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Abstract

Motor paralysis is among the most disabling aspects of injury to the central nervous system. Here 

we develop and test a target-based cortical-spinal neural prosthesis that employs neural activity 

recorded from pre-motor neurons to control limb movements in functionally paralyzed primate 

avatars. Given the complexity by which muscle contractions are naturally controlled, we approach 

the problem of eliciting goal-directed limb movement in paralyzed animals by focusing on the 

intended targets of movement rather than their intermediate trajectories. We then match this 

information in real-time with spinal cord and muscle stimulation parameters that produce free 

planar limb movements to those intended target locations. We demonstrate that both the decoded 

activities of pre-motor populations and their adaptive responses can be used, after brief training, to 

effectively direct an avatar’s limb to distinct targets variably displayed on a screen. These findings 

advance the future possibility of reconstituting targeted limb movement in paralyzed subjects.

Brain Machine Interfaces (BMIs) provide a unique opportunity for restoring volitional 

movement in subjects suffering motor paralysis. Neurons in many parts of the brain 

including the primary motor and pre-motor cortex, for example, have been shown to encode 

key motor parameters such as motor intent and ongoing movement trajectory 1–7. In line 

with these findings, awake-behaving animals can use the activity from a fairly small number 

of neurons in the motor cortex to control external devices such as a computer cursor on a 

screen or a mechanical actuator 8–19 More recent studies have also demonstrated the 

possibility of controlling devices such as a robotic arm to produce fluid three-dimensional 

movements 9, 11, 12,17.

While these approaches have provided key advancements in artificial motor control, another 

potential goal has been to control the naturalistic movement of one’s own limb. This 
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prospective capability is particularly attractive in that it could eventually limit the need for 

mechanical devices to generate movement 15, 20, 21. Unlike the control of external devices, 

however, a distinct problem in attaining limb movement control is that the output of the 

motor system (e.g. the corticospinal tract and its associated afferents) is generally not 

explicitly known. For example, when controlling a mechanical device or cursor with a BMI, 

an experimenter can determine which output commands will move the device up or down. In 

contrast, the exact combination of successive agonistic and antagonistic muscle contractions 

naturally used to produce limb movement to different targets in space is difficult to 

explicitly ascertain or reproduce 22–25.

One approach aimed at addressing this problem has focused on using cortical recordings to 

determine the ongoing trajectory of intended limb movement 20. For example, the same 

muscles that were active during training can be stimulated in sequence to produce muscle 

contractions that lead to limb movement over a similar trajectory, thus, producing repeated 

movements to a single object in space. Another approach has also used changes in the 

activities of individual neurons to direct the contraction force of opposing muscles in order 

to smoothly move a lever in a line 21. These approaches have, therefore, provided an 

important advancement in our ability to mimic the trajectory and velocity of planned 

movement. However, a fundamental present limitation in these methods is that they are 

principally aimed at producing movements to a single target at a time or movements within 

one-dimension. This limitation occurs because the possible combination of distinct muscle 

contractions significantly increases as the number of possible movement trajectories 

grows 24, 25, especially when considering movement outside one-dimension or in cases 

where the limb is not narrowly constrained to follow a single repetitive path. While 

generating such movements can be quite valuable, another compelling goal is the design of a 

neural prosthetic that can allow subjects to perform movements in higher dimensional 

spaces and to more than one repetitive target.

Here, we aimed to address this issue from an alternate perspective by focusing on the target 

of movement itself instead of the intervening ongoing trajectory. We hypothesized that if the 

intended targets of movement are known, it may be possible to match these with stimulation 

parameters that elicit limb movements programmed to reach the precise intended targets in 

space. Specifically, if the planned target of movement can be determined from cortical 

recordings and if the targets of movement produced by different stimulation sites/parameters 

can be empirically ascertained, we may be able to elicit limb movement to distinct targets 

under volitional control. Moreover, this approach would not require an explicit 

determination of which sequence of muscle contractions or limb kinematics is needed to 

produce such targeted movement.

Towards this end, we develop a real-time cortical-spinal neural prosthesis in monkeys that 

infers the planned target of movement based on changes in pre-motor neuronal activity and 

then matches this information with spinal cord and/or muscle stimulation parameters that 

elicit movements to the same intended targets on a two-dimensional screen. To test this 

prosthesis in functionally paralyzed animals, we also devise a novel dual-primate paralysis 

model that eliminates the potential influence of afferent/efferent pathways such as partially 

preserved movement or proprioceptive feedback in the tested animals. This is particularly 
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important, since proximal movement and proprioceptive feedback, which are lost in 

paralysis but may be preserved by local nerve block, are strongly represented in the motor 

cortex 26, 27. Moreover, healthy subjects can control a BMI more accurately if provided with 

such feedback 26. Finally, we examine two distinct approaches for controlling targeted 

movements based on either decoded neural population activity or their adaptive response. As 

an initial proof of concept and to test these two approaches, we focus on producing 

movements to two possible distinct targets during real-time neural-prosthetic control. Our 

experiments demonstrate that functionally paralyzed primates are able to precisely reach the 

different displayed targets on a screen by using cortically controlled stimulation-elicited 

limb movements within a plane. We compare the performance of neural population 

decoding versus adaptive neural activity for controlling such targeted limb movements, and 

discuss the potential benefits and drawbacks for using these techniques.

