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Abstract

Subcellular compartmentalization, cell growth, hormone secretion and neurotransmission require 

rapid, targeted, and regulated membrane fusion. Fusion entails extensive lipid rearrangements by 

two apposed (docked) membrane vesicles, joining their membrane proteins and lipids and mixing 

their luminal contents without lysis. Fusion of membranes in the secretory pathway involves Rab 

GTPases; their bound ‘effector’ proteins, which mediate downstream steps; SNARE proteins, 

which can ‘snare’ each other, in cis (bound to one membrane) or in trans (anchored to apposed 

membranes); and SNARE-associated proteins (SM proteins; NSF or Sec18p; SNAP or Sec17p; 

and others) cooperating with specific lipids to catalyze fusion. In contrast, mitochondrial and cell-

cell fusion events are regulated by and use distinct catalysts.

Early studies with bilayer liposomes provided important insights about fusion mechanisms 

(see review by Chernomordik and Kozlov in this issue1). Liposome fusion can be induced 

by calcium, polyethylene glycol, diacylglycerol, peptides or high membrane curvature, but is 

often accompanied by substantial lysis2–4, in which the membrane permeability barrier to 

polar solutes is lost. Fusion proceeds through a stalk or hemifusion intermediate (Fig. 1) in 

which the outer bilayer leaflets are merged while the inner leaflets, and aqueous 

compartments, remain distinct5. Viral fusion proteins can catalyze rapid fusion alone (see 

review by Harrison in this issue6). While anchored in one bilayer, viral fusion proteins 

unfold like a flower to reveal a hydrophobic fusion peptide that inserts into an apposed 

membrane. The fusion protein then oligomerizes and undergoes a conformational change 

that stresses the apposed bilayers, inducing their fusion7. Viral fusion also entails a 

hemifusion stalk (see Fig. 1 of ref. 8) and is accompanied by some lysis9,10. Though viral 

fusion proteins can be indiscriminate in their targeting, the similarity of their structures and 

actions to SNAREs (see Box 1 for definition) has been a powerful paradigm for studies of 

intracellular fusion11. Cell-cell fusion events and mitochondrial fusion events rely on quite 

distinct strategies.
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Our understanding of intracellular membrane fusion has largely rested on three approaches: 

genetic screens for the relevant genes; the enumeration of the proteins and their binding 

associations in the neuronal synapse, which is highly specialized for rapid fusion; and the 

development of in vitro reactions reconstituting organelle fusion and the biochemical 

identification of their essential components. The consilience between the proteins identified 

through these approaches, and the substantial conservation of components from yeast to man 

and among the intracellular organelles, shows that biological membrane fusion occurs by 

conserved mechanisms. However, work in the last decade has shown that mitochondrial 

fusion is catalyzed by a distinct repertoire of proteins.

Molecular insights from a genetic approach

Secretion mutants defective in mucocyst discharge in Paramecium and Tetrahymena were 

described and characterized morphologically in the mid 1970s (ref. 12). However, the 

difficulty of molecular and genetic analysis in protozoa limited the potential impact of these 

early, fascinating studies. Studies on a genetically tractable system began with the isolation 

of Saccharomyces cerevisiae temperature-sensitive sec mutants, each blocked at a stage of 

the secretory pathway13,14. Some of the SEC genes encode general fusion chaperones such 

as Sec17p and Sec18p, whereas others specify proteins that catalyze fusion at one organelle. 

Genes involved in the budding or cargo-sorting stages of trafficking were resolved from 

those required for the later fusion step by epistasis analysis15 and by biochemical 

complementation experiments as in vitro fusion reactions became available16,17. In other 

screens, defects in endomembrane trafficking yielded vps (vacuole protein sorting) 

mutants18,19, in which inefficient protein sorting from the Golgi to the vacuole (lysosome 

of yeast) results in the secretion of normally vacuolar proteins. A screen for abnormal 

vacuole morphology (vam) mutants with highly fragmented vacuoles had notable success in 

identifying the genes required for the fusion of this organelle20. The discovery that the 

SEC18 gene encodes a yeast homolog of mammalian NSF was an early indicator that the 

proteins of membrane fusion are highly conserved21.

