐼1 − 3) + 𝐶01 (𝐼2 − 3) , (10)

𝑊 = 𝐶10 (𝐼1 − 3) + 𝐶20 (𝐼1 − 3)2 + 𝐶30 (𝐼1 − 3)3 , (11)

𝑊 = 𝐶10 (𝐼1 − 3) + 𝐶01 (𝐼2 − 3) + 𝐶20 (𝐼1 − 3)2
+ 𝐶11 (𝐼1 − 3) (𝐼2 − 3) + 𝐶02 (𝐼2 − 3)2 .

(12)
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While a uniaxial stress, 𝜎, is applied to the medium, the
deformation gradient tensor, F, is computed using (13), where
every 𝜆𝑖 (i=1,2,3) refers to the principal stretch parallel to one
of the coordinate axes,

F = [[
[

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

]]
]
. (13)

The principal stretches determine the principal invariants, 𝐼1,𝐼2, and 𝐼3, as represented,

𝐼1 = 𝜆21 + 𝜆22 + 𝜆23,
𝐼2 = 𝜆21 ⋅ 𝜆22 + 𝜆22 ⋅ 𝜆23 + 𝜆23 ⋅ 𝜆21,
𝐼3 = 𝜆21 ⋅ 𝜆22 ⋅ 𝜆23.

(14)

If the uniaxial stress, 𝜎, applied to the medium is considered
in line with the first coordinate axis, (15) defines the uniaxial
strain, 𝜀, produced in the medium due to the applied stress,

𝜀 = 𝜆 − 1, (15)

where 𝜆 represents the parallel stretch. Through assuming(1) the incompressibility of the medium (i.e., 𝐼3=1) and (2)
the equivalence of deformations in the two other coordinate
axes, the Cauchy stress tensor equation for an incompressible
medium (9) is simplified to [42, 43]

𝜎 = 2 (𝜆2 − 𝜆−1) (𝜕𝑊𝜕𝐼1 +
1
𝜆

𝜕𝑊
𝜕𝐼2 ) . (16)

Regarding the above explanations, (17), (18), and (19)
represent the Cauchy stress-stretch relations of the Mooney-
Rivlin, Yeoh, and second-order polynomial models, respec-
tively,

𝜎 = 2 (𝜆2 − 𝜆−1) (𝐶10 + 𝜆−1𝐶01) , (17)

𝜎 = 2 (𝜆2 − 𝜆−1) (𝐶10 + 2𝐶20 (𝜆2 + 2𝜆−1 − 3)
+ 3𝐶30 (𝜆2 + 2𝜆−1 − 3)2) ,

(18)

𝜎 = 2 (𝜆2 − 𝜆−1) [𝐶10 + 𝐶01𝜆−1
+ 2𝐶20 (𝜆2 + 2𝜆−1 − 3) + 2𝐶02 (2𝜆 + 𝜆−2 − 3)
+ 3𝐶11 (𝜆 − 1 − 𝜆−1 + 𝜆−2)] .

(19)

In consideration of (15), the following stress-strain rela-
tionships have been, respectively, achieved for the Mooney-
Rivlin, Yeoh, and polynomial models,

𝜎 = 2 ((1 + 𝜀)2 − (1 + 𝜀)−1) (𝐶10 + (1 + 𝜀)−1 𝐶01) , (20)

𝜎 = 2 ((1 + 𝜀)2 − (1 + 𝜀)−1) (𝐶10
+ 2𝐶20 ((1 + 𝜀)2 + 2 (1 + 𝜀)−1 − 3)
+ 3𝐶30 ((1 + 𝜀)2 + 2 (1 + 𝜀)−1 − 3)2) ,

(21)

𝜎 = 2 ((1 + 𝜀)2 − (1 + 𝜀)−1) [𝐶10 + 𝐶01 (1 + 𝜀)−1
+ 2𝐶20 ((1 + 𝜀)2 + 2 (1 + 𝜀)−1 − 3)
+ 2𝐶02 (2 (1 + 𝜀) + (1 + 𝜀)−2 − 3)
+ 3𝐶11 ((1 + 𝜀) − 1 − (1 + 𝜀)−1 + (1 + 𝜀)−2)] .

(22)

2.2. Estimation of Hyperelastic Parameters. The differences
between the hyperelastic constants of normal and abnormal
breast tissues, as thoroughly discussed in [19, 20, 44] for
numerous ex vivo breast tissue samples, make the detection
and identification of breast tumors through their hyperelastic
parameters feasible. With the purpose of precisely estimating
the parameters of the selected hyperelastic models, namely,

(i) the Mooney-Rivlin parameters, i.e., 𝐶10 and 𝐶01 of
(10),

(ii) the Yeoh parameters, i.e., 𝐶10, 𝐶20, and 𝐶30 of (11),
(iii) the polynomial parameters, i.e.,𝐶10 ,𝐶20,𝐶11,𝐶02, and𝐶01 of (12),

for normal and pathological breast tissues, two iterative
algorithms have been appraised. The algorithms are founded
on

(i) the stress-strain relationship and sensitivity matrix,
which have been formed on the basis of the relation
of the selected hyperelastic model, as explained in
Sections 2.1 and 2.2,

(ii) the noninvasive measurement of displacement and
strain fields in the understudy tissue from the
recorded US RF signals and images.