RESULTS

Dual-Primate Avatar Model for Motor Paralysis

To test volitional motor control in awake-behaving animals without confound of intact 

efferent/afferent spinal pathways, we first devised a novel dual-primate motor paralysis 

model. Here, two adult Rhesus monkeys (macaca mulatta) were separately designated as 

either a master or an avatar on different sessions. The monkey functioning as the master was 

responsible for controlling movement based on cortically recorded neural activities, and the 

other sedated monkey functioned as the avatar and was responsible for generating 

movement based on distal spinal cord and/or muscle stimulations. Since the sedated avatar 

was a separate animal from the master and therefore had no physiological connection with 

the master, the master had no direct afferent or efferent influence on the avatar’s movement 

and was, therefore, fully paralyzed from the functional standpoint (Fig. 1). The two monkeys 

were interchangeably used as the master or the avatar on alternate sessions, meaning that we 

effectively tested two masters and two avatars in this study.

During each session, the master was seated in a primate chair placed within a radiofrequency 

shielded recording enclosure. Simultaneous multiple-unit recordings were made from the 

master’s pre-motor cortex using chronically implanted planar multielectrode arrays 

(NeuroNexus Technologies Inc., MI). Signals were digitized and processed to extract action 

potentials in real-time by a Plexon workstation (Plexon Inc., TX). The avatar was fully 

sedated (using a combination of ketamine, xylazine and atropine) and was seated in a 

separate enclosure. The avatar’s limb was attached to a planar, free range-of-motion (360 

degree), spring-loaded joystick that controlled a cursor displayed on the master’s screen.

All trials during the task began with presentation of a small circular target that was 

positioned at two random locations on the screen. The radius of the targets displayed to the 

masters was 3.75 cm, with each target occupying approximately 8% of the screen surface at 

24x24 cm. After presentation of a go-cue, the master then had to reach the displayed target 

by directing a cursor, from the center of the screen to the displayed target, using stimulation-

elicited limb movement in the avatar (Fig. 2). The cursor had to occupy the target 

circumference for 100 ms or more in order for the master to receive reward (see Methods).
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Decoding Intended Movements Using Neural Population Activity

We first used a population decoding approach that estimated the intended target of 

movement based on changes in the firing activity of neurons recorded within the master’s 

pre-motor cortex. Prior to performing the real-time neural prosthetic experiments, the 

spiking activity of all pre-motor neurons in the masters were modeled as an inhomogeneous 

Poisson process in a training session in which they used the joystick to perform the 

task 8, 10, 28. This target-decoding approach is based on prior work by our group and others 

showing that multiple targets or target-sequences can be accurately decoded from pre-motor 

neurons prior to movement (see Methods).

We recorded a total of 125 well-isolated pre-motor neurons (11–20 units per session) over 

10 sessions. In order to estimate the planned movement prior to its execution, we analyzed 

the neuronal activity during the target presentation period prior to the go-cue. We find that, 

of the 125 cells recorded, 64 (51%; one-tailed Z-test; P < 0.01; Fig. 3a) significantly 

predicted which target the animals were intending to move to. When further examining 

model predictions based on the population activity at different time points, accuracy was 

82±12% (mean ± s.d.) by 500 ms after target presentation and 95±10% by 1000 ms after 

target presentation across sessions consisting of 854 trials. By the time the go-cue was first 

displayed, mean cross-validated prediction accuracy was 96±10% (one-tailed t-test, n=10; P 

< 0.01; Fig. 3b). Training across sessions was performed for an average of 85±19 trials 

(mean ± s.d.) or approximately 6 minutes prior to performing the real-time experiments.

Testing Stimulation-Elicited Limb Movements

In order to elicit movement in the avatars, stimulating electrodes were chronically implanted 

in the cervical spinal cord of both monkeys. Two 16-contact iridium oxide stimulating 

electrodes (100–500 kΩ) were each inserted at the C5 and C6 levels of both avatars 

(NeuroNexus). In addition to spinal cord electrode implantation, percutaneous electrodes 

(100–200 kΩ) were placed in the long and short head of the triceps muscle of avatar #1. This 

was done in order to provide added range of movements not available by spinal cord 

stimulation in that particular avatar (see Methods for further discussion and Results, below).