The neuronal synapse

Synaptic vesicles are highly enriched in proteins that mediate vesicle fusion at the active 

zone22. Neuronal SNARE proteins were initially discovered by their abundance in synaptic 

vesicle preparations and their associations with one another23–25, then shown to be the 

targets of specific endoproteolytic neurotoxins26, establishing their direct role in membrane 

fusion. SNAREs associate with other proteins, notably Sec1/Munc18 proteins, 

synaptotagmin and complexin, that regulate their association and function and integrate it 

with the triggering calcium flux27–29. Two SNARE-bound fusion factors, NSF and SNAP, 

couple the energy of ATP binding and hydrolysis to the disassembly of SNARE 

complexes30,31. SNAREs are found in all species and all organelles32. 

Electrophysiological characterization of SNARE gene knockout mice has established their 

roles in normal neurotransmission. Synaptotagmin has direct affinity for the SNAREs33. As 

calcium enters the synapse, the calcium binds to the two C2 domains of synaptotagmin, 

activating binding of synaptotagmin to lipids and SNAREs, displacing complexin34 and 

triggering fusion. The inherent interest in understanding the human brain, as well as the 
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leading role of neuronal SNAREs in studies of the SNARE complex structure35 and 

function in liposome model reactions36–38, has made neuronal fusion catalysis a leading 

system for molecular analysis.

In vitro fusion reactions

The luminal compartment mixing that occurs upon membrane fusion provides an assay of 

the fusion event. Golgi fractions, isolated from vesicular stomatitis virus–infected CHO cells 

lacking an N-acetyl glucosamine transferase, have viral G protein (VSV-G) with abnormal 

glycosylation. Upon incubation with Golgi from wild-type, uninfected cells, the fusion step 

of trafficking delivers the VSV-G protein from the infected cell's mutant Golgi to the 

mannosyl transferase within wild-type Golgi, and the mannose addition can be assayed as a 

marker of fusion16. This assay is blocked by N-ethylmaleimide (NEM), and 

complementation of the NEM-blocked reactions by fresh cytosol allowed isolation of the 

NEM-sensitive factor, or NSF, a soluble peripheral membrane protein39. NSF binding to the 

Golgi requires a second peripheral membrane protein, the soluble NSF attachment protein, 

or SNAP40,41. Affinity chromatography of brain detergent extracts on a matrix of 

immobilized SNAP and NSF yielded a complex of syntaxin, synaptobrevin and SNAP-25 

(ref. 31); these proteins had been identified in earlier studies and proposed to be central in 

synaptic transmission, but their specific association with NSF and SNAP established this 

role. Syntaxin, synaptobrevin and SNAP-23 were then termed SNAREs, for soluble NEM-

sensitive factor attachment protein receptors.

SNAREs are found in all eukaryotic organisms and are required for each step of the exocytic 

and endocytic trafficking pathways. They have a common heptad-repeat SNARE motif, 

which forms four-helix coiled-coil structures35 termed SNARE complexes. Though most 

aminoacyl residues that are buried within the four-helix SNARE complex structure are 

apolar, the ‘0-layer’ at the center is almost invariably comprised of three glutaminyl residues 

and one arginyl. This has formed the basis for the classification of SNAREs as Q- or R-

SNAREs32, with further refinement of Q-SNAREs according to sequence conservation into 

subfamilies Qa, Qb and Qc. Virtually all characterized natural SNARE complexes are of the 

composition QaQbQcR. SNAREs also have variable N-terminal domains that precede the 

heptad repeat. Most SNAREs have a single transmembrane anchor near their C terminus, 

though some are anchored by prenyl groups or by a phosphoinositide-binding domain42. 

SNARE complexes are termed cis if all their membrane anchors are in one bilayer or trans if 

they have anchors in each of two apposed, docked membranes. SNARE complex 

disassembly, assembly and function are regulated by SNARE-associated factors. SNARE 

complexes are disassembled by NSF or Sec18p, which are AAA-family ATPase chaperones, 

along with SNAP or Sec17p (ref. 30). SNAREs become enriched in fusion-competent 

microdomains43,44 and pair in trans36,45,46, with oligomerization of trans-SNARE 

complexes47. SNARE pairs are often associated with other proteins, most generally of the 

Sec1/Munc18-1 (SM) family.

