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Abstract: Flexible sensor arrays are widely used for wearable physiological signal recording appli-
cations. A high density sensor array requires the signal readout to be compatible with multiple
channels. This paper presents a highly-integrated remote health monitoring system integrating a
flexible pressure sensor array with a multi-channel wireless readout chip. The custom-designed
chip features 64 voltage readout channels, a power management unit, and a wireless transceiver.
The whole chip fabricated in a 65 nm complementary metal-oxide-semiconductor (CMOS) process
occupies 3.7 × 3.7 mm2, and the core blocks consume 2.3 mW from a 1 V supply in the wireless
recording mode. The proposed multi-channel system is validated by measuring the ballistocardio-
gram (BCG) and pulse wave, which paves the way for future portable remote human physiological
signals monitoring devices.

Keywords: flexible sensor array; resistive pressure sensor; readout chip; ballistocardiogram; pulse wave

1. Introduction

Flexible electronic devices are widely used in detecting human physiological signals
for their advantages of being attachable and wearable [1–5]. As a part of advanced devices,
flexible sensors with complex sensing functions are significant in wearable devices [6,7].

Among the sensors, the flexible pressure sensors, which imitate the human sensory
system, are widely applicated in wearable devices [8–10]. Flexible pressure sensors could
convert subtle mechanical signals to electronic signals, mainly divided into piezoelectric,
capacitive, and piezoresistive types. Compared with the other two kinds of flexible pressure
sensors, piezoresistive pressure sensors have a simpler structure and more comprehensive
measurement range [11]. Recently, piezoresistive pressure sensors have great application
potential in health monitoring, artificial intelligence, and human posture detection [12–15].

The combination of sensors and near-sensor chips reduces communication power
consumption [16]. The specifically designed sensor signal readout chip has the advantages
of small size and low power, which are required for wearable devices. It is necessary
to further study the integration of the flexible sensor array with a multi-channel signal
processing chip. Gao et al. reported a sensor array integrated with flexible circuit for
in situ perspiration analysis [17]. Recently, this method was applied to piezoresistive
pressure sensors [18]. Researchers reported the development of a piezoresistive sensor
array integrated with an ultrahigh-efficiency chip, which is the first to use a low-power
artificial intelligence (AI) chip to realize human gait monitoring.

This paper proposes a remote health monitoring system to acquire ballistocardio-
gram (BCG) and pulse waves, which integrates a flexible piezoresistive pressure sensor
array and a wireless multi-channel voltage readout chip. We also proposed a nonlinear
resistance readout circuit to calibrate the inversely proportional resistive response of the
pressure sensor.
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2. Materials and Methods

Figure 1 shows the diagram of the proposed remote health monitoring system, which
includes a flexible pressure sensor array (RP-C7.6LT-LF2, Legact Technology Co., Ltd.,
Shenzhen, China) and a custom-designed wireless multi-channel voltage readout chip.
Carbon-based film is used as the pressure-sensitive layer. It is a porous structure. The scan-
ning electron microscope (SEM) image (shot by Zeiss Gemini 450, Oberkochen, Germany)
in Figure 1 shows the carbon particles and porous structure of the sensor. As the sensor is
extruded, more current conductive paths are created leading a lower resistance. The multi-
channel readout chip acquires the resistance values and transmits them wirelessly [19].
Such sensor array data could be used for BCG signals detecting.
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Figure 1. Overview of the remote health monitoring system with a flexible resistive pressure sensor
array and a wireless multi-channel signal readout chip.

The pressure sensor performance is studied. Figure 2a shows the characteristic testing
system of the flexible pressure sensor, which is composed of a high precision tensile
machine (UH6502, Youhong, Shanghai, China), an electrochemical workstation (CHI660D,
CH Instruments, Shanghai, China). The tensile machine applies a time-varying force to
the sensor and the electrochemical workstation measures its resistance change over time.
The measured performance without post-processing shows the intrinsic characteristics of
the sensor, which are shown in Figure 2b–d. Figure 2b illustrates the resistance change of
the flexible pressure sensor with pressure increasing from 50 to 600 kPa. For all samples,
resistance is inversely proportional to pressure, which can be described as

1
R

= 6.8× 10−6 × P− 0.0002 (1)

where R is the sensor resistance in kΩ, P is the applied pressure in kPa, and the goodness of
fit is R2 = 0.99. Figure 2c depicts the change rate and sensitivity of the sensor by averaging
five groups of samples with pressure increasing from 50 to 600 kPa. Sensitivity SP is
defined as

SP =

∣∣∣∣∆R
R0

∣∣∣∣× 1
P

(2)

where |∆R/R0| is the change rate of resistance. As the fitting curve shows, SP decreases
with pressure, which is consistent with the inversely proportional resistance response.
Figure 2d depicts the sensor output current change as the pressure increases stepwise from
200 to 700 kPa in units of 100 kPa. The current responses immediately to the pressure
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change almost with no delay, which reveals good repeatability at a wide range of pressure.
The lower delay time leads to faster response, which can be used to track pressure changes
induced by physiological signals.
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Figure 2. Characteristic test of the flexible pressure sensor. (a) The typical testing system of the
flexible pressure sensor. (b) Changes in the reciprocal of resistance as a function of applied pressure.
(c) Variations of deformation and sensitivity of five groups of samples with increasing pressure
from 50 to 600 kPa. (d) The sensor output current changes with the step pressure, indicating its
fast response.