Prior to running the real-time combined recording-elicitation experiments, the stimulating 

electrodes were tested under different amplitudes and contact locations in order to determine 

the range of target locations that can be reached. Specifically, we identified which limb 

movement direction and amplitude will be produced per stimulation setting and contact 

location in the avatars and, therefore, to which precise target in space the cursor could reach. 

Similar to prior reported stimulation experiments in anesthetized animals 22–24, 29–31, we 

tested each contact location at serially incremented amplitudes.

In all cases, stimulation frequency was 200 Hz and pulse width was 0.2 ms with cathodal 

pulse leading. Stimulation duration was 500 ms and was selected to mimic the time it 

naturally took the masters to move to and hold a target during the normal joystick movement 

task (i.e., non-prosthetic controlled). The tested stimulation amplitudes ranged from 10–80 

µA and were incremented by 10–20 µA intervals per electrode contact. For both avatar 1 and 

2, stimulations were tested across all 32 electrode contacts located within the ventral spinal 
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cord at the C5-6 level (4 mm deep from the dorsal surface and 2 mm lateral from the median 

sulcus). For avatar 1, stimulations were also tested across 4 acute contacts located within the 

short- and long-head of the triceps muscle. In this case, stimulation frequency was 200 Hz 

and pulse width was 0.2 ms with cathodal pulse leading. Stimulation duration was 500 ms. 

The tested stimulation amplitudes ranged from 100–200 µA incremented by 10–20 µA 

intervals per electrode contact.

We defined the targets of elicited movement based on the angle and amplitude of cursor 

displacement during the last 100 ms of stimulation. Here, the last 100 ms of stimulation was 

defined as the target “hold-time” and was required in order for the master to receive reward. 

On average, each electrode array produced movements over a range of end target locations. 

These individual clusters ranged in width from approximately 6 to 7 cm. Triceps muscle 

stimulations were somewhat more confined, producing a cluster of end target locations 3.8 

cm wide (Fig. 4a,b).

Of the above tested contact locations and stimulation parameters, two were used for each 

session and avatar to produce stimulation-induced limb movements. These parameters were 

chosen to produce movements to targets that were distinct and as radially distant from each 

other as possible using the available implanted electrodes (in principal, however, and as 

discussed further below, any other stimulation parameters and corresponding elicited limb 

movements could be used for the task). The mean angle of separation between the two tested 

movements was 176 degrees for avatar #1 and 34 degrees for avatar #2 (Fig. 5). For avatar 

#1, mean path length of movement was 10.3±0.2 cm and mean velocity was 86.4±9.0 

cm/sec (mean ± s.d.). For avatar #2, mean path length of movement was 9.4±0.1 cm and the 

mean velocity was 59.6±3.0 cm/sec. Mean deviation of movement (i.e. how much the 

movement trajectory deviated from a straight line) was 1.0 cm for avatar #1 and 3.1 cm for 

avatar #2.

Real-Time Neural Prosthetic Control of Limb Movement

Based on the above testing, we could now predict the intended target of movement based on 

recorded pre-motor activity in the master and determine which spinal cord and/or muscle 

electrode locations and stimulation parameters elicit limb movement to the different targets 

positioned on the screen. Next, we approximated changes in motor intent with movement 

production using the master-avatar primates in real-time on a trial-by-trial basis.

As the two targets were displayed in random order on the screen, neuronal activity was 

continuously recorded from the master and was used to predict trial-by-trial changes in the 

masters’ intended target of movement. Therefore, if neural activity recorded during the trial 

predicted that the master was intending to move to target #1, the system would activate the 

stimulating electrode in the avatar that was previously observed to produce limb movement 

to that exact target location. Alternatively, if neuronal activity predicted that the master was 

intending to move towards target #2, the system would activate another electrode that 

produced a movement towards that target. This way, the neural prosthesis continuously 

matched the master’s planned target of movement with stimulation parameters/electrode 

locations that elicited movement in the avatar’s limb to the same target. Importantly, 
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selected stimulation parameters and electrode contacts were set to produce limb movement 

that precisely reached and held the intended target in their two-dimensional space (Fig. 1).

As noted above, mean cross-validated performance during model training was 96±10% 

when tested across training sessions with 854 training trials (Fig. 2b). We find that, when the 

masters performed the same task as before but target selection was controlled by joystick 

movements made by the avatar using the neural prosthetic, performance was slightly lower 

but still significantly higher than chance. Overall, the primates reached the displayed targets 

during these real-time recording-elicitation sessions in 84±14% (mean ±s.e.m.) of the 561 

trials tested (binomial test, P < 0.01). Most incorrect trials (11%) occurred because of 

decoding error (i.e., selecting the wrong target). Only a few errors (5%) occurred because 

the avatar-controlled cursor failed to reach the spatial confines of the displayed target (i.e., 

to maintain the cursor location within the 0.75 radians or 8% screen-surface of the target for 

100 ms).