SM proteins are required for each intracellular fusion event48. Different SM proteins 

associate with SNARE complexes49,50, with the N-terminal peptide region of certain 

syntaxin (Qa) family members51,52 or with the folded N-terminal domain of other 
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syntaxins53. Despite structural studies of SNARE–SM cocrystals54, it has been unclear how 

SM proteins promote trans-SNARE pairing and fusion. Recent studies38 suggest that the 

neuronal SM protein Munc18-1 catalyzes the formation of ternary complexes of the cognate 

neuronal SNAREs, activating them for lipid mixing (as discussed below) while suppressing 

this capacity for other SNARE combinations55. Since each SM protein is physically and 

functionally specific to a limited number of organelles, the SM proteins may provide a vital 

layer of specificity to trans-SNARE complex assembly and function.

GTPases of the Rab family are also essential for fusion. Sec4p, required for docking 

secretory vesicles at the yeast plasma membrane, was found to be a Ras-superfamily 

GTPase56 whose cycling between its GDP and GTP-bound forms57 is controlled by 

GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GNEFs)58. In 

its GTP-bound form, Sec4p binds to a complex of proteins termed the exocyst, linking the 

secretory vesicle to the plasma membrane59–61. As at the exocyst, docking and fusion at 

each organelle requires a unique large tethering complex—for example, the TRAPP 

complex at the cis-Golgi62 and the HOPS complex at the vacuole63—that interacts with the 

Rab GTPase and other factors for tethering and to catalyze the exchange of GTP for GDP 

and thereby activates the Rab64–66. GTPases of the same family as Sec4p, termed Rab or 

Ypt proteins, were found for every organelle and throughout the various taxa studied. For 

example, the Rab5 GTPase is required for mammalian endosomal homotypic fusion67. 

When detergent extracts of endosomes were passed over a column of immobilized Rab5p–

GTP, a broad selection of specifically bound proteins was found, each subsequently shown 

to be active in cell-free assays of endosome fusion68–71. Some of these Rab5–GTP 

‘effectors’ catalyze phosphoinositide synthesis71, bind directly to phosphoinositides72, or 

both73, providing an early link between the proteins and lipids of membrane fusion. These 

lipids contribute to the formation of fusion-active microdomains (Fig. 1b), serve as a 

platform for binding fusion proteins to the membrane, and themselves undergo non-bilayer 

rearrangements during hemifusion and fusion (Fig. 1d,e).

Membrane microdomains can form specialized platforms for fusion43,74. This has been 

especially clear in studies of the fusion of mammalian endosomes and of isolated yeast 

vacuoles. The endosomal Rab5 is activated by the GNEF Rabex5 and, in its active form, 

binds the effector Rabaptin5 (ref. 68) to form a ternary complex69. Rabaptin5 in turn 

activates Rabex5 (ref. 75), insuring that Rab5 remains in its GTP-bound form and is not 

extracted by the guanine-nucleotide dissociation inhibitor. Activated Rab5 also binds 

phosphatidylinositol-3-OH kinases71 and phosphoinositide 4- and 5-phosphatases, which 

create more phosphatidylinositol substrate for the 3-kinase to act upon76. The local 

synthesis of PI(3)P allows high-affinity localization of the effector protein EEA1, which has 

affinity for both activated Rab5 and, through its FYVE domain, for PI(3)P (ref. 73). These 

microdomains, organized by Rab5, provide favored sites of endosomal membrane 

fusion70,77. Yeast vacuole homotypic fusion is another example of Rab-directed 

microdomain assembly. Vacuoles have diameters of a micron or more, allowing 

fluorescence light microscopic visualization of docking, of the ensuing spatial distribution of 

fusion proteins and lipids on docked vacuoles, and of the fusion event itself. Docked 

vacuoles are drawn against each other to form pairs of apposed disc-like microdomains, the 
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‘boundary membrane’. The region surrounding the boundary membrane, termed the ‘vertex 