Two types of software, MATLAB� (The MathWorks, Inc.,
Natick, Massachusetts, USA) and a FEM software, for
instance, Abaqus FEA (Dassault Systèmes Simulia Corp.,
Johnston, RI, USA), should be bilaterally connected to make
the automatic iterations of the propounded algorithms possi-
ble.

At first, the recommended iterative algorithm which
progressively provides approximate estimates of hyperelastic
parameters of an undiagnosed tissue is described in this
section with regard to

(1) the explanations and equations mentioned in Sec-
tion 2.1, particularly the ones associated with the
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relations between stress sets, strain sets, and the
parameters of the Mooney-Rivlin, Yeoh, and polyno-
mial hyperelastic models;

(2) the availability of precise information on mechanical
characteristics, i.e., linear or nonlinear elastic param-
eters, of normal mediums that surround the tissue.
To the best of our knowledge, at least, the elastic
parameters of almost all healthy soft tissues, mainly
measured through minute ex vivo experiments, have
been reported in the literature. For several soft tissues,
in particular the breast, as mentioned previously,
we could benefit from the accessibility to precise
information on their nonlinear mechanical constants.

The above-mentioned algorithm could be described in
the following steps:

(a) The unknown tissue, i.e., tumor, and its surrounding
mediums are imaged before/while responding to a
ramp excitation (with low rate of increase in the
applied load to negate the inertia effect) for a period
of time by the employment of a clinical US imaging
system.

(b) The registered precompression US images, loading
specifications, and boundary conditions are delicately
regarded to accurately simulate the tumor and its
adjacent mediums with the help of the FEM software,
Abaqus FEA. Further explanation of the simulation
strategies has been provided at the end of the section.

(c) In the simulated specimen, the values of 1 Pa and 0.5
are, respectively, assigned to the elastic modulus and
Poisson’s ratio of the tumor to simulate an equivalent
elastic tumor.

(d) The displacement fields at some consecutive step
times are extracted

(i) for the tumor, from the recorded US RF signals
or images, for instance, by the use of the cross-
correlation algorithm; i.e., the exact displace-
ment fields in the tumor at some instants are
computed;

(ii) for the simulated elastic tumor, employing the
FEM software, Abaqus FEA.

(e) The real elastic modulus of the tumor, 𝐸real, is com-
puted using ([17, 18, 45])

𝐸real = D𝑇D
D𝑇Yreal

, (23)

where Yreal and D, respectively, represent the axial
displacement values of some points of the tumor and
elastic tumor at the specified moments.

(f) The tumor strain field could be roughly approximated
from the displacement measurements. The estimated
elastic modulus for the tumor, 𝐸real, is used to calcu-
late a set of stress values, 𝜎, from a set of strain values,
𝜀 (which is formed with regard to the strain field in

the tissue), through the linear elasticity relation, (24),
known as Hook’s law,

𝜎 = 𝐸real𝜀. (24)

In view of the obtained results, a set of arbitrary strain
values could also be considered, although the selec-
tion of strain set based on the available information
leads to the significant decrease in the number of
iterations.

(g) The parameters of the elected hyperelastic models,
namely, the Mooney-Rivlin, Yeoh, and polynomial
models, are computed using the formed stress and
strain sets and the relation between stress, strain, and
the parameters of a hyperelasticmodel, as represented
in Section 2.1, i.e., (20), (21), and (22), for instance,
with the help of regression algorithms of the MAT-
LAB software.

(h) The elastic parameter for the simulated tumor, 𝐸sim, is
calculated after assigning the estimated hyperelastic
parameters to the tumor and measuring the axial
displacement values of the appointed points at the
chosen step times, Ysim, by substituting Ysim for Yreal
in (23). The error of the computed elastic parameter,𝐸sim, while it is compared with 𝐸real , i.e., the real
elastic modulus calculated for the tumor, is used to
evaluate the estimated hyperelastic parameters for the
tumor. The assumption of the unavailability of initial
information about the tumor and itsmechanical char-
acteristics has compelled us to consider theminimum
of the errors of the estimates of tumor elastic modulus
the criterion, as represented,

𝐸𝑘sim − 𝐸real
 < 𝐸𝑖sim − 𝐸real

 ,
𝑖 = 1, 2, . . . , 𝑘 − 1, 𝑘 + 1, . . . ,𝑀 (25)

where𝑀 is the number of iterations of the algorithm.
(i) Through correctly modifying the strain set specified

in step (f) and iterating the algorithm from this step,
the estimated hyperelastic parameters could even
converge to the real hyperelastic parameters of the
tumor. A strain set that is slightly greater or less than
the strain values, which are roughly computed from
the tissue displacement measurements, would be the
most appropriate choice; therefore, in this step, the
strain quantities should be, respectively, decreased or
increased.