No movements were made by the master during the decoding period, prior to the go-cue 

presentation (i.e., the trial would abort if any movement was made). To further confirm that 

no movements were made, we recorded electromyography (EMG) activity from the master 

as the task was being performed over one session (see Methods). We found no difference in 

activity during the decoding period, prior to the go-cue, between planned movements (t-test, 

P = 0.53; Fig. 6).

Motor Control Based on Adaptive Sensorimotor Responses

In many circumstances, such as in the setting of full motor paralysis, it may not be possible 

to train models based on the subject’s natural movement. Also decoders trained on physical 

movement by the subjects may not accurately model the subjects’ planned movement during 

direct neural prosthetic control 32, 33, and consequently adaptive changes in neural activity 

may allow for improved performance over time. We tested this possibility by assigning 

individual neurons within the same pre-motor population (i.e. the same recording electrodes) 

to control the avatar’s limb movement by volitionally modulating their activity. Similar to a 

sensorimotor conditioning approach described previously 21, 34, 35, we randomly selected 

individual neurons and assigned them to control the target of movement by naturally varying 

their firing activity from trial-to-trial as the monkeys performed the same real-time neural 

prosthetic task above. In particular, depending on whether the firing activity of the assigned 

individual neuron went above or below a fixed firing rate threshold, movement would be 

elicited to one of the two targets (see Methods). Importantly, the mapping between the 

neuron’s firing activity and target location was chosen randomly, and no joystick was used 

by the master at any time (Fig. 7a).

Using this approach, we recorded from 40 population cells. During these recordings, the 

primates performed 580 trials over 5 sessions. Starting performance by the selected cells 

was 37±10% (mean ± s.e.m.) over the first 10 trials. Correct target selection, however, then 

rapidly improved, reaching an average performance of 77±12% (two-tailed t-test, n=5; P = 

0.02; Fig. 7b). Overall, it took the monkeys 28±13 trials, or approximately 3 minutes, to 

reach statistical learning criterion (see Methods) 36, 37. The highest noted asymptotic 

performance was 90%. The mean firing rate of selected cells remained the same over the 
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time course of these sessions when comparing the first and second half of the session (two-

tailed t-test; P = 0.88) as did variance in their firing rates (two-tailed t-test; P = 0.92).

During these adaptive sessions, no joystick was given to the monkeys and no visible 

movement was noted during the task. To further confirm that no sub-threshold movements 

were being made, we recorded EMG activity from the master over one session. We found no 

change in EMG activity during selection of one target versus the other (area under the curve; 

two-tailed t-test, p = 0.62) and no difference in EMG activity before versus after target 

presentation (windows = 3000 ms; two-tailed t-test, p = 0.33; Fig. 8).

Response of Non-Selected Neurons During Adaptive Control

Since each selected neuron can only encode a binary response using this potential approach 

(i.e. high versus low threshold), we wanted to determine whether other neurons not involved 

in controlling movement respond similarly to the intended targets. This may, therefore, 

provide insight into the potential capacity of larger neural populations and distinct selected 

cells to adaptively direct movement to more than two targets at a time.

By simultaneously recording from multiple neurons during these sessions, we found that 

neighboring neurons in the pre-motor population displayed surprisingly little 

correspondence with the activities of the selected neurons. Thirty five pre-motor cells were 

recorded over the same 5 sessions in addition to the selected cells. However, none of the 

recorded cells demonstrated a significant correlation (either positive or negative) when 

comparing the time-varying firing rates of selected cells to the other non-selected cells 

(Pearson’s correlation, n=35; P > 0.05). In other words, cells that were not selected to 

control movement did not consistently increase their firing activity when the activity of the 

selected cell increased during targeted movement or vice versa (note that these single cells 

were selected randomly from the population and the mapping between their firing rates and 

target selection was chosen arbitrarily). An example of two such cells is shown in Figure 7c 

(also, note that both cells still markedly fluctuated their activities from trial to trial). 

Similarly, there was little correlation in activity when considering variations in the firing 

activities across all pairings (mean correlation r = −0.012±0.022; mean ± s.e.m.). These 

findings, therefore, suggested that cells in the population not directly assigned to controlling 

the movement do not necessarily co-vary their activities with the intended target during 

artificial motor control.

