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Transforming growth factor (TGF)-3 antagonizes mitogenic Ras
signaling during epithelial regeneration, but TGF-f3 and Ras act
synergistically in driving tumor progression. Insights into these
apparently contradictory effects have come from recent detailed
analyses of the TGF-f3 signaling process. Here, we summarize the
different modes of TGF-f3/Ras signaling in normal epithelium and
neoplasms and show how perturbation of TGF-[3 signaling by Ras
may contribute to a shift from tumor-suppressive to protumori-
genic TGF- activity during tumor progression. Smad proteins,
which convey signals from TGF-f3 receptors to the nucleus, have
intermediate linker regions between conserved Mad homology
(MH) 1 and MH2 domains. TGF-3 Type I receptor and Ras-
associated Kkinases differentially phosphorylate Smad2 and Smad3
to create C-terminally (C), linker (L) or dually (L/C) phosphory-
lated (p) isoforms. In epithelial homeostasis, TGF-3-mediated
pSmad3C signaling opposes proliferative responses induced by
mitogenic signals. During carcinogenesis, activation of cytoplas-
mic Ras-associated kinases including mitogen-activated protein
kinase confers a selective advantage on benign tumors by shifting
Smad3 signaling from a tumor-suppressive pSmad3C to an onco-
genic pSmad3L pathway, leading to carcinoma in situ. Finally, at
the edges of advanced carcinomas invading adjacent tissues, nu-
clear Ras-associated kinases such as cyclin-dependent Kinases,
together with cytoplasmic kinases, alter TGF-3 signals to more
invasive and proliferative pSmad2L/C and pSmad3L/C signaling.
Taken together, TGF-3 signaling specificity arises from spatio-
temporal dynamics of Smad phosphoisoforms. Based on these
findings, we have reason to hope that pharmacologic inhibition
of linker phosphorylation might suppress progression to human
advanced carcinomas by switching from protumorigenic to
tumor-suppressive TGF-3 signaling.

Introduction

Transforming growth factor (TGF)- inhibits proliferation of normal
epithelial, endothelial and hematopoietic cells, thus being crucial for
homeostasis of various tissues (1,2). During carcinogenesis, the phys-
iological balance between proliferation and differentiation in normal
epithelial cell homeostasis is lost. TGF-f3 signaling appears to be
important for prevention of early-stage carcinogenesis, acting to
maintain normal tissue architecture (3). The cytostatic function of
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transition; ERK, extracellular signal-regulated kinase; HCC, hepatocellular carci-
noma; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase;
MH, Mad homology; MMP, matrix metalloproteinase; PDGEF, platelet-derived
growth factor; R-Smad, receptor-activated Smad; RTK, receptor tyrosine kinase;
TGE, transforming growth factor; TF, transcription factor; TBRI, TGF-§ Type I
receptor.

TGF-B is inhibited in cancer as a result of mutations that directly
inactivate components of the TGF-J signaling pathway (4,5). However,
genetic inactivation of the TGF-f3 signaling molecules occurs in only
~10% of all cancers (5). Many tumor cells without known mutations in
these components are refractory to growth inhibition by TGF-f.

What are the mutations that interrupt growth inhibition by TGF-3
and confer growth advantages at an early stage of tumor develop-
ment? Among genes found so far to be involved in human colorectal
carcinogenesis as an example, the proto-oncogene K-Ras (a member
of the Ras gene family) stands out as most frequently mutated (6).
During carcinogenesis, genetic mutations involving Ras and other
oncogenic pathways gradually accumulate in a benign tumor, as it
becomes carcinoma in situ (7-9). Finally, in advanced carcinomas
invading adjacent tissues, TGF-f signaling acts in concert with the
Ras and other oncogenic pathways to induce a proliferative and in-
vasive phenotype (10,11). Both major effects of TGF-f, one antago-
nizing and the other favoring tumor progression, are clearly in direct
conflict with each other. Cancer cells resolve this dilemma by evolv-
ing to evade the cytostatic effects of TGF-f, while promoting other
responses favoring tumor cell invasiveness (12-14).

Progress over the past 10 years has disclosed important details of
how TGF- elicits its responses. Smads, central mediators conveying
signals from receptors for TGF-f} superfamily members to the nucleus
(15-19), are modular proteins with conserved Mad homology (MH)1,
intermediate linker and MH2 domains (16). In cell signaling path-
ways, various transcription factors (TFs) are phosphorylated at mul-
tiple sites by upstream kinases. Catalytically, active TGF-f3 Type I
receptor (TPRI) phosphorylates COOH-tail serine residues of recep-
tor-activated Smad (R-Smad) (17), which include Smad2 and the
highly similar protein Smad3. Mitogenic signals acting via the Ras
pathway alternatively cause phosphorylation of R-Smad at specific
sites in their middle linker regions (20-25).

Monitoring phosphorylation status of signaling molecules is a key step
in dissecting their pathways. In Smad signaling, phosphorylation of not
only the COOH-tail but also the linker regions of R-Smads is important
in regulating Smad activity under physiologic and pathologic conditions
(26). In this review, we first examine Smad signaling specificity derived
from the target gene profile in response to changes in spatial and tem-
poral dynamics of domain-specific R-Smad phosphorylation. We then
consider how these phosphorylated R-Smad signals determine specific
cellular responses to TGF-f3 in normal epithelial cells, benign tumors,
carcinomas in situ and invasive carcinomas. Finally, we discuss how
enhanced understanding of phosphorylated R-Smad signaling could lead
to improved methods for cancer prevention and treatment.

The canonical TGF- and Ras-activated mitogen-activated
protein kinase pathways

The canonical TGF-f3 pathway involves R-Smad signaling through
direct serine phosphorylation of C-termini by TPRI upon TGF-f
binding [Figure 1A, left (16,19)]. TPRI-mediated phosphorylation
of R-Smads induces their association with the shared partner Smad4.
The complexes accumulate in the nucleus, where they interact with
other TFs, coactivators and corepressors to regulate the transcription
of specific genes (15-19,27). Although Smad3 makes direct contact
with DNA at a 5'-AGAC-3" sequence known as a Smad-binding
element, Smad2 cannot bind directly to DNA (28,29).
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Fig. 1. Multiple Smad phosphoisoforms exist. (A) The canonical TGF-f and Ras-activated MAPK pathways. Following phosphorylation (p) of their C-termini by
TPBRI, Smad2 and Smad3 partner with the common mediator Smad4 and translocate to the nucleus. TGF-f also activates the Ras/sMAPK pathway; the MAPK
pathway induces the phosphorylation of a variety of TFs that co-operate with nuclear Smads in mediating TGF-B-induced transcriptional responses. SBE, Smad-
binding element; TBE, transcription factor-binding element. (B) Schematic representation of phosphorylation sites in Smad2 and Smad3. Catalytically, active
TBRI phosphorylates COOH-tail serine residues. ERK, JNK, p38 MAPK and CDK4 alternatively phosphorylate Smad2/3 at specific sites in their middle linker
regions as lines indicate. Several other kinases such as glycogen synthase kinase-3f also phosphorylate Smad2/3 at the specific sites in the linker segments.
(C) Three Smad phosphoisoform types: pSmad2C and pSmad3C; pSmad2L and pSmad3L and pSmad2L/C and pSmad3L/C. TPRI and Ras-associated kinases
differentially phosphorylate Smad2/3 to create three phosphorylated forms (phosphoisoforms): C-terminally phosphorylated Smad2/3 (pSmad2C and pSmad3C);
linker phosphorylated Smad2/3 (pSmad2L and pSmad3L) and dually phosphorylated Smad2/3 (pSmad2L/C and pSmad3L/C). Except for cytoplasmic localization

of pSmad2L, the other phosphoisoforms localize to cell nuclei.