The errors of the elastic parameters estimated for the
tumor might not decrease below the defined tolerance value,
specifically while the strain set is elected arbitrary. The
iterative algorithm based on the sensitivity matrix, as defined
by Hajhashemkhani and Hematiyan [17, 18], would be the
right choice to converge to accurate estimates of tumor
hyperelastic parameters.The attained results indicate that the
selection of suitable initial hyperelastic parameters, which
could be obtained by the use of the proposed iterative
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method, is imperative to converge to precise estimates of
tumor hyperelastic parameters through the sensitivity-matrix
based algorithm; otherwise, the algorithm might approach
the local minima.

The following steps specify the sensitivity-matrix based
algorithm which has been applied to estimate the parameters
of the Mooney-Rivlin, Yeoh, and polynomial hyperelastic
models:

(j) Similar to the previous algorithm, the US images
and RF signals recorded from the mediums which
have surrounded the obscure tissue are considered.
The data are being registered for a time period
before/while the mediums are responding to a ramp
excitation (with low incremental rate to annul the
inertia) by the use of the clinical US imaging system.

(k) By dint of the FEM software, the tumor and its
adjacentmediums aremeticulously simulated consid-
ering the saved precompression US images, loading
specifications, and boundary conditions. The simula-
tion tactics have further been explained at the end of
the section.

(l) The axial displacement values of the specified points
of the tumor at the determinate step times, Yreal , are
extracted from the recorded US RF signals or images,
for instance, by employing the cross-correlation algo-
rithm.

(m) Similar to the previous algorithm, an elastic tumor is
simulated by allocating the values of 1 Pa and 0.5 to
the elastic modulus and Poisson’s ratio of the tumor.

(n) The displacement values of the appointed points of
tumor and elastic tumor at the selected instants are
manipulated to extract the real elastic modulus of the
tumor by the use of (23), as explicated in step (e).

(o) The sensitivity matrix is constructed in this step, as
follows:

(1) The set of estimated hyperelastic parameters, C,
is assigned to the tumor. In the first iteration of
the algorithm, the set of hyperelastic parameters
computed for the tumor by the employment
of the previously described method is taken
into account. The displacement quantities of
the selected points of tumor at every specified
moment, D𝑖,C (in total, D), are regarded.

(2) Based on the hyperelastic model considered
for the tumor, the response of the tumor, after
slightly altering each of the hyperelastic param-
eters, 𝐶𝑗, for instance, about 0.1% of its value, is
simulated; similarly, the displacement quantities
of the samepoints of tumor at every determinate
moment, D𝑖,𝐶𝑗, are extracted. The difference
between the calculated displacement vectors at
the corresponding step times, 𝜕D𝑖, is computed
for all the specified moments.

(3) The sensitivity matrix, S, [17, 18] is constructed
as follows:

S =
[[[[[[[
[

S11 S12 ⋅ ⋅ ⋅ S1𝑞
S21 S22 ⋅ ⋅ ⋅ S2𝑞
... ... d

...
S𝑙1 S𝑙2 ⋅ ⋅ ⋅ S𝑙𝑞

]]]]]]]
]
,

S𝑖𝑗 = 𝜕D𝑖𝜕𝐶𝑗 , 𝜕𝐶𝑗 = 𝜇𝐶𝑗,

(26)

where 𝑞, 𝜇, and 𝑙, respectively, represent the
number of hyperelastic parameters of the
model, the amount of change in the hyperelastic
parameters, and the number of consecutive step
times when the responses of the tissue, i.e., the
displacement quantities of some points of the
tissue, have been computed.

(p) With regard to the Tikhonov regularization method,
(27) [17, 18] is then used to compute the new hypere-
lastic parameters, Cest, for the tumor,

Cest = [S𝑇S + 𝛼I]−1 [S𝑇 (Yreal −D) + S𝑇SC] , (27)

where the parameter 𝛼 represents the regularization
parameter. On account of the achieved outcomes,
there is noneed to define the regularization parameter
when the tissue displacement fields have been accu-
rately measured from the recorded US RF signals and
images.

(q) The estimated hyperelastic parameters, Cest, are
applied to calculate the tumor elastic parameter, 𝐸sim,
and its error by comparing it with 𝐸real, as explained
in step (h).

(r) As regards the estimated hyperelastic parameters,
steps (o) to (q) are repeated until the error of the
elastic parameter estimated for the tumor decreases
below the defined tolerance value, as illustrated,

𝐸𝑘sim − 𝐸real
 ≤ 𝑒, (28)

where 𝑒 and 𝑘, respectively, represent the tolerance
value and the number of iterations of the algorithm.