DISCUSSION

Achieving volitional control of one’s own limb has been an important goal in the field of 

neural prosthetic development. Recent work has shown that the intended targets of 

movement or movement sequences can be inferred from primary motor and pre-motor 

neurons and that, even with a small number of recorded cells, it is possible to distinguish 

between multiple distinct planned targets in space 8, 10, 28. Based on this initial evidence, the 

basic question that we aimed to investigate was whether it is possible to couple, in real-time, 

the animal’s intended target of movement with unconstrained (360 degree range of 

movement), stimulation-elicited limb movements to the same target confines in two-

dimensional space and under full functional paralysis. While such a goal will require 
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continued technical innovation, as an initial proof of concept, we devised and tested a 

cortical-spinal neural prosthesis designed for controlling limb movements to two different 

small targets randomly positioned on a screen. We hypothesized that by focusing on the 

target of movement, rather than the ongoing planned trajectory, it may be possible to 

provide a simple solution for directing naturalistic limb movement to different targets in 

space.

Prior work has tackled the problem of controlling limb movement by inferring the ongoing 

planned trajectory of movement in real-time 20. While this approach demonstrated the 

remarkable ability to elicit movement over a given trajectory, it is presently limited to 

directing movement to a single, repeated target in space. Hence the applicability of such an 

approach to generating movement towards distinct targets is unclear. Here, using an 

alternate approach that allows the animal to control only the intended target locations of 

movement, we show that it possible to produce unconstrained limb movements to more than 

one precisely positioned target on a screen. While a range of angles and amplitudes of 

movements could be produced with only a few implanted spinal cord and muscle electrodes, 

it is likely that a larger number of electrodes and/or contact sites would be needed to allow 

for elicited movement to more than two targets. An obvious limitation, however, is that such 

an approach would not accurately mimic the precise intended trajectory of movement which 

may also be important under certain task settings 7, 19.

We also examined whether neurons, randomly selected from the population, could similarly 

control limb movement by volitionally modulating their activity, thus resulting in adaptive 

motor prosthetic control. In order to allow for comparison with the above decoding 

approach, we recorded from the same pre-motor microelectrodes and tested the same two 

target locations using the same task. We find that under this two-target setting, the animals 

learned to significantly improve the target acquisition accuracy over a fairly short time-

period and were able to reach accuracies comparable to (albeit somewhat lower than) the 

decoding-based approach. Using this adaptive approach, we also examined how other non-

selected neurons concomitantly changed their firing activities. Prior studies have 

demonstrated broad motor population responses to upcoming movements 1–3, 38, indicating 

that such neurons encode planned/intended movements as a concerted population-wide 

vector or function. A more recent important study has also shown that, when decoders were 

trained on the directional tuning of motor populations (i.e. using multiple neurons), neurons 

that were not directly involved in prosthetic control continued to modulate with the animal’s 

movements but did so more weakly 39.

In agreement with these findings, we observe that individual neurons in the pre-motor cortex 

that are assigned to control the movement progressively modulated their activity with the 

intended targets. However, we also find that when motor control was assigned to individual 

neurons whose activity was mapped to movement arbitrarily, other surrounding cells did not 

consistently modulate their activity with the intended targets. While we used only a limited 

number of neurons recorded from small pre-motor populations, this finding suggests that it 

may be possible to orthogonally train more than one, and potentially multiple, single 

neurons to encode a different set of target locations. Therefore, either decoding- or adaptive-

based approaches may be viable options for controlling such a target-based neural prosthetic 
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and may provide straight forward means for artificially generating goal-directed movements 

under direct cortical control.

Finally, to provide a model of paralysis in which to test present and future neural prosthetic 

approaches aimed at enabling limb movement in full paralysis, we introduced a novel two-

primate setup for functionally paralyzing awake-behaving animals. This new technique was 

useful in that it provided a relatively simple way by which to dissociate all spinal cord 

pathways, and by which to test motor control without the influence of partially or 

completely preserved efferent/afferent circuitries 40. Recent studies, in particular, have 

demonstrated that providing proprioceptive and kinesthetic feedback to healthy subjects 

performing a BMI task can significantly improve the BMI accuracy. Such feedback, 

however, is lost in paralysis and cannot help BMI performance in paralyzed subjects 26, 27. 

This lack of proprioceptive feedback has been achieved in BMIs for control of external 

devices by partially restraining the animal’s arm 33. However, in neural prosthetics aimed at 

controlling the limb, such an approach would not be possible and hence the two-primate 

setup can provide a useful model by which to test such neural prosthetics. An analogous 

approach for using the nervous system of one animal to control the nervous system of 

another has also recently been employed to relay motor commands and sensory-related 

information 41, 42. A limitation of the dual-monkey model is that the monkeys do not display 

all the same clinical features as truly chronically paralyzed animals such as muscle rigidity 

or autonomic dysreflexia 43. However, and perhaps as importantly, paralysis was reversible 

and was not associated with the extreme morbidity inherent to spinal cord paralysis.