The electronic signal from the pressure sensors is collected and processed. In our
sensor system, the relationship between resistance and voltage is nonlinear. A specific chip
is needed to process such signal. Figure 3a shows that the sensor resistance is converted
into voltage change by connecting a fixed-value resistor in serial to form a resistor divider.
Each node in the sensor array is independently connected to a switch and a divider resistor
to avoid crosstalk between different channels. Only the sensor node being measured is
turned on to generate a pressure-depended output voltage signal, while the others are
disconnected from the bias voltage. The output voltage Vout can be described as:

Vout =
Rref

Rsen + Rref
×Vin (3)

where Vin is the input voltage to bias the divider, Rref is the resistance of the reference
resistor, and Rsen is the resistance of the resistive pressure sensor. When Rref is smaller than
Rsen, Vout can be approximated as

Vout ≈
Rref
Rsen

×Vin (4)

The inversely proportional resistance-to-voltage converter could be used for nonlin-
earity correction. Figure 3b shows that the sensor resistance is also approximately inversely
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proportional to the pressure. The proposed resistor divider makes a linear relationship
between the output voltage and the pressure.
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Figure 3. (a) Circuit diagram of the multi-channel resistance-to-voltage converter. (b) Sensitivity
curves of the conventional linear and proposed nonlinear signal readout.

The sensitivity of the whole signal path, including the sensor and readout circuit, is
obtained by taking Equation (1) into Equation (4). Assuming that the pressure measurement
range is from 50 kPa to 1000 kPa, the sensitivity curves of the signal path of the linear and
inversely proportional readout are shown in Figure 3b. As the pressure generated by the
self-weight of the human body can generate a wide range of pressures, the nonlinear signal
readout circuit can obtain higher sensitivity than the conventional linear circuits with a
proportional voltage-resistance response.

The minimum identifiable input change ∆Vin in the sensor readout analog front-end
can be expressed as:

∆Vin =
Vref

2N × S
(5)

where S is the sensitivity of the signal path, Vref is the reference voltage of the ADC, and N is
the resolution of the ADC. Higher sensitivity S reduces the accuracy requirements of ADC
to obtain the exact signal resolution, thus lowering system cost and power consumption.
The linear relationship between the output voltage and pressure using the nonlinearity
correction method also simplifies the post-reconstruction process from voltage to pressure,
which reduces the power consumption of digital signal processing [20,21].

To further reduce the size and power of the proposed system, we utilize a self-designed
64-channel signal readout system on chip (SoC) to process the voltage-to-digital conversion
and data transmission. As shown in Figure 4a, this SoC is composed of 64 analog front-end
(AFE) channels, a data processing unit (DPU), a power management unit (PMU), and a
wireless transceiver supporting radio frequency (RF) power harvesting. Each channel of
the AFE includes a low noise amplifier (LNA) and a programmable gain amplifier (PGA),
which are used to amplify the voltage signals from the sensor array shown in Figure 3a.
A 10-bit SAR ADC digitizes every 16 channels at a sample rate of 40 kSps through time-
division multiplexing. The DPU controls each block through on-chip registers and packages
the output of ADCs into data frames. The frame packet is then sent through an on-off
keying (OOK) transmitter operating at 3.2 GHz. The PMU includes a 13.56 MHz RF power
harvester and a switched-capacitor DC-DC converter for wireless and battery-powered
scenarios. On-chip low drop-out regulators (LDOs) and bias generators provide suitable
operation voltage for each block [22,23]. Figure 4b shows the micrograph of the chip
fabricated in a 65 nm complementary metal-oxide-semiconductor (CMOS) process with a
total area of 3.7 × 3.7 mm2. Figure 4c summarizes the key specifications of the chip.
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This chip supports dual-mode communication. In the wireless mode, the chip core
consumes 2.28 mW from a 1 V supply, and the power distribution is shown in Figure 5a.
The wireless data transmitter consumes most power, including the RF phase-locked loop
(PLL) and the power amplifier (PA). Figure 5b shows the measured power distribution
of the chip core in the wired-transmission mode. The total power consumption decreases
to 0.48 mW. Figure 5c depicts the gain and input-referred noise (IRN) of the AFE. The
measured mid-band gain of the AFE is 55 dB, and the −3 dB bandwidth is from sub-Hz
to 10 kHz. The measured IRN is less than 8 µVrms integrating over the whole signal
bandwidth. The chip can operate from a single supply ranging from 1.3 to 4.2 V. This chip
also exhibits a higher power supply rejection ratio (PSRR) than the other work [24–27]. The
replica-biasing scheme in the LNA guarantees a stable bias current despite high power
supply interference without consuming much extra power and area [23]. The performance
comparison with other works is shown in Figure 5d. The specifications of this chip are
suitable for multi-mode physiological signal recording. The customized design has the
advantage of low power and high channel count compared to commercially available chips.
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3. Results
3.1. Subtle BCG Detection