By reason of recording low-quality US RF signals or
images, applying an imprecise motion tracking method,
assigning inappropriate values to parameters of the motion
tracking algorithm, for instance, the maximum lag in the
cross-correlation algorithm, or other attributes, the displace-
ments of selected points of tumormight not bemeasured cor-
rectly. It is required to determine an appropriate regulariza-
tion parameter to converge to the tumor hyperelastic param-
eters while the iterative sensitivity-matrix based method is
applied to the imprecise displacement measurements.

The errors of the elastic parameters estimated for the
tumor could also be considered to allocate proper value to
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Table 1: The linear and nonlinear (Mooney-Rivlin) elastic parameters of normal and abnormal breast tissues [48].

Hyperelastic & Elastic Parameters
Breast Tissues 𝐶10 (Pa) 𝐶01 (Pa) E (kPa)
Fat 2000 1333 20
Fibroglandular 3500 2333.3 35
Tumor 10000 6667 100

Table 2: The 2nd-order polynomial hyperelastic parameters of normal breast tissues, namely, the fat and fibroglandular tissues [44].

Hyperelastic Parameters
Normal Breast
Tissues 𝐶10 (Pa) 𝐶01 (Pa) 𝐶20 (Pa) 𝐶11 (Pa) 𝐶02 (Pa)
Fat 310 300 3800 2250 4720
Fibroglandular 330 280 7720 4490 9450

the regularization parameter. With reference to the attained
outcomes, through assigning a very small value to the
regularization parameter, the estimated hyperelastic param-
eters by manipulating the sensitivity-matrix based algorithm
could converge to the real hyperelastic parameters of the
tumor. Since it is assumed that no initial knowledge of the
tumor and its mechanical features is available, similar to
the two previously described algorithms, right value for the
regularization parameter could also be determined regarding
the errors of the elastic parameters estimated for the tumor.

Although obviously the meticulous simulation of the
understudy tissue and its neighbors on the basis of the
recorded predeformation US images, loading specifications,
and boundary conditions by the use of the FEM software,
Abaqus FEA, could significantly improve the results, the
attained outcomes connote the stability of the estimates
against the errors induced by the displacement measurement
or other attributes. Furthermore, the simulation could be
enhanced by the use of innovative strategies proposed to

(i) form three-dimensional (3D) volume data from
two-dimensional (2D) US scans; hence Voxel-Based
Methods (VBM), Pixel-Based Methods (PBM), and
Function-Based Methods (FBM) could be applied
[46, 47];

(ii) compensate for the incomplete knowledge of the
boundary conditions; notably, the problem of
unknown conditions on part of the boundary has
been solved by Hajhashemkhani et al. [6] using the
Gauss-Newtonmethod tominimize the cost function
defined on the basis of the measured and calculated
displacements.

3. Results and Discussion

3.1. Soft Tissue Simulation. With the aim of demonstrating
the efficacy of the proposed method in estimating hyper-
elastic parameters of an unknown tissue, particularly an
unidentified tumor in the breast, we have utilized the FEM
software, Abaqus FEA, to simulate 3D breast tissue geometry.
Three tissues, the fat, fibroglandular, and an interior spherical

Table 3: The Yeoh hyperelastic parameters of abnormal breast
tissues, namely, the fibroadenoma and invasive lobular carcinoma
(ILC) [19].

Hyperelastic Parameters
Benign & Malignant
Breast Tumors 𝐶10 (Pa) 𝐶20 (Pa) 𝐶30 (Pa)
Fibroadenoma 1190 20400 0
ILC 2066 2045 998

tumor, constitute the simulated breast tissue, which has
been depicted in Figure 1. Figure 1 also represents the
load applied to the medium and the defined boundary
condition, i.e., Encastre. As previously explained, the iterative
algorithms have been employed to estimate the parameters
of three hyperelastic models, namely, the Mooney-Rivlin,
Yeoh, and second-order polynomial models.The hyperelastic
parameters allocated to the normal fat and fibroglandular
breast tissues and benign and malignant breast tumors,
i.e., fibroadenoma, invasive lobular carcinoma (ILC), and
invasive mucous carcinoma (IMC), have been reported in
Tables 1–4.

It is assumed that the mechanical parameters, i.e., the lin-
ear and nonlinear elastic parameters, are constant through-
out each tissue type. Table 1 demonstrates a set of elastic
parameters and Mooney-Rivlin hyperelastic parameters of
breast tissues which has been widely applied to simulate
the breast [48–50]. The Yeoh and polynomial hyperelastic
parameters, presented in Tables 2–4, have been reported
by Samani and Plewes [44] (for the normal tissues) and
O’Hagan and Samani [19] (for the benign and malignant
tumors). An iterative method has been proposed by O’Hagan
and Samani to estimate hyperelastic parameters of ex vivo
breast tissue specimens from their responses to the low-
frequency sinusoidal load.Their results confirm that the Yeoh
and polynomial models are the hyperelastic models which
conform more to the experimental data recorded from the
breast tissues [19, 20].