Mitogen-activated protein kinase (MAPK), including extracellular
signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and
p38 MAPK, is an evolutionarily conserved regulator essential for
a variety of cellular events (30). Multiple extracellular stimuli can
initiate a cascade of serial phosphorylation activation from MAP
kinase kinase kinase (MAPKKK) to MAP kinase kinase (MAPKK)
and finally MAPK (Figure 1A, right). One of the best-characterized
triggers for the MAPK pathway is Ras activation, which propagates
mitogenic signals from a number of ligand- or self-activated receptor
tyrosine kinase (RTK). In addition, MAPK can be regulated by TGF-f
stimulation, which represents an important mechanism for non-Smad
TGF-P signaling (31). MAPK phosphorylates nuclear TFs, such as
c-Jun, Fos, Maf and ATF subfamilies (32), which can physically in-
teract with Smads and regulate TGF- responses (5). Other non-Smad
pathways include phosphoinositol-3 kinase, RhoA, Racl and Cdc42
guanosine triphosphatases (33). Imbalance may occur between signal-
ing through the non-Smad and Smad pathways during carcinogenesis,
and some co-operation between these pathways mediates protumori-
genic effects of TGF-B (5,33).

Multiple Smad phosphoisoforms exist

Although COOH-tail phosphorylation by TPRI is a key event in
R-Smad activation, additional phosphorylation by intracellular
protein kinases can positively and negatively regulate R-Smads.
R-Smads contain two conserved polypeptide segments, the MH1
and MH2 domains, joined by a less conserved linker region (16).

The linker domain undergoes regulatory phosphorylation by MAPK,
cyclin-dependent kinase (CDK), glycogen synthase kinase 3-f, Ca
(2+)-calmodulin-dependent protein kinase II and G protein-coupled
receptor kinase-2 [Figure 1B (20-26,34-38)]. Among these kinases,
MAPK and CDK are major groups of protein kinases that exhibit
preference for specific serine/threonine residues in the linker regions
(26,38,39). Phosphorylation in the linker regions serves an important
function in regulating stability, activity and transport of R-Smads.
Smurfs have been found to interact with R-Smads (40—42), thereby
directly targeting R-Smads for ubiquitin-mediated degradation via the
proteasome pathway. Whereas Smurf 1 preferentially interacts with bone
morphogenetic protein R-Smads, Smurf2 can associate with TGF-
[/activin R-Smads as well as bone morphogenetic protein R-Smads
(40-42). Smurf-mediated degradation of R-Smads induces a decrease
in cellular competence for TGF-f family-induced responses (40,42).
Linker phosphorylation of R-Smads by TGF- facilitates the binding
of the E3 ubiquitin ligase NEDDA4L to the R-Smads and consequently
results in R-Smad polyubiquitination and degradation (43).

Ras signaling simultaneously activates linker-phosphorylated
R-Smads and non-Smad pathways, with both usually operating in
parallel. Biologic significance of linker-phosphorylated R-Smad path-
ways is therefore difficult to assess in isolation. Here, we will review
recent work in this area, with a particular focus on how the Ras
pathway modulates TGF-J signaling through Smad linker phosphor-
ylation, using colon and liver cancer as examples. Antibodies (Abs)
reactive with structurally related phosphorylated peptides are emerg-
ing as valuable tools for determining phosphorylation sites in vivo and
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for investigating their distinct signals via phosphorylated domains.
Domain-specific phospho-R-Smad Abs have allowed us to reveal that
TPRI and Ras-associated kinases differentially phosphorylate
R-Smads to create three phosphorylated forms (phosphoisoforms):
C-terminally phosphorylated R-Smad (pSmad2C and pSmad3C),
linker-phosphorylated R-Smad (pSmad2L and pSmad3L) and dually
phosphorylated R-Smad (pSmad2L/C and pSmad3L/C) (39,44,45).
Except for pSmad2L with cytoplasmic localization (20,21,36), the
other phosphoisoforms are localized to cell nuclei [Figure 1C
(21,24,25,35,38,46-51)]. Linker phosphorylation can modify
C-terminally phosphorylated R-Smad signaling (20-22,24-26,34—
36). Differential localization of kinases and phosphatases in the
cytoplasm or nucleus raises the intriguing possibility of different
temporal dynamics for cytoplasmic or nuclear R-Smad phosphoiso-
forms and adds to the repertoire of signaling responses that determine
cell-fate decisions. Immunohistochemical and immunofluorescence
analyses using specific Abs in human tissues can examine clinical
significance of context-dependent and cell type-specific signaling
mediated by R-Smad phosphoisoforms by comparing tissue/cellular
localization of these phosphoisoforms in various pathologic
specimens.

Cytostatic TGF-f3 signaling: involvement of the pSmad3C pathway

CDK, cyclins and CDK inhibitors are important molecules for un-
derstanding both TGF-f and Ras signaling. Growth arrest by TGF-3
occurs via interference with cell cycle progression. Depending on the
cell type, TBRI/pSmad3C signal inhibits proliferation by suppressing
the expression of c-Myc (52) and by inducing the CDK inhibitors
p15INK4B and p21WAFL (53 54), shutting down cell cycle progression
in the early/mid G, phase of the cell cycle (Figure 2A, right). Another
CDK inhibitor p27¥P! functions as a tumor suppressor via TGF-f3
signal (55,56). Organisms attempt to block development of cancer
through actions of the pSmad3C pathway, which can cause normal
epithelial cells to cease growth and enter apoptosis after cell prolif-
eration, in part through the ability of pSmad3C to induce or repress
expression of a number of apoptosis-associated proteins such as
Bcl2 (57).