METHODS

Dual-primate Spinal Cord Paralysis Model

Two adult male Rhesus macaques, ages 6–8 years old, were included in this study in 

accordance with IACUC guidelines and approved by the Massachusetts General Hospital 

institutional review board. Two monkeys were used to confirm reproducibility of results and 

neural-prosthesis performance. Each monkey, alternating in role for each session, acted 

either as the master or avatar. Here, the master was seated in a primate chair placed within a 

radiofrequency shielded recording enclosure (Crist Instrument Co Ltd, Damascus, MD). The 

masters’ head was restrained using a head post, and a spout was placed in front of its mouth 

to deliver juice using an automated solenoid. A computer monitor which displayed the task 

was placed at eye level in front of the master.

The primate acting as the avatar was seated in a separate enclosure. Its upper limb was 

secured onto a 360 degree, free range-of-motion, spring-loaded, joystick that controlled a 

cursor displayed on the master’s screen. A NI DAQ card (National Instruments, TX) was 

used for the I/O behavioral interface, and the behavioral program was run in Matlab 

(MathWorks, MA) using custom made software routines 44. On separate weeks, the two 

primates interchangeably acted as either the master or avatar. Therefore, if the primate was 

an avatar on a given week, we would use stimulation parameters and electrode locations 

specific to that monkey. Note that stimulation parameters that were previously 

demonstrated, during testing, to produce upward arm movement in avatar #1 may be 

different from parameters used in avatar #2.
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Recording Multi-Electrode Implantation

Multiple recording silicone multi-electrode arrays (NeuroNexus Technologies Inc., MI) 

were chronically implanted in each monkey 45. A craniotomy was performed along the 

dorsal-lateral region of frontal lobe under standard stereotactic guidance (David Kopf 

Instruments, CA). After directly visualizing the cortical gyral pattern underlying the 

craniotomy, the arrays were implanted into the dorsal and medial aspects of the pre-motor 

cortex (Brodmann area 6). This area was implanted with 3–4 arrays in each monkey, with 

each array possessing 32 electrode contacts in a 4x8 configuration. Spacing between vertical 

contacts was 200 µm and horizontal contacts 400 µm.

Recordings began two weeks following surgical recovery. A Plexon multichannel 

acquisition processor was used to amplify and band-pass filter the neuronal signals (150 Hz 

– 8 kHz; 1 pole low-cut and 3 pole high-cut with 1000x gain; Plexon Inc., TX). Signals were 

digitized at 40 kHz and processed to extract action potentials in real-time by the Plexon 

workstation. Classification of the action potential waveforms was performed using template 

matching and principle component analysis based on waveform parameters. Only single-, 

well-isolated units with identifiable waveform shapes and adequate refractory periods were 

used for the on-line experiments and off-line analysis. No multiunit activity was used.

For electromyographic (EMG) recordings, we used tin surface electrodes from over the 

deltoid contralateral to neural recordings (this muscle displayed the most robust peri-

movement activity during movement to both targets). Signals were digitized at 1 kHz and 

were recorded by the Plexon workstation.

Stimulating Electrode Implantation

Stimulating electrodes were chronically implanted in the cervical spinal cord of both 

monkeys. A dorsal skin incision was placed over the C5-6 lamina, and a laminectomy was 

performed to expose the dorsal spinal canal. In both avatars, two 16-contact iridium oxide 

stimulating electrode (100–500 kΩ) were inserted at the C5 and C6 levels (NeuroNexus 

Technologies Inc., MI). These were placed to a depth of 4 mm from the dorsal surface and 2 

mm lateral from midline, corresponding to the approximate location of the ventral horn of 

the spinal cord. A fibrin sealant (Baxter, IL) was used to cover the dural opening, and the 

distal female connector was secured into place using a titanium mini-plate and acrylic 

cement along the lateral laminar edge. In addition to spinal cord electrode implantation, 

percutaneous electrodes (100–200 kΩ) were each placed, under sterile preparation, in the 

long and short head of the triceps muscle of avatar #1. The connecting wires were secured 

into place using an elastic cuff and attached to a female connector.

Behavioral Task

All trials during the task began with presentation of a circular green target that was 

randomly positioned in one of two locations on a screen (roughly, top versus bottom of the 

screen during avatar #1 sessions and top versus right of the screen during avatar #2 

sessions). On decoding-based sessions, a go-cue would appear 1500 ms after target onset, 

following which time the master was allowed to move the joystick in order to guide a cursor 

from the center of the screen to the intended target. During real-time performance of the 
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recording-elicitation sessions, the exact same sequence of target presentations and go-cue 

timings would be given but, now, movement of the cursor would be based on joystick-

attached limb movements made by the avatar. The master only received reward if the 

displayed target was reached and held for 100 ms.

Target Selection Based on Decoded Population Responses

We first inferred the planned target of movement in the master based on neural activities 

recorded in their pre-motor cortex. Using a population decoding approach, we determined 

the intended target of movement based on the firing activities of the neuronal population as 

masters performed the task. In order to estimate the masters’ planned target of movement, 

we initially trained the models on the activity of neuronal populations in their pre-motor 

cortex as they performed the task using a joystick during the training sessions.