In pursuance of the simulation of US RF signals and
images by the use of the Field II US Simulation Program,
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Table 4: The 2nd-order polynomial hyperelastic parameters of abnormal breast tissue, namely, the invasive mucous carcinoma (IMC) [19].

Hyperelastic Parameters
Malignant Breast Tumor 𝐶10 (Pa) 𝐶01 (Pa) 𝐶20 (Pa) 𝐶11 (Pa) 𝐶02 (Pa)
IMC 1340 1340 9830 9833 6090

Z

Y

X

X

Y

Z

X

Y

Z

X

Y

Z

Figure 1: The load, boundary condition, and mesh applied to the simulated breast tissue which is composed of the normal fat and
fibroglandular tissues and a spherical tumor.

as explained in Section 3.3, the positions of scatterers after
applying the load to the simulated medium should be cal-
culated. It is feasible to precisely compute their positions
through augmenting the number of nodes in the medium.
As depicted in Figure 1, 36303 4-node hybrid tetrahedron
(C3D4H) elements with 7603 nodes have constituted the
mesh of the simulated phantom. The accuracy of the simula-
tion outcomes has been verified by the convergence analyses.

3.2. Estimation of Hyperelastic Parameters from Precise and
Imprecise Displacement Measurements. The displacement
distribution, specifically in the axial direction, in the in vivo
tissue could be measured from the data recorded by the use
of the standard medical imaging systems such as the US or
magnetic resonance imaging (MRI) system in a noninvasive
way; therefore, in view of estimating hyperelastic parameters
of the tumor, we have employed the axial displacement values
of some points of tissue while the tissue is responding to the
ramp stimulation. With the purpose of ignoring the inertia
effect, the rate of increase in the applied load is considered
low.

With regard to the displacement values of several points
of tumor at some step times, the estimates of parameters of the
Mooney-Rivlin, Yeoh, and second-order polynomial models,
achieved by the use of the iterative methods explicated in
Section 2.2, have briefly been represented in Tables 5–10.
The results have been reached by applying the displacements
of maximum fifteen points of tumor in maximum twelve
consecutive instants (with the difference of 0.25 s between

the step times). Higher values have been considered for
the second-order polynomial model with five indeterminate
parameters, particularly while the displacement measure-
ments were inexact.

The results associated with estimating the hypothetical
and real elastic parameters and hyperelastic parameters of the
Mooney-Rivlin model for the normal and abnormal breast
tissues by the use of the proposed iterativemethods have been
represented in Tables 5 and 6.The outcomes of the estimation
of hypothetical and real hyperelastic parameters of the Yeoh
model for the benign and malignant breast tumors, i.e., the
fibroadenoma and ILC, by applying the suggested algorithms
have been summarized in Tables 7, 8, and 9. Table 10
demonstrates the capability of the recommended techniques
in properly computing the hypothetical and real hyperelastic
parameters of the second-order polynomial model based
on the response of the malignant IMC tumor to the ramp
excitation.

The calculation of displacement distributions in the
stimulated breast tissue from the pre- and postdeformation
RF signals simulated by the use of the Field II US Simulation
Program [51] (A MATLAB� toolbox for US field simulation)
has implied the necessity to consider the errors of displace-
mentmeasurements. Table 11 indicates the competence of two
propounded methods, i.e., the iterative stress-strain relation-
based and sensitivity-matrix based algorithms, in properly
computing the hypothetical and real hyperelastic parameters
from the inexact estimates of tumor displacement fields.
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Table 5: The hypothetical and real hyperelastic parameters of the breast tumor estimated for the Mooney-Rivlin model by the use of the
proposed iterative stress-strain relation-based and sensitivity-matrix based algorithms.

Hypothetical Hyperelastic Parameters Real Hyperelastic Parameters
Hypothetical
Hyperelastic & Elastic
Parameters

First
Estimates

Second
Estimates

Real Hyperelastic
Parameters

Second
Iteration∗

Fifth
Iteration

𝐸real (kPa) 9.89728773e+04 Hypothetical 𝐶10 (Pa) 1.396611e+04
Error of 𝐸real (%) 1.0271 Hypothetical 𝐶01 (Pa) 2.72700e+03
𝐶10 (Pa) 1.40034876e+04 1.39661106e+04 𝐶10 (Pa) 1.00062196e+04 0.99996187e+04
𝐶01 (Pa) 2.6837125e+03 2.72700048e+03 𝐶01 (Pa) 6.6604884e+03 6.6673814e+03
Error of 𝐶10 (%) 40.0349 39.6611 Error of 𝐶10 (%) 0.0622 0.0038
Error of 𝐶01 (%) 59.7463 59.0970 Error of 𝐶01 (%) 0.0977 0.0057
𝐸sim (kPa) 9.89728999e+04 9.89736850e+04 𝐸sim (kPa) 9.89728358e+04 9.89728776e+04
Error of 𝐸sim (%) 2.2868e-05 8.1606e-04 Error of 𝐸sim (%) 4.1895e-05 2.8726e-07
∗Precise estimates have been achieved in the primary iterations of the iterative sensitivity-matrix based algorithm by the use of the computed hypothetical
hyperelastic parameters.