Mitogenic Ras signaling: involvement of the pSmad3L pathway

RTK ligands strongly activate the Ras/MAPK pathway, as TGF-f
does more weakly (31). Rass/MAPK signaling was shown previously
to induce phosphorylation of Smad2 and Smad3 at their linker re-
gions (20). Smad2 phosphorylation at the linker region inhibits nu-
clear accumulation of Smad2 without interfering with TGF-
B-induced phosphorylation of its COOH-tail (25,58—-66). In contrast,
linker phosphorylation does not retain Smad3 in the cytoplasm,
permitting further consequences of the Ras/MAPK signaling. The
mechanisms underlying this difference between the two R-Smads
are not known, but phosphorylation sites of Smad3 at clusters of
three serine residues in its linker region (Ser2%4, Ser?%® and Ser?!3)
are somewhat different in sequence from the corresponding
linker phosphorylation sites (Ser?*>, Ser?>° and Ser?>3) of Smad2
(Figure 1B).

Several lines of evidence indicate that Rass/MAPK transmits mito-
genic signals via the pSmad3L pathway (Figure 2A, left). Firstly, RTK
ligands such as epidermal growth factor and hepatocyte growth factor
transiently induce Smad3 phosphorylation at the linker region and
active Ras and ERK mutants constitutively phosphorylate the linker
site (20,21,24). Secondly, RTK ligands or Ras-activated MAPKSs can
directly phosphorylate the linker site in vitro, and various MAPK
inhibitors including ERK, JNK and p38 MAPK block linker phos-
phorylation in vivo (20,21,23,24,35). Thirdly, RTK ligands and consti-
tutively active Ras translocate pSmad3L into the nucleus (21,24,25).
Fourthly, nuclear pSmad3L forms a heterocomplex with Smad4
[(21,35), supplementary Figure S1 is available at Carcinogenesis On-
line]. Fifthly, nuclear pSmad3L binds to Smad-binding element in the
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promoter with high affinity and specificity (35,67-69). Finally, RTK
ligands and Ras induce growth of normal epithelial cells, and such
mitogenic effects are blocked by Smad3 mutants lacking linker phos-
phorylation sites [(24), supplementary Figures S2 and S3 are available
at Carcinogenesis Online] and by various MAPK inhibitors (24).
These results strongly support the notion that Rass/MAPK specifically
signals through Smad3 (13,70).

Reversibility of phospho-Smad3 signaling between cell growth
and inhibition

pSmad3L acts as not only a functional molecule actually contributing
to the mitogenic effect of Ras but also an antagonist for the cytostatic
pSmad3C signaling. Ras-mediated pSmad3L and TPRI-mediated
pSmad3C signals oppose each other; most importantly, the balance
can shift between cell growth and inhibition (Figure 2A). Linker
phosphorylation of Smad3 blocks COOH-tail phosphorylation by
TBRI [Figure 2A, left (21,24,36,49,50)]. Mitogenic signaling accel-
erates nuclear transport of pSmad3L from the cytoplasm, while pre-
venting Smad3C phosphorylation, pSmad3C-mediated transcription
and antiproliferative effects of TGF-3 [Figure 2A, left (24)]. Smad3
mutants lacking linker phosphorylation sites, as well as various
MAPK inhibitors, can restore growth inhibitory and transcriptional
responses to TGF-f in Ras-transformed cells and rat carcinomas,
both in vitro and in vivo (24,49,50). Our model implies that the
Ras/MAPK pathway directly or indirectly modulates pSmad3C and
pSmad3L-mediated signaling to regulate target genes, resulting in an
antagonistic relationship between cell growth and inhibition. Thus,
effectiveness of cytostatic TGF-f3 signaling can depend on the extent
of Smad3 phosphorylation at the linker region.

The Ras/MAPK pathway enhances c-Myc expression, which
advances cell cycle and/or promotes cell survival (71). The c-Myc
oncoprotein can antagonize the two CDK inhibitors p21WAF! and
p15™NK4B (72 73), In the initial 1-2 h of TGF-B treatment, c-Myc
inhibits the two CDK inhibitors through binding to Smad2 and Smad3
and suppression of their function (73). After c-Myc decreases, Smads
act together with cellular factors to activate transcription of CDK
inhibitors (74-78). By repressing expression of the genes encoding
these CDK inhibitors, c-Myc eliminates two major obstacles to
cycle progression. Stated differently, the MAPK/pSmad3L/c-Myc
pathway strongly suppresses the TPRI/pSmad3C/the CDK
inhibitor pathway, thereby paving the way for vigorous cell cycle
advancement.

In normal epithelial cell homeostasis, the pSmad3L/c-Myc signal-
ing is dependent on mitogens, rapidly disappearing when extracellular
mitogenic stimuli has been withdrawn [Figure 2A (21,24)]. Most
tumor cells, however, produce constitutively active forms of one or
more intracellular signal transduction proteins that cause growth-pro-
moting signaling in the absence of mitogenic stimuli (79). Impor-
tantly, mutations in the key pathway components lead to sustained
linker phosphorylation. For example, a constitutively active Ras per-
sistently induces the phosphorylation of Smad3 at its linker region
[Figure 2B (20,24), supplementary Figure S2 is available at Carcino-
genesis Online]. Highly phosphorylated Smad3L is likely to impair
sensitivity to growth inhibition by pSmad3C in tumor cells (48-51).
Furthermore, a frequent hallmark of tumor cells is overexpression
and/or amplification of cell surface growth factor receptors (80), re-
sulting in aberrant constitutive linker phosphorylation of Smad3 in the
absence of extracellular ligand.

Overactivation of Ras pathways contributes to carcinogenesis in
several ways, including interference with cell cycle regulation via
another CDK inhibitor p27¥*! and disruption of TGF-B antiprolifer-
ative activity. p27%¥P! acts as a tumor suppressor by inhibiting CDK
activity in the nucleus (81), whereas proteolytic degradation and cy-
toplasmic mislocalization of p27XP! may play a carcinogenic role
(82-84). Importantly, exclusion of p27X¥P! from the nucleus by Ras
is sufficient to impair TGF-B-mediated growth inhibition (85). Over-
all, the net loss of nuclear p27XP! is correlated with tumor aggres-
siveness and poor clinical outcome (86).
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Fig. 2. Different modes of Smad phosphoisoform signaling in normal epithelium and neoplasms. Ligand-dependent pSmad3L signaling in normal epithelial cells
(A) gives way to constitutive pSmad3L signaling in tumor cells (B). (A) In normal epithelial cells, the RTK activated by growth factor (GF) results in activation of
the Ras/MAPK pathway, further leading to mitogenic pSmad3L signaling. pSmad3L forms a heterodimeric complex with Smad4, and moves to the nucleus
(supplementary Figure S1 is available at Carcinogenesis Online). The nuclear Smad oligomer binds to DNA and associates with other TFs to transmit a mitogenic
signal by upregulating transcription of c-Myc gene (supplementary Figures S2 and S3 are available at Carcinogenesis Online). In normal epithelial cells, pSmad3L
appears only transiently in response to GFs such as epidermal growth factor (left) and is rapidly reversed to cytostatic pSmad3C signaling once GFs are absent
(right). (B) In tumor cells, somatic mutants such as a hyperactive Ras mutant constitutively induce the phosphorylation of Smad3 at its linker region; this pSmad3L
loses sensitivity to growth inhibition by pSmad3C (left). In this case, pSmad3L continues to transmit its mitogenic signal even without extracellular GFs (right;
supplementary Figure S2 is available at Carcinogenesis Online). Protumorigenic TGF-f signaling: involvement of the pSmad2L/C (C) and pSmad3L/C