We set up a high-density sensor array which is compatible with multi-channel signal
readout. Here we show a case study to collect and process human physiological signals.
BCG is an indicator of human heart activity. As shown in Figure 6a, the weight of a person
sitting still naturally exerts a certain pressure on the sole, which is mainly distributed on the
heel and forefoot. The sparse distribution of the artery at the heel makes it difficult to detect
week BCG signal. The plantar artery near the big toe is densely distributed. Therefore, the
forefoot is the best position to place the pressure sensor for BCG recording.
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The sensor signal is amplified and recorded by the signal processing circuit described
in Section 2. The recorded BCG signal is filtered by a second-order Butterworth low-pass
infinite impulse response (IIR) filter with a cut-off frequency of 30 Hz. Figure 6b shows the
obtained BCG signal. The weak BCG signal is vulnerable to foot shaking when measuring
the signal. It is worth noting that the BCG signal is the micro-motion signal generated by
the heart. The subject should keep the foot stationary to obtain a stable BCG signal. There
are mainly three peaks in the BCG signal. The I-wave in the BCG signal is the minimum
before the global maximum in the corresponding period, J-wave is the global maximum
in the period, and K-wave is the global minimum after J-wave. Although the plantar
pressure variations of the sensor lead to different detected BCG signals, the periodicity and
characteristics of the BCG signal are still maintained after normalization. The representative
peak of the I, J, and K wave could be distinguished clearly in Figure 6b.

3.2. Multi-Channel Pulse Wave Detection

The pressure sensor array can also be used to monitor the pulse wave during sleep. As
shown in Figure 6c, the wrist squeezed between the bed and other objects provides a natural
pressure, which could be used to detect the pulse wave at the radial artery. Considering the
small area available for detection at the radial artery, a four-channel sensor array is attached
to the wrist with a distribution shown in Figure 6c. Maintaining posture during sleep is
challenging, an inflatable cuff is added to apply pressure to the wrist. The radial pulse
waves measured at four different positions with the proposed wireless readout system
simultaneously are shown in Figure 6d. According to the shape and amplitude of the pulse
wave of each channel, the pressure distribution and pulse intensity at each point of the
wrist can be judged. The amplitude of the pulse wave in each channel can be interpreted as
a measure of distance between the sensor and the artery. The sensor closer to the artery
would generate a pulse wave with a larger amplitude. In this work, the most significant
pulse waveform amplitude appears at channel 2. Sensor arrays can also be used to measure
the pulse wave transit time (PTT) and pulse wave velocity (PWV) [28]. In this work, the
maximum distance between sensors in the array is 2 cm. As shown in Figure 6c, the pulse
wave transmits from the proximal end (channel 2 and channel 4) to the distal end (channel 1
and channel 3). The sensor of channel 4 first senses the pulse signal, and the PTT can
be calculated based on the foot-to-foot method [29]. The average PTT from channel 4 to
channel 3 is 0.0865 s, and the average PTT from channel 2 to channel 1 is 0.0635 s. These
could be further used for continuous noninvasive blood pressure monitoring.

4. Discussion

The flexible pressure sensor array, together with the custom-designed multi-channel
signal readout chip provides a low-power solution to wearable health monitoring devices.
The nonlinear resistance readout circuit calibrates the inversely proportional characteristic
of the pressure sensor. The high linearity between output voltage and pressure simplifies
the reconstruction process compared to traditional designs. This method is suitable for
applications that need to directly record the pressure change. The nonlinear resistance-to-
voltage conversion is easy to implement by simply decreasing the reference resistance in
the resistor divider. The readout circuit becomes more sensitive at high-pressure conditions,
common in BCG applications using bodyweight to provide pressure.

The robustness of physiological signal recording in a moving human body is important
in wearable devices. As the size of each sensor used in this paper is small compared to the
curvature radius of the wrist and heel, the bending of the foot and the wrist causes little
sensor deformation. Meanwhile, the good bending reliability of the flexible sensor leads
to little signal distortion. The proposed non-linear readout scheme is not limited to the
specific material used in the paper, but can also be applied to other resistive sensors with
similar inversely proportional responses.

Recent studies exhibit the feasibility of the cardiovascular (CV) parameters monitor-
ing based on BCG. The amplitude between the second major wave and the third major
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wave is called J-K amplitude, which is an indicator of diastolic and systolic pressure [30].
Multivariate linear regression analysis of amplitudes and time intervals shows a relevance
between BCG and CV parameters [31].

5. Conclusions

This paper reports a remote health monitoring system based on a pressure sensor
array with a wireless multiple channels sensor signal processing chip. The system includes
a flexible resistive pressure sensor array, a data transmission module, and a display module.
The system can detect BCG signals and multi-channel pulse waves in sitting, sleeping,
and other life scenes and exhibits great potential in human health monitoring and medical
diagnostics. The proposed system has the potential to record from much more sensor sites,
leading to a more precise measurement.
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