Table 6: The hypothetical and real hyperelastic parameters of the normal breast tissue, namely, the fibroglandular tissue, estimated for the
Mooney-Rivlin model using the proposed iterative stress-strain relation-based and sensitivity-matrix based algorithms.

Hypothetical Hyperelastic Parameters
Real Hyperelastic Parameters

(In regard to first estimates of hypothetical hyperelastic
parameters)

Hypothetical
Hyperelastic
Parameters

First
Estimates

Second
Estimates

Real Hyperelastic
Parameters

Third
Iteration∗

Fifth
Iteration

𝐶10 (Pa) 1.5851138e+03 1.0814951e+03 𝐶10 (Pa) 3.5088899e+03 3.4997360e+03
𝐶01 (Pa) 26.5302 7.746264e+02 𝐶01 (Pa) 2.3235739e+03 2.3335629e+03
Error of 𝐶10 (%) 54.7110 69.1001 Error of 𝐶10 (%) 0.2540 0.0075
Error of 𝐶01 (%) 98.8630 66.8013 Error of 𝐶01 (%) 0.0042 0.0001
Error of 𝐸sim (%) 2.0536 1.9088 Error of 𝐸sim (%) 3.1787e-04 1.6123e-07
∗Precise estimates have been obtained in the primary iterations of the iterative sensitivity-matrix based algorithm bymaking use of the calculated hypothetical
hyperelastic parameters.

Table 7:The hypothetical hyperelastic parameters of the malignant tumor, namely, the ILC, in the breast estimated for the Yeoh model using
the suggested iterative stress-strain relation-based algorithm.

Hypothetical Hyperelastic Parameters∗
Estimated
Hyperelastic
Parameters

Estimates
of

Previous Iteration∗

Estimates
of

Next Iteration∗

𝐶10 (Pa) 0.18034160e+04 𝐶10 (Pa) 1.7951433e+03 1.7934292e+03
𝐶20 (Pa) 0.15985308e+04 𝐶20 (Pa) 3.0443848e+03 3.1841804e+03
𝐶30 (Pa) 6.63359617e+04 𝐶30 (Pa) 0.0002843e+03 0.0002742e+03
Error of 𝐶10 (%) 0.0127098e+03 Error of 𝐶10 (%) 13.1102 13.1932
Error of 𝐶20 (%) 0.0218322e+03 Error of 𝐶20 (%) 48.8697 55.7056
Error of 𝐶30 (%) 6.5468899e+03 Error of 𝐶30 (%) 99.9715 99.9725
Error of 𝐸sim (%) 0.2512 Error of 𝐸sim (%) 0.2593 0.2611
∗In consideration of the minimum error of the estimates of tumor elastic modulus, the hypothetical hyperelastic parameters have been chosen.The parameters
achieved in the previous and next iterations do not straightly converge to the real hyperelastic parameters of the tumor by the use of the iterative sensitivity-
matrix based algorithm.
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Table 8: The real hyperelastic parameters of the malignant tumor, namely, the ILC, in the breast estimated for the Yeoh model using the
iterative sensitivity-matrix based algorithm.

Real Hyperelastic Parameters Third Iteration∗ Seventh Iteration
𝐶10 (Pa) Error of 𝐶10 (%) 2.0660258e+03 0.0012 2.0660161e+03 0.0008
𝐶20 (Pa) Error of 𝐶20 (%) 2.0398643e+03 0.2511 2.0433674e+03 0.0798
𝐶30 (Pa) Error of 𝐶30 (%) 1.1566597e+03 15.8978 1.0457290e+03 4.7825
∗Precise estimates (esp. for𝐶10 and𝐶20) have been achieved in the primary iterations of the iterative sensitivity-matrix based algorithm by using the calculated
hypothetical hyperelastic parameters (reported in Table 7).

Table 9: The hypothetical and real hyperelastic parameters of the benign tumor, namely, the fibroadenoma, in the breast estimated for the
Yeoh model using the proposed iterative stress-strain relation-based and sensitivity-matrix based algorithms.