(D) pathways. (C) Ras activates MAPK, which phosphorylates Smad2L and Smad3L (left). After the COOH-tail phosphorylation of cytoplasmic pSmad2L by
TPBRI, pSmad2L/C undergoes translocation to the nucleus, where it interacts with pSmad3L and Smad4. Together with TFs, the heterotrimeric complex of
pSmad2L/C and pSmad3L with Smad4 stimulates MMP-9 transcription and cellular invasion (right). (D) TGF-p inhibits cell growth by downregulating c-Myc
oncoprotein via the pSmad2C and pSmad3C pathways (left); TGF-f signaling in turn enhances cell growth by upregulating c-Myc via the CDK4-dependent

pSmad2L/C and pSmad3L/C pathways (right).

Protumorigenic TGF-3 signaling: involvement of the pSmad2L/C
and pSmad3L/C pathways

In later stages of cancer, TGF-f} co-operates with the mitogenic Ras
pathway to induce an invasive and proliferative tumor phenotype
(10,11,87,88). Important effectors of cellular invasion include the
matrix metalloproteinase (MMP). Many carcinomas release MMPs,
notably MMP-2 and MMP-9, which are expressed at the invasive
fronts of various advanced carcinomas. MMP-2/9 can act at several
stages of the invasion—metastasis cascade, including local invasion by
the primary tumors, intravasation and extravasation (89). In a colorec-
tal model, we reported that promotion of cellular invasion and MMP-9
expression requires both complete linker and COOH-tail phosphory-
lation of Smad2, whereas an MMP-9 inhibitor blocks platelet-derived
growth factor (PDGF)- and TGF--driven cellular invasion, indicating
that TGF-B together with PDGF induces MMP-9-mediated cellular
invasion via the pSmad2L/C pathway [Figure 2C, right (25)]. After
COOH-tail phosphorylation of cytoplasmic pSmad2L. by TBRI,
pSmad2L/C undergoes translocation to the nucleus where it binds
to the pSmad3L and Smad4 complex (25). Consequently, the Smad
complex stimulates MMP-9 transcription and cellular invasion
(25,90). Smad2 accumulates in the nucleus only if its C-terminus is

phosphorylated under conditions of sustained linker phosphorylation
by MAPK. In this case, MAPK-mediated Smad2 phosphorylation at
the linker region serves to ‘prime’ for TPRI docking and further
phosphorylation at the C-terminus (25).

Recent understandings of molecular aspects of Smad phosphoiso-
form signaling further offer potential for understanding the molecular
mechanisms regulating the two opposing effects of TGF-f3, namely
growth inhibition and stimulation. Only Rb family members were
known to be substrates of CDK4 until the Liu group reported that
Smad3 is phosphorylated by both CDK4 and CDK2 in vivo and
in vitro (22). CDK4 phosphorylation of Smad3 at its linker region
inhibits its transcriptional activity and the antiproliferative activity
of TGF-f (22,26). COOH-tail phosphorylation of Smad3 is necessary
for TGF-B-induced phosphorylation of Smad3 at its linker region
(91,92). Consistent with these observations about Smad3, we con-
firmed that nuclear cyclin D1-CDK4 complex activated by TGF-
signaling directly phosphorylates the linker segment of pSmad2C to
produce pSmad2L/C (25). Other nuclear CDK members including
CDKS8 and CDK9 phosphorylate the linker portions of pSmadlC,
pSmad2C and pSmad3C to create pR-SmadL/C (38). Expression of
c-Myc in fibroblasts is initially repressed by TGF-f, but subsequent
TGF- signaling undergoes a complete change to stimulate c-Myc
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(25). In contrast, TGF-P persistently inhibits c-Myc expression and
growth in fibroblasts carrying Smad2/3 mutants lacking CDK phos-
phorylation sites in their linker regions (Figure 1B). Collectively,
TGEF-B inhibits cell growth by downregulating the c-Myc oncoprotein
via the pSmad2C and pSmad3C pathway (Figure 2D, left). However,
TGEF-f can enhance cell growth by upregulating c-Myc via the CDK4-
dependent pSmad2L/C and pSmad3L/C pathways in the nuclei of
fibroblasts (Figure 2D, right).

Pinl is a peptidyl-prolyl cis/trans isomerase that recognizes phos-
phorylated serine—proline motifs in certain proteins, catalyzing proly
cis/trans isomerization (93). Nakao et al. (94) reported that Pinl can
associate with Smad2 and Smad3 to enhance their interaction with
Smurf2 and a homologous to E6-associated protein C-terminus
domain E3 ubiquitin ligase, resulting in enhanced Smad ubiquitina-
tion and reduction in Smad2/3. Interestingly, a constitutively activated
Ras, which leads to Smad2/3 phosphorylation at their linker regions,
can induce Smad2/3 binding to Pinl in response to TGF-f. Further
analyses by Matsuura et al. showed that Smad3 phosphorylation at
both the COOH-tail and at Thr! in the linker segment (Figure 1B) is
necessary for Pinl binding and that knockdown of Pinl results in
inhibition of TGF-f-mediated migration and invasion (92).

To acquire motility and invasiveness, carcinomas must shed much
of their epithelial phenotypes, detach from epithelial sheets and un-
dergo a drastic epithelial-mesenchymal transition (EMT), which nor-
mally occurs early in embryogenesis (79). EMT involves loss of an
epithelial cell gene expression program and acquisition of mesenchy-
mal gene expression, which allows tumor cells to acquire motility and
invasiveness. In one set of influential experiments, exposure of Ras
transformed, but not normal, epithelial cells to TGF-f result in pro-
gressive reduction in epithelial morphology and in epithelial markers
including cytokeratins and E-cadherin (87). At the same time, these
transformed cells acquire mesenchymal protein markers such as
vimentin and assume a morphology resembling that of fibroblasts.

TGF-f has emerged as a major inducer of EMT through activation of
downstream signaling pathways, including non-Smad signaling path-
ways [Figure 1A (31,33)]. On the other hand, investigation concerning
certain fibrotic diseases using Smad3-null mice indicates an essential
role of Smad3 in EMT (95). Several TFs, including the zinc-finger
factors Snail and Slug, play critical roles in induction of EMT (19).
Horiguchi et al. (96) recently reported co-operation between Ras and
TGF-B-Smad signaling in induction of Snail. Snail induction occurs
independently of R-Smad phosphorylation at the linker regions. In
support of this notion, selective prevention of linker phosphorylation
using a Smad3 mutant lacking phosphorylation sites in this region
cannot completely suppress TGF-B-mediated EMT in our Ras-trans-
formed cells (Matsozaki K, unpublished data). However, absence of R-
Smad linker phosphorylation results in moderate reduction of plasmin-
ogen activator inhibitor Type I expression and strong reduction of c-
Myc and MMPs expression (24). Thus, pSmad2L/C and pSmad3L/C
have specific roles in promoting invasion and proliferation in response
to TGF-p, apparently depending on the promoter context (92).