The spiking activity of each neuron was modeled as an inhomogeneous Poisson process 

whose likelihood function is given by;

(1)

where Δ is the time increment taken to be small enough to contain at most one spike,  is 

the binary spike event of the c’th neuron in the time interval [(k −1)Δ,kΔ], λc (k | Si) is its 

instantaneous firing rate in that interval, Si is the i’th target of movement, and K is the total 

number of bins in a duration K Δ. We take Δ = 5ms as the bin width of the spikes. For each 

target and neuron, we estimated the firing rate λc (k | Si over the 1500 ms target presentation 

period (prior to the go cue) using a state-space expectation-maximization (EM) approach 28. 

After fitting the models, we validated them using the χ2 goodness-of-fit test on the data and 

confirmed that they fitted the data well (P > 0.7 for all cells in all sessions). As noted in the 

main text, we had previously used such a decoding approach to infer the intended target of 

movement of primates across multiple targets and target sequences (i.e. up to 12). For the 

purpose of the present experiments, we decoded only two targets at a time.

During real-time recording-elicitation neural prosthetic experiments, the master’s joystick 

was disconnected and the intended target of movement was inferred using a maximum-

likelihood decoder based on neuronal activity recorded from the same premotor population. 

The maximum-likelihood decoder was used to determine the intended target based on the 

neuronal activity recorded over 1500 ms during the target presentation period and prior to 

the animals movement 28. Using the model above, the population likelihood under any target 

is given by;

(2)

where K is the total number of bins (300) during the target presentation period, C is the total 

number of neurons, and λc (k | Si for k = 1,⋯,K and c = 1,⋯,C is the estimate of the firing 

rate. The decoded target was selected as the one that had the highest population likelihood. 

Finally, we evaluated the accuracy of the decoders obtained during the training session using 
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leave-one-out cross-validation. This allowed us to examine the accuracy of the trained 

models on a trial-by-trial basis.

Threshold and Target Determination on Adaptive Sessions

In a separate set of sessions, single neurons were individually selected from the same pre-

motor population (i.e. recording electrode contacts) in the master and were randomly 

assigned to control limb movement produced by the avatar. These selected neurons were 

allowed to naturally vary their firing activity from trial-to-trial and, depending on whether 

their firing activity went above or below a fixed firing rate threshold, movement to one of 

the two possible target locations would be elicited. Importantly, the mapping between the 

neuron’s firing activity, target location and elicited movement was chosen randomly. 

Moreover, unlike the decoding-based approach, no joystick was used by the master at any 

time 46.

With regards to determining the thresholds, prior to performing the recording-elicitation 

sessions, the natural firing rate distribution of the selected neuron was determined by 

recording its spiking activities while the master remained at rest for 5 minutes. Following 

this, the top 90th and bottom 10th percentiles of that distribution were determined. Each 

threshold was randomly assigned to correspond to selection of movement to one of the two 

displayed targets (e.g. reaching the low threshold could correspond to movement to the top 

target whereas reaching a high threshold could correspond to movement to the bottom 

target, or vice versa, on a given session). On each trial during the real-time recording-

elicitation sessions, the firing rate of the same selected neuron would be calculated in 1000 

ms windows advanced in 100 ms increments (i.e. total number of spikes counted over 1 

second). If at any point after an initial 1500 ms delay the firing rate of the selected neuron 

reached either the top 90th or the bottom 10th percentile of their firing rate distribution, one 

of the two possible targeted movements would be elicited in the avatar. Reward would only 

be given to the master if the correct displayed target was reached and held for 100 ms (note 

that, since a target would be selected if either threshold was reached within a 1500 ms trial 

duration, there was only a 0.815 chance that no movement would be elicited, meaning that 

movement was elicited in essentially all trials).

Statistical Testing

Correlated activity between selected and other non-selected neurons within the recorded pre-

motor population was assessed based on their Pearson’s product-moment coefficients (P < 

0.05). Evaluating accuracy of behavioral performance above chance was assessed using a 

binomial test (P < 0.05), and change in performance across sessions was assessed by a two-

tailed t-test (P < 0.05). All these values were given with their standard error of the mean 

(s.e.m). Behavioral performance was estimated from the animals’ binary responses (correct 

versus incorrect target) using a Bernoulli state space approach described previously 36, 37. 

Briefly, this was accoplished by fitting the curve to a standard logistic equation which 

provided a continuous estimate, ranging from 0 to 1, of the animals’ learning performance. 

The 99% confidence bounds of the curve were used to determine when learning criterion 

was statistically achieved (i.e., when the confidence bounds first went above 50% chance). 