Hypothetical Hyperelastic Parameters Real Hyperelastic Parameters
Hypothetical
Hyperelastic
Parameters

Estimates
Real

Hyperelastic
Parameters

First Iteration∗ Seventh Iteration

𝐶10 (Pa) 1.6801636e+03 𝐶10 (Pa) 1.1862355e+03 1.1900172e+03
𝐶20 (Pa) 2.8495611e+03 𝐶20 (Pa) 1.99515281e+04 2.03980890e+04
𝐶30 (Pa) 0.0002326e+03 𝐶30 (Pa) 45.4462 60.9599
Error of 𝐶10 (%) 41.1902 Error of 𝐶10 (%) 0.3163 0.0014
Error of 𝐶20 (%) 86.0316 Error of 𝐶20 (%) 2.1984 0.0094
Error of 𝐸sim (%) 0.6687 Error of 𝐸sim (%) 6.4873e-03 2.7053e-05
∗Precise estimates have been obtained in the primary iterations of the iterative sensitivity-matrix based algorithm by the use of the computed hypothetical
hyperelastic parameters.

3.3. Simulation of US RF Signals and Images. The Field II
US Simulation Program [51] has been applied to simulate
the pre- and postdeformation RF signals (on the basis of
the response of the breast tissue to the applied load) to
appraise the errors of displacement measurements. While the
RF signals of breast tumors surrounded by the normal fat
and fibroglandular tissueswere being simulated, zero acoustic
impedance was allocated to the abnormal breast tissues. In
the Field II US Simulation Program, the properties selected
tomodel the probe array and simulate the US RF signals have
been considered as follows:

(i) Linear array,
(ii) An array with 64 active elements,
(iii) Transducer center frequency: 5 MHz,
(iv) Sampling frequency: 60 MHz,
(v) Transmit focus (in depth): 50 mm,
(vi) Pitch of probe array (i.e., element’s width): 0.44mm,

that is equal to the wavelength,
(vii) Element’s height: 5 mm,
(viii) Element’s kerf: 0.03 mm,
(ix) Number of scan lines in the image: 256 lines (i.e.,

lateral spatial spacing of 0.16 mm).

In addition, the positions of scatterers in each deformation
state have been calculated by linearly interpolating the
displacements of the adjacent nodes computed through the
FEM software, Abaqus FEA. To illustrate, two sets of B-mode
images of the breast tissue, i.e., the pre- and postdeformation
B-mode images, constructed from the RF signals associated

with the times of 7.50 s and 9.00 s after starting to apply the
ramp excitation, have been represented in Figure 2.

The gold standard of displacement estimation from the
US RF signals, i.e., the cross-correlation algorithm, has been
applied to evaluate the errors of displacement measurements.
The displacement distributions in the tumor at the selected
step times have been calculated from the pre- and postde-
formation RF signals. In comparison with the displacement
measurement from the US images, more precise estimate
of tissue displacement field with higher spatial resolution is
obtained by utilizing the RF signals.

In view of declining the computation time, which signif-
icantly raises by the use of the RF signals due to their higher
sampling rate, two tactics have been employed:

(1) Through defining maximum lag in regard to the esti-
mated displacements of adjacent regions, i.e., preced-
ing samples and lines, each search area (the number
of lags considered in specifying the maximum of
the cross-correlation function for two corresponding
windows of the RF signals) was reduced considerably
[52].

(2) The computational cost of the cross-correlation
algorithm was appreciably declined by eliminating
repeated calculations with the help of precomputed
sum tables [53].

4. Conclusions

The correct identification of benign and malignant tumors
in the breast through their nonlinear elastic parameters by
the use of a noninvasive and nondestructive method has
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Figure 2: The B-mode images of the breast tissue constructed from the RF signals simulated on the basis of the tissue states at t=0.00 s and
t=7.50 s (left) and t=0.00 s and t=9.00 s (right), while responding to the ramp excitation.

been intended in this paper. With respect to the principles of
elastography technique, two successive iterative algorithms,
founded on

(1) the relation between stress, strain, and the parameters
of a hyperelastic model,

(2) the sensitivity matrix, which correlates the changes in
the displacement field in the tissue to the variations of
hyperelastic parameters,

(3) the estimation of displacement and strain fields in the
tissue from the recorded US RF signals and images
using the motion tracking techniques,

(as explained in the Materials and Methods section of the
paper), have been utilized to precisely estimate the param-
eters of three hyperelastic models,

(i) the Mooney-Rivlin model, i.e., the parameters 𝐶10
and 𝐶01 of (10),

(ii) the Yeoh model, i.e., the parameters 𝐶10, 𝐶20, and 𝐶30
of (11),

(iii) the second-order polynomial model, i.e., the param-
eters 𝐶10, 𝐶20, 𝐶11, 𝐶02, and 𝐶01 of (12).

The exact/inexact displacement values of limited points (at
restricted instants) of the tumor excited by the ramp stimulus
have been applied to calculate the parameters.

The dependency of the proposed method to the dis-
placement and strain quantities warrants its competence as a
noninvasive stratagem. The displacement and strain fields in
the in vivo tissue could be computed from the recorded US
RF signals or images by the employment of motion tracking
approaches, which have been typically classified into three
categories [53],

(i) Phase-domain methods,
(ii) Time-domain (1D) or Space-domain (2D) methods,
(iii) Spline-based methods.