Physiologic phospho-Smad3 signaling: mitogenic pSmad3L
signaling followed by cytostatic pSmad3C signaling

Cell proliferation occurs continuously as a constant tissue-renewal
strategy (97). In the colon, enterocytes are constantly renewed by
immature cells, which proliferate at the base of mucosal crypts and
then migrate upward to the luminal surface. This process is tightly
controlled by a delicate balance between proliferation and differenti-
ation of enterocytes (98). The phosphorylation pattern of Smad3 in
normal colonic mucosa suggests important participation of Smad3 in
maintaining this balance (51). In immature enterocytes near the bot-
tom of normal colonic crypts, intracellular phosphorylation at
Smad3L is high (Figure 3A). Translocated to the nucleus, pSmad3L
stimulates c-Myc transcription; this increases proliferation of enter-
ocytes and opposes the cytostatic action of the pSmad3C/p21WAF!
pathway (Figure 2A, left). Accordingly, pSmad3C/p21WAF! is unde-
tectable at the bottom of normal crypts: escape from TGF--induced
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cytostasis is crucial in a subset of progenitor cells devoted to ensuring
epithelial renewal. As enterocytes migrate upward from the crypt base
to the lumen, the growth-stimulatory signal via pSmad3L ceases in the
differentiated enterocytes. Decreased pSmad3L can lead to increased
sensitivity to phosphorylation at Smad3C by TBRI (24) and TGF-f
can then activate the promoter of p21WAF! via pSmad3C to block cell
cycle advance.

The pSmad3L/c-Myc signaling in colonic progenitor cells works to
inhibit enterocytic differentiation. Conversely, the pSmad3C/p21WAF!
pathway is needed to halt proliferation of enterocytes and to facilitate
their differentiation. The mature enterocytes ultimately begin the pro-
cess of apoptosis via the cytostatic pSmad3C signaling. In normal
enterocytes, pSmad3L appears only transiently in response to extra-
cellular mitogenic signals (Figure 2A). This entire process of outward
migration and cell death takes only 3—4 days.

Alteration of phospho-Smad3 signaling during carcinogenesis:
reciprocal change in oncogenic pSmad3l. and tumor-
suppressive pSmad3C pathways

The above regulatory mechanism, which avoids accumulation of del-
eterious mutations in genes that promote cell growth and division,
must be disrupted before enterocytes can throw off their normal re-
straints and behave as a social cancer cells. Somatic mutations in
colorectal adenoma include changes in K-Ras gene that favor ade-
noma progression (6). In adenoma cell nuclei, pSmad3L/c-Myc can
accumulate when the Ras mutation constitutively activates the MAPK
pathway to phosphorylate Smad3 at the linker region (Figure 3B).
More specifically, the proliferative effect mediated via the pSmad3L/
c-Myc pathway keeps on suppressing the growth-inhibitory pSmad3C/
p21WAFL pathway in the nuclei of the benign tumor cells (Figure 2B).
Adenoma cells are relatively resistant to apoptosis by the pSmad3C
pathway (99), which allows them to increase in number and survive
where they should not. As a result, proliferative tumor cells accumu-
late within entire crypts, ultimately forming an adenomatous polyp
[Figure 3B (46,51)].

Adenomatous polyps are believed to be precursors of a large pro-
portion of colorectal cancers (6). In microscopic sections of polyps
<1 cm in diameter, the cells and their arrangement in the epithelium
typically appear nearly normal. The larger the polyp, the more likely it
contains cells with abnormally undifferentiated cytologic features and
a tendency to form abnormally organized glandular structures. Some-
times, two or more distinct areas can be distinguished within a single
polyp, with cells in one area appearing relatively normal and those in
the other appearing clearly cancerous, as though they have arisen as
a mutant subclone within the original adenoma clone. Mutational
activation of the K-Ras oncogene seems dependent on size and shape
of colorectal adenomas (100). K-Ras mutations are present in 10% of
colorectal adenomas with diameters of <1 cm, but in 30% of adeno-
mas >2 cm. Furthermore, K-Ras mutations are detected in up to 60%
of protruding adenomas but are rare in superficial flat adenomas.
Reflecting these patterns of K-Ras mutation frequency, immunohisto-
chemical studies have shown that Smad3-mediated signaling shifts
from the tumor-suppressive pSmad3C/p21WAF! to the oncogenic
pSmad3L/c-Myc pathway as human colorectal adenomas progress
to colorectal cancers (46,51).