With regards to kinematics, the displacement and velocity of movements were calculated 
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from the trajectory tracings of each movement. The standard deviation of movement was 

determined by calculating the distance between each point along the trajectory of the cursor 

(i.e., as it curvilinearly moved from the center of the screen to the target) and that of the 

optimal trajectory (i.e. a straight line from the center of the screen to the center of the 

displayed target).
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Figure 1. 
Schematic illustration of the dual-primate set up. The master is displayed on top and the 

avatar is displayed on the bottom. Note that on decoding-based sessions, the master had a 

joystick during training that was then disconnected during the real-time neural prosthetic 

trials. On adaptive-based sessions, no joystick was used at any time. Under “empiric 

mapping”, the arrows indicate the estimated intended target of movement based on neural 

activity and the color codes illustrate the corresponding stimulator channel used to elicit 
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limb movement in the animal. The left vs. right pairings indicate the two possible mappings 

to movement to each of the targets for the first and second avatars, respectively.
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Figure 2. 
Behavioral task. Schematic illustration of the trial presentation and timeline proceeding from 

left to right. On decoding based sessions, a central green circle was used as a go-cue. On 

adaptive, single-neuron based sessions, no go-cue was given. Only the displayed target is 

shown on this particular trial (i.e. the other possible target/movement locations are not 

shown). During model training and adaptive sessions, the monkeys had up to 3000 ms to 

make a movement.
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Figure 3. 
Neural population decoding. (a) Averaged (gray) and model estimated (black) peristimulus 

histogram (top) and raster (bottom) of a pre-motor neuron during movement planning and 

aligned to presentation of two different targets (left and right, respectively). (b) Mean 

population decoding performance across all trials and 95% confidence bounds aligned to 

target presentation (and up to the go-cue) during a sample session.
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Figure 4. 
Microstimulation-induced limb movement during testing. (a) Scatter plot indicating the 

mean cursor position during the last 100 ms of stimulation (during which the target was 

held) for all tested electrode sites. These together define the possible range of movements 

elicited in the two avatars during testing. For avatar #1, blue dots indicate the end-targets of 

movement produced by C5 electrode stimulation and red dots indicate the end-targets of 

movement produced by triceps stimulation. For avatar #2, green dots indicate the end-targets 

of movement produced by C5 electrode stimulation and black dots indicate the end-targets 

of movement produced by C6 stimulation. (b) Distribution of elicited movement directions 

in relation to center.
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Figure 5. 
Selected targets and elicited limb movement trajectories used for the real-time sessions. 

Target locations and the stimulation-induced limb movement trajectories are shown for 

avatar #1 (left) and avatar #2 (right). For avatar #1, upwards movements (blue) were 

produced by C5 electrode stimulation and downward movements (red) by triceps 

stimulation. For avatar #2, upwards movements (green) were produced by C5 electrode 

stimulation and righward movements (black) by C6 stimulation.
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Figure 6. 
EMG tracings display robust peri-movement activity during movement to both targets. (a) 

Averaged EMG tracings in millivolts over the course of a real-time recording-elicitation 

session. The gray area indicates the time during which neural decoding was performed and 

the arrow (time zero) indicates the time of the go-cue. The thick line indicates the average 

activity and the thin lines the s.e.m. (b) EMG tracings are broken down into target of 

movement (red for up and blue for right). (c) Raw EMG tracings over two individual trials 

with the same color convention as in b.

Shanechi et al. Page 22

Nat Commun. Author manuscript; available in PMC 2014 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Adaptive activity based approach for controlling movement. (a) The firing rate and 

corresponding spike time indicators (immediately blow the x-axis) of a single selected pre-

motor neuron recorded over two individual trials aligned to target presentation for two 

different targets. The vertical bars indicate the time during which the firing rate of the 

neuron reached the top threshold (left, blue) and bottom threshold (right, red; see Methods 

for further detail on threshold definition). The arrows indicate the time of stimulation and 

mapped elicited limb movement for each trial. (b) Behavioral performance and 99% 
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confidence bounds over successive trials witihin a session (100% performance indicates that 

the primates correctly selected and spatially reached the displayed target on all trials). (c) 

Example of the normalized firing activities (averaged firing rate within successive 1000 ms 

windows divided by the mean firing rate across the entire session) of a selected (green) and 

a non-selected (purple) pre-motor neuron recorded over a single representative session.
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Figure 8. 
EMG tracings in the master during the real-time adaptive recording-elicitation sessions. (a) 

An example of raw EMG tracings recorded in the master over individual trials during 

selection of the top (black) vs. bottom (gray) target. In both trials, the window over which 

neuronal threshold was reached lied between 1500-2500 ms. (b) Average EMG activity for 

all top vs. bottom movements over the course of the session, with the same color convention 

as in a. The thick lines indicate the mean EMG activity in millivolts and the thin lines 

indicate their s.e.m.
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