The reliance of a method to precise values of deformation
variables except or further than the displacement or strain, as
the ones proposed by Omidi et al. [54], Roy and Desai [55],
Liu et al. [56], Boonvisut and Çavuşoğlu [57], and Wang et
al. [58], to mention a few, prevents the technique from being

considered an elasticity imaging approach with the capability
to noninvasively depict the nonlinear elastic features of in
vivo tissues.

The inadequacy of the displacement-based techniques,
for instance, two methods proposed by Mehrabian and
Samani [59–61] andHajhashemkhani andHematiyan [17, 18],
necessitates the improvement of the tactics or the introduc-
tion of novel strategies for the hyperelastic elastography. The
main defects of the aforementioned methods (as some of
them have been assessed in [62]) are as follows:

(1) the dependency of the defined coefficient matrix
in the former method to the precise displacement
measurements of a great number of adjacent points
inside the medium and the reliance of the latter
method to the displacement values of some boundary
points of the tumor, which might not be accurately
extracted from the recorded data, e.g., the US RF
signals or images,

(2) the necessity to have initial knowledge of the tumor
in order to (a) consider proper initial guesses for the
hyperelastic parameters to initiate the algorithms and
(b) be assured of converging to the main hyperelastic
parameters, specifically on account of the defined
criteria to stop the algorithms,

(3) the requisite to employ appropriate regularization
methods and parameters, for example, as indicated by
Mehrabian and Samani, the truncated singular value
decomposition (SVD), Tikhonov regularization, and
Wiener filtering techniques [59–61],

which have been rectified in the proposed method. The
higher error of displacement estimates in the boundary
region has been discussed in [63–65].

It has been assumed that no primary knowledge of the
tumor is accessible except the exact or even approximate
measurements of displacement and strain fields in the tumor.
With consideration of the estimated hyperelastic parameters,
the minimum error of the elastic parameters calculated for
the tumor, while they are compared with the main elastic
parameter computed for the tumor from the estimated
displacement fields in the tumor, is the principal criterion
for the choice of the best estimates of hypothetical and real
hyperelastic parameters.
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Thanks to the defined criterion, the repeated manipula-
tion of the stress-strain relation of the hyperelastic model
results in

(i) converging to the proper initial estimates of the
parameters of the hyperelastic model; therefore, the
possibility of inaccurately estimating the hyperelastic
parameters of the understudy tissue declines to zero;

(ii) significantly reducing the number of iterations of
the iterative sensitivity-matrix based method, i.e., the
computational cost of the real hyperelastic parameter
estimation algorithm.

In pursuance of fulfilling the breast hyperelastic elastog-
raphy, the propounded technique will be applied to estimate
the nonlinear elastic constants of in vivo breast abnormalities
from the recorded US RF signals and images in the future
research.
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[1] J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li,
“Elastography: a quantitative method for imaging the elasticity
of biological tissues,” Ultrasonic Imaging, vol. 13, no. 2, pp. 111–
134, 1991.

[2] J. Ophir, S. K. Alam, B. S. Garra et al., “Elastography: Imaging
the elastic properties of soft tissues with ultrasound,” Journal of
Medical Ultrasonics, vol. 29, no. 4, pp. 155–171, 2002.

[3] J.-L. Gennisson, T. Deffieux, M. Fink, and M. Tanter, “Ultra-
sound elastography: Principles and techniques,”Diagnostic and
Interventional Imaging, vol. 94, no. 5, pp. 487–495, 2013.

[4] R. M. S. Sigrist, J. Liau, A. E. Kaffas, M. C. Chammas, and J. K.
Willmann, “Ultrasound elastography: Review of techniques and
clinical applications,” Theranostics, vol. 7, no. 5, pp. 1303–1329,
2017.

[5] M. Bonnet and A. Constantinescu, “Inverse problems in elastic-
ity,” Inverse Problems, vol. 21, no. 2, pp. R1–R50, 2005.

[6] M.Hajhashemkhani,M.R.Hematiyan, andS.Goenezen, “Iden-
tification of material parameters of a hyper-elastic body with
unknown boundary conditions,” Journal of Applied Mechanics,
vol. 85, no. 5, pp. 051006–051013, 2018.

[7] S. Guchhait and B. Banerjee, “Constitutive error based mate-
rial parameter estimation procedure for hyperelastic material,”
Computer Methods in Applied Mechanics and Engineering, vol.
297, pp. 455–475, 2015.

[8] S. Avril, P. Badel, and A. Duprey, “Anisotropic and hyperelastic
identification of in vitro human arteries from full-field optical
measurements,” Journal of Biomechanics, vol. 43, no. 15, pp.
2978–2985, 2010.
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