A constitutively active Ras persistently stimulates enterocytes to
proliferate in an organ that normally does not experience the contin-
uous proliferation: proliferation by progenitor cells in normal crypts is
tightly regulated by the cytostatic pSmad3C signaling (Figure 3A).
Such signaling represents a highly effective defense mechanism
against development of colorectal cancer since normal epithelial cells
containing pSmad3C that sustain any mutations are destined to die
(57). On the other hand, escaping the cytostatic action of pSmad3C is
a critical step for progression to full malignancy in cancers. The TGF-
B/pSmad3C pathway is also required for maintenance of genomic
stability, induction of replicative senescence and suppression of
telomerase (101-103). It is probably that these activities of TGF-f
contribute to tumor suppression along with its cytostatic effect.
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metastasized from colon. Phospho-Smad3 signaling and the biology of colonic crypt (A) and adenoma (B). Formalin-fixed paraffin-embedded sections of normal
colonic crypt (A) and adenoma (B) were stained with anti-pSmad3L (Ser?’®2!3) Ab [o. pSmad3L (Ser?°®2!3) column], anti-c-Myc Ab (o c-Myc column), anti-
pSmad3C Ab (o pSmad3C column) or anti-p21WVAF! Ab (o p21WVAF! column). Sections stained for pSmad3L (Ser?*®213) or pSmad3C were paired with adjacent
sections stained with anti-c-Myc Ab or anti-p21VAF! Ab, respectively. All sections were counterstained with hemotoxylin (blue). Brown product indicates specific
AD reactivity. Scale bars = 100 pm. (A) Physiologic roles of pSmad3L and pSmad3C in normal colonic crypts. Immunoreactivity for pSmad3L shows a striking
distribution, localized to the nuclei of c-Myc-immunoreactive progenitor cells at the bottom of mucosal crypts [proliferative compartments: lower portions of
crypts in oo pSmad3L (Ser?*®213) and o c-Myc columns]. In the colonic progenitor cells, linker phosphorylation of Smad3 prevents the cytostatic p21 WAF! effect by
shutting down phosphorylation at Smad3C. As enterocytes migrate upward from the crypt base to the lumen, the growth-stimulatory signal via pSmad3L ceases in
the differentiated enterocytes (differentiated compartments). TGF-B can then activate the promoter of p21WAF! via pSmad3C to arrest the growth of enterocytes
(upper portions in o pSmad3C and o p21WAF! columns). (B) pSmad3L/c-Myc-immunoreactive adenomas accumulate within entire crypts and ultimately form an
adenomatous polyp. pSmad3L/c-Myc-immunoreactive colonic adenoma carrying K-Ras mutation [o pSmad3L (Ser?°®213) and o c-Myc columns] becomes able to
divide indefinitely (red arrow), instead of undergoing physiologic pSmad3C/p21WAFl-mediated differentiation and death. At the edges of advanced carcinomas
invading adjacent tissues, pSmad2L/C and pSmad3L/C transmit pro-tumorigenic TGF-f signal (C and D). (C) The upper panels show formalin-fixed, paraffin-
embedded sections of invasive carcinomas carrying K-Ras mutation, which had metastasized from the colon, as well as uninvolved liver. Tissues were stained with
anti-pSmad2/3L (Thr) Ab [oe pSmad2/3L (Thr) column] or anti-pSmad2/3C Ab (o pSmad2/3C column). Sections stained for pSmad2/3L (Thr) were paired with
adjacent sections stained with pSmad2/3C. All sections were counterstained with hemotoxylin (blue). Brown product indicates specific Ab reactivity. Scale bars =
100 pm. Fibroblasts, macrophages and hepatocytes in the uninvolved liver tissue (lower portions) show little phosphorylation of Smad2/3 at the linker regions [o
pSmad2/3L (Thr) column], but moderate phosphorylation at their C-tail regions (o pSmad2/3C column). In the carcinomas (upper portions) invading adjacent liver
tissue, nuclear Smad2 and Smad3 are highly phosphorylated at both their linker and C-tail regions [0 pSmad2/3L (Thr) and o pSmad2/3C columns]. The lower
panels show sections of invasive tumor tissue stained for immunofluorescence to simultaneously detect pSmad2/3L (Thr) (red) and pSmad2/3C (green). Yellow
color indicates the presence of both pSmad2L/C and pSmad3L/C. Scale bars = 100 um. At invasion fronts of the carcinomas, nuclear pSmad2/3L (Thr) co-
localizes with pSmad2/3C. (D) upper right: Tumor cells (pink) take on an invasive phenotype at the edge of carcinomas (red) invading adjacent liver tissue.
Balloon, left: pSmad2L/C and pSmad3L/C transmit the protumorigenic TGF- signal in combination with oncogenic Ras. Balloon, lower right: Invasive
carcinomas carrying K-Ras mutation gain access to abundant TGF-f3 from either autocrine or microenvironmental sources. Macrophages and fibroblasts release
TGF-B in the reactive stroma.

At the edges of advanced carcinomas invading adjacent tissues,
pSmad2L/C and pSmad3L/C transmit protumorigenic TGF-f3
signals

Profound shifts in cell phenotype are often initiated by collaboration
between specific mutant alleles harbored in cancer cell genomes
(e.g. Ras oncogene) and TGF-f signal that carcinomas receive in
some tissue microenvironments, specifically at the boundary between

tumor epithelium and reactive stroma (10). Does each step in the
cascade of malignancy require actions of specific TGF-f} signaling
pathways that become altered during tumor progression? To answer
this question, we have focused on the Smad pathway, investigating the
localization of pSmad2L/C and pSmad3L/C in human advanced
colorectal carcinomas carrying K-Ras mutation since these phospho-
isoforms transmit invasive and proliferative TGF-f signals (Figure 2C
and D). The results indicate nuclear localization of pSmad2L/C and
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pSmad3L/C at the boundary between tumor epithelium and reactive
stroma in advanced carcinomas invading adjacent tissue [Figure 3C
and D (25)]. In particular, strong Smad2/3 phosphorylation is ob-
served at threonine residues in the linker regions (Figure 1B). In vitro
kinase assay confirms that nuclear CDK4 and cytoplasmic JNK ob-
tained from the cancerous tissues can phosphorylate Smad2 or Smad3
at the linker regions (25). These results point to an additive require-
ment of JNK and CDK4 activities for pSmad2L/C and pSmad3L/C.
We conclude that perturbation of TGF-f signaling by aberrant acti-
vation of nuclear CDK4 and cytoplasmic JNK underlies the critical
role of TGF-B in protumorigenic behavior at the edges of human
advanced carcinomas. Because Ras-associated kinases such as
CDK4 and JNK are commonly activated in various types of human
cancers (104,105) and invasive carcinomas gain access to abundant
TGF-B from either autocrine or microenvironmental sources (Figure
3D), these Ras-associated kinases in cancerous tissues could confer
protumorigenic activity on otherwise tumor-suppressive TGF-f
signals at the invasion fronts of advanced carcinomas.

Invasive pSmad2L/C together with oncogenic pSmad3L pathways
characterize TGF-f signaling shared between Ras-transformed
cells and human advanced carcinomas

Human advanced carcinomas usually retain the protumorigenic TGF-f3
signaling component but have lost the capacity to respond to TGF-3
with growth arrest (13,14,75). Such a state of altered TGF-f3 respon-
siveness is observed in Ras-transformed cells. These cells typically
exhibit a limited growth-inhibitory response to TGF-f instead re-
sponding to TGF-3 with invasive (87) and metastatic behavior (61).
A clue to understanding the molecular mechanisms is suggested by
differential cellular localization of pSmad2L and pSmad3L in Ras-
transformed cells and carcinoma in situ (Figures 2 and 4A). Linker
phosphorylation of Smad?2 at Ser?3%233 is associated with its cytoplas-
mic retention [Figure 1C (46)], whereas pSmad3L (Ser?°¢/213) is pre-
dominantly localized in cell nuclei of actively growing colorectal
cancer and hepatocellular carcinoma [HCC; Figure 1C (46-51)].
Likewise, hyperactive Ras retains most Smad2 protein in the
cytoplasm (20,24) but facilitates nuclear accumulation of pSmad3L
(24,25).

Phenotypes of carcinoma in situ are dictated by genotype and
tumorigenic growth is essentially a cell-autonomous phenomenon
that involves a shift from the tumor-suppressive pSmad3C pathway
to the oncogenic pSmad3L pathway induced by alterations in the
cancer cell genome such as Ras oncogene (Figure 4A). These results
suggest an intriguing mechanistic clue as to why Smad3 is seldom
mutated in human cancer, but rather is posttranscriptionally regu-
lated (13). Later in tumor progression, TGF-f utilizes different
phospho-Smad pathways to mediate protumorigenic effects. Inva-
sive behavior is strongly influenced by stromally produced TGF-3
signal, which is processed by the pSmad2L/C pathway to modulate
cell shape, adhesion and localized proteolysis in the nearby extra-
cellular matrix (Figures 3C and 4A). Our current data support a mul-
tistep model of tumor growth and invasion that involves progressive
increases of pSmad2L/C and pSmad3L with concomitant suppres-
sion of the cytostatic pPSmad3C signaling (Figure 4A and B). Thus,
invasive pSmad2L/C together with oncogenic pSmad3L can mediate
the protumorigenic TGF-f signaling that allows carcinomas to ac-
quire invasive and proliferative properties needed for progression.
As a result, human advanced carcinomas lose responsiveness to
TGF-B in terms of growth inhibition, whereas TGF-f can still induce
invasiveness.

Cell type-specific spatial and temporal dynamics of R-Smad
phosphoisoforms

In contrast to the presence of COOH-tail phosphorylation of
R-Smads in almost all cell types and tissues, timing, duration, extent
and functional implications of linker phosphorylation depend on cell
type and context. Therefore, the influence of linker phosphorylation
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Fig. 4. Invasive pSmad2L/C together with oncogenic pSmad3L pathways
characterize TGF-f signaling shared between Ras-transformed cells and
human advanced carcinomas. (A) Tumor cells must evade pSmad3C-
imposed growth inhibition if they are to thrive. More specifically, such tumor
cells depend on highly activated Ras/pSmad3L signaling to drive their
proliferation. Selective blockade of linker phosphorylation can suppress the
Ras/pSmad3L pathway, while restoring the lost cytostatic pSmad3C
signaling as present in mature epithelial cells. Later, in tumor development,
TGF-p transmits an invasive signal via the pSmad2L/C pathway together
with oncogenic pSmad3L signaling. (B) During human carcinogenic process,
benign tumors affected by somatic mutations including Ras undergo
transition from the tumor-suppressive pSmad3C pathway to the oncogenic
pSmad3L pathway, becoming carcinoma in situ. Advanced carcinomas
acquire more invasive and proliferative properties via the pSmad2L/C and
pSmad3L pathways when carcinoma in situ receives TGF-f signals from the
reactive stroma.

on COOH-tail phosphorylation has been an unsettled subject with
various data suggesting that Ras-mediated linker phosphoryla-
tion either inhibits (20,21,24,34,36,37,106-112) or enhances
(22,23,25,35,47,58,61,62,65,66,91,92,113-119) events downstream
of TPRI. Several possible explanations exist for these different
outcomes.

Firstly, involvement of different Ras-associated kinases may ex-
plain outcomes differing among various cell types and contexts. Nor-
mal epithelial cells generally show rapid phosphorylation at the linker
regions in response to various mitogens, and the responsible kinases
appear to act before R-Smads reaches the nucleus (Figure 2A). Both
JNK and ERK are localized in the cytoplasm and directly phosphor-
ylate the linker regions, creating pSmad2L and pSmad3L (20,24). In
contrast, mesenchymal cells show slow phosphorylation of R-Smads
at their linker regions, and their kinases act after nuclear translocation
of pSmad2C and pSmad3C in response to TGF-f [Figure 2D
(25,38,92)]. CDKs are localized in the nucleus and directly phosphor-
ylate the linker regions of pSmad2C and pSmad3C, producing
pSmad2L/C and pSmad3L/C (22,25,38). As epithelial cells are trans-
formed into carcinomas, they come to exhibit strong constitutive



linker phsophorylation [Figure 2B (20,24)]. Nuclear CDKs together
with cytoplasmic MAPKSs convert the tumor-suppressive pSmad2/3C
signal into pSmad2L/C and/or pSmad3L/C-mediated protumorigenic
character.

TGF-B and mitogens exert mutually antagonistic effects on cell
cycle control and apoptosis in normal epithelial cells (Figures 2A
and 3A). Mitogens drastically alter Smad3 signaling via the MAPK
pathway, increasing basal nuclear pSmad3L activity while shutting
down TGF-B-dependent pSmad3C that otherwise would be available
to act in the nuclei of normal epithelial cells (Figure 2A). Because
mitogenic pSmad3L signaling is followed by cytostatic pSmad3C
signaling during normal epithelial regeneration, pSmad2L/C and
pSmad3L/C rarely exist in normal epithelial cells either in vitro or
in vivo (Figures 3A and 5A). In contrast, TGF-$ and mitogen/Ras
signaling synergistically promote growth and invasion in mesenchy-
mal cells (25,92). Blocking either linker or COOH-tail phosphoryla-
tion of Smad2 abrogates the synergistic responses of fibroblasts to
TGF-B and PDGF (25), indicating involvement of pSmad2L/C in this
synergistic mesenchymal cell response (Figure 5B). As in mesenchy-
mal cells, an invasive phenotype is favored by the pSmad2L/C path-
way in response to a mixture of signals converging on carcinoma
in situ, which receives TGF-f signal from the stroma together with
intracellular signal released by Ras oncogene (Figures 3C and 5C).
Thus, TGF-f signaling confers a selective advantage upon carcinomas
by shifting from the pSmad2C and pSmad3C pathways characteristic
of mature epithelial cells (Figures 3A and 5A) to the pSmad2L/C and
pSmad3L/C pathways (Figures 3C and 5C), which is more character-
istic of the state of flux shown by activated mesenchymal cells. Loss of
epithelial homeostasis and acquisition of a migratory, mesenchymal
phenotype are essential for invasion in later stages of human cancer (79).

Kinases play prominent roles in directing R-Smad phosphoiso-
forms, depending on where the kinases phosphorylate R-Smads:
plasma membrane, cytoplasm or nucleus. The first level TBRI kinase
is activated on the plasma membrane in response to TGF-f. Secondly,
MAPK activation can occur in the cytoplasm; at the third level, CDKs
are confined to the cell nucleus. For example, JNK activated in
the cytoplasm phosphorylates Smad2, converting it to pSmad2L
(Figure 2C). TPRI activated at the plasma membrane phosphorylates
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Although linker phosphorylation is transient after mitogen treatment of
normal epithelial cells (A), mitogen-inducible phosphorylation generally
persists in various mesenchymal cells (B). Moreover, constitutive linker
phosphorylation is found in almost all types of carcinomas and
Ras-transformed cells (C). Because mitogenic pSmad3L signaling is
followed by the cytostatic pSmad3C signaling in normal epithelial
homeostasis, pSmad2L/C and pSmad3L/C rarely exist in normal epithelial
cells (A). Resembling observations in mesenchymal cells (B), carcinomas
acquire an invasive phenotype via the pSmad2L/C pathway created by

a combination of TGF-f signal with intracellular Ras signal (C).

Smad phosphoisoform signaling during tumor progression

cytoplasmic pSmad2L to form pSmad2L/C, which enters the nucleus.
Alternatively, TBRI phosphorylates Smad2 to convert it to pSmad2C,
which moves to the nucleus (Figure 2D). Then, CDKs phosphorylate
nuclear pSmad2C to form pSmad2L/C. Therefore, depending on the
input, differential subcellular R-Smad phosphoisoforms can allow
kinase modules to signal to different phosphoisoforms.

A second explanation for varied linker phosphorylation effects
involves differential duration of linker phosphorylation among vari-
ous cell types. Although linker phosphorylation is transient after
mitogen treatment of normal epithelial cells [Figure 5A (21,24)],
mitogen-inducible phosphorylation is generally persistent in
various mesenchymal cells [Figure 5B (25,47)]. Moreover, consti-
tutive linker phosphorylation is found in almost all types of cancer
cells including Ras-transformed cells and human carcinomas
[Figure 5C (24,25,46,49,51)].

Activities of any proteins regulated by phosphorylation depend on
the balance at any time point between activities of kinases that phos-
phorylate them and those of phosphatases that dephosphorylate them.
Several lines of evidence identify small C-terminal domain phospha-
tases (SCP1-3) as R-Smad linker-specific phosphatases (44,120),
which dephosphorylate Ser?*>, Ser?>® and Ser?33 sites in Smad2L
or Ser?*, Ser?® and Ser?!? sites in Smad3L [Figure 1B (120)].
According to cell type-specific duration of linker phosphorylation,
mesenchymal and cancer cells may not be able to induce or activate
the relevant phosphatases. It should be noted that phosphorylation at
Thr??° in Smad2L and at Thr!7® in Smad3L is not dephosphorylated
by SCP1-3 in vivo or in vitro, although several kinases (MAPKs and
CDK(s) are able to phosphorylate these threonine residues [Figure 1B
(20,22,24,26,38,120)], through which advanced carcinomas continu-
ally transmit protumorigenic signals [Figure 3C (25)]. In sum, spatial
distribution and temporal qualities of kinases and phosphatases can
markedly influence qualitative and quantitative features of down-
stream R-Smad phosphoisoform signaling.

Risk categorization for cancer occurrence based on pSmad3L and
pSmad3C

Clinical analyses of pSmad3L and pSmad3C in human tumor forma-
tion have provided substantial mechanistic insight. For example,
human livers infected by hepatitis B virus progress from chronic
hepatitis B to HCC several decades later (121). Specimens from
patients with chronic hepatitis B who develop HCC show abundant
Smad3L but limited Smad3C phosphorylation in hepatocytic nuclei
[Figure 6A (49)], whereas other patients with abundant hepatocytic
pSmad3C but limited pSmad3L do not develop HCC (Figure 6B). The
same relationships are observed in human hepatitis C virus-related
hepatocarcinogenesis (48). These clinical observations support roles
for pSmad3C as a tumor suppressor and pSmad3L as a promoter during
carcinogenesis.

Smad phosphorylation profiles show great promise by allowing
clinicians to stratify preneoplastic epithelia into subgroups with distinct
biologic properties including oncogenic potential. The long-term goal of
this analytic technique is to accurately assess cancer risk and to supple-
ment the existing clinical criteria for judging whether drugs should be
given to patients with high cancer risk (122). Such an approach offers
high selectivity for narrowly defined patient populations.

The JNK/pSmad3L pathway is an important target for therapy
devised to reduce emergence of cancer

Acquisition of a preneoplastic phenotype is usually accompanied by
defective apoptosis or differentiation, associated with entrance into
a mitotic state (123). JNK acts as an important regulator of Smad3
signaling by increasing the basal amount of hepatocytic pSmad3L
available for cell growth, while inactivating the TGF--dependent
cytostatic actions of pSmad3C [Figure 2B (24,48,49)]. These
behaviors suggest an attractive strategy for preventing HCC. A key
therapeutic aim in chronic liver disorders is restoration of lost tumor-
suppressive function as observed in normal hepatocytes, at the expense
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Fig. 6. Risk categorization for cancer occurrence based on pSmad3L and
pSmad3C. Preneoplastic epithelial cells are in danger of eventually
becoming carcinomas. Early chronic hepatitis B has presented a quandary to
oncologists with respect to highly variable patient outcomes, with some
patients developing HCC and others being cured. Although liver specimens
in early chronic hepatitis B have a very similar appearance under the
microscope, use of Smad3 phosphorylation profiles allows patients with
chronic hepatitis B to be divided into two distinct categories with different
clinical outcomes: patients with high or low risk for HCC. (A) HCC
subsequently develops in patients whose chronic hepatitis B specimens show
strong hepatocytic nuclear positivity for pSmad3L. (B) HCC does not occur
in patients whose chronic hepatitis B specimens show strong hepatocytic
positivity for pSmad3C.

of effects promoting hepatic carcinogenesis (124). To accomplish this
difficult aim, Nagata et al. (50) administered a JNK inhibitor SP600125
to rats and were able to suppress chemical hepatocarcinogenesis by
shifting hepatocytic Smad3 signaling from the oncogenic pSmad3L
pathway to the tumor-suppressive pSmad3C pathway [Figure 4A
(50)]. This study provides proof-of-principle that the JNK/pSmad3L
pathway is an important target for therapy devised to reduce emergence
of HCC in the context of chronic liver injury.

Conclusions and future perspectives

We have changed our perception of R-Smad signaling pathways from
a simple pipeline to sophisticated networks. We also have begun to
understand how kinases and phosphatases can determine the kinetics
of distinct biochemical processes to predictably translate them into
specific biologic responses. Although Smad2 and Smad3 are grouped
together as TGF-f-specific R-Smads (15-19), the differential function
of Smad2 and Smad3 is of major importance for understanding not
only Smad signaling during carcinogenesis but also protumorigenic
role of TGF-B in cancer cells (125). Particularly, fibroblasts from
Smad3 knockout mice still produce matrix material in response to
TGF-B, leading to suggestion that Smad2 is the specific mediator of
many extracellular matrix responses involving cell invasion (126). In
contrast, Smad3 plays a critical role in both regulation of epithelial
cell growth and protumorigenic TGF-f signaling (13). Taken together,
we are realizing that TGF-f signaling specificity at the different
stages of tumors arises from combined assemblies and spatiotemporal
dynamics of R-Smad phosphoisoforms.

Most of our main information has been obtained by studying cells
in culture and by examining samples from human patients. Ultimately,
we need to examine whether or not domain-specific phosphorylation
of R-Smads is essential for carcinogenesis and cancer progression.
Conditional knockout mice selectively altered with respect to domain-
specific phosphorylation will provide definitive knowledge about
R-Smad phosphoisoform pathways and gene targets that shift from
tumor-suppressive to protumorigenic through oncogenic influences
(research currently underway). This information is also critical for
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design of new approaches to inhibit invasion and metastasis as well
as for planning use of domain-specific phosphorylation inhibitors to
treat other chronic conditions including fibrotic diseases.

Supplementary material

Supplementary Figures S1-S3 can be found at http://carcin.
oxfordjournals.org/
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