ring’, becomes highly enriched in the Rab (Ypt7p), Rab-effector complex (HOPS), 

SNAREs, and ‘regulatory lipids’ (ergosterol, diacylglycerol and phosphoinositides) that are 

required for fusion44,78,79. Fusion itself then occurs around the vertex ring, joining the two 

boundary membranes and yielding a luminal vesicle within the larger, fused organelle. The 

regulatory lipids (diacylglycerol, ergosterol and phosphoinositides) depend on one another 

for vertex ring enrichment, and the Rab, Rab-effector and SNAREs are interdependent for 

vertex accumulation. Unexpectedly, regulatory lipid enrichment also depends on these 

proteins, and these proteins require the lipids as well44,79. As shown for endosomal fusion 

components, the relevant vacuolar proteins and lipids undergo a complex and highly 

interdependent process to establish a fusion-competent microdomain79. Each of the proteins 

and lipids needed for the establishment of a vertex ring microdomain is needed until fusion, 

presumably for microdomain maintenance80.

Fusion reconstitution

Reconstitution of fusion with all-pure components, and in a manner that faithfully reflects 

the biology seen in in vivo and in in vitro studies with the intact organelle, is an essential, if 

challenging, step toward understanding the chemistry of the protein-catalyzed lipid 

rearrangements of fusion. Viral fusion proteins provide an important model, though they are 

not likely to reveal how essential catalysts such as Rabs and Rab-effectors work.

The fusion of proteoliposomes bearing pure, recombinant SNAREs has been studied 

extensively. In this system, one set of ‘donor’ liposomes is prepared with two self-quenching 

fluorescent lipids, rhodamine-phosphatidylethanolamine and NBD-

phosphatidylethanolamine, while the ‘recipient’ liposomes are not fluorescent. Upon fusion, 

dilution of the fluorescent lipids causes dequenching81. Complementary sets of recombinant 

SNARE proteins are reconstituted into either the donor or acceptor liposomes36, 

representing the SNAREs believed to function on the target organelle (t-SNARE) or vesicle 

(v-SNARE) for particular fusion events. After overnight pre-incubation at 4 °C, presumably 

allowing trans-SNARE pairing, samples are warmed and the kinetics of fluorescence 

increase is recorded. This system, despite technical limitations82,83, has shown that, for 

those cognate pairs of SNAREs that normally function together in the cell, SNAREs alone 

can drive fusion with some specificity84,85. SNARE-driven fusion proceeds through a 

hemifusion intermediate86 and is sensitive to the distance between the SNARE domain and 

transmembrane anchor87. Studies with neuronal SNARE liposomes have shown that far 

lower amounts of SNAREs suffice for fusion when calcium and synaptotagmin are 

included88; these are key to neuronal fusion, but are not required for other intracellular 

fusion events. Recent studies have shown that SNARE proteoliposomes undergo extensive 

lysis as well as fusion, suggesting that much, but by no means all89, of the SNARE-

dependent lipid mixing reflects lysis followed by reannealing rather than true fusion90,91. 

The balance between lysis and fusion has also been confirmed with yeast vacuole fusion92: 

vacuole fusion with endogenous levels of fusion proteins is not accompanied by lysis, but 

the fusion of vacuoles from strains with elevated amounts of each vacuolar SNARE 

becomes Rab-independent and is accompanied by massive organellar lysis. It is not known 
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which factors, in response to SNARE-mediated bilayer destabilization, guide docked 

organelles to fusion instead of lysis.

Current models of intracellular fusion

Membrane fusion is governed by layers of specific interactions, reversible80,93,94 and 

subject to regulation, such as by phosphorylation95–97. Organelle-specific Rabs and Rab-

effectors mediate tethering98,99 (Fig. 1a) and the assembly of fusion-competent 

microdomains (Fig. 1b), on the basis of a web of mutual affinities of fusion regulatory lipids 

for one another, of fusion regulatory lipids for proteins with direct capacity to bind to these 

lipids and regulate their synthesis, and of the proteins for one another. Microdomain 

assembly may be the key to achieving efficient fusion without lysis. After enrichment in 

microdomains, SNAREs assemble with each other in trans (Fig. 1c). trans-SNARE 

complexes include additional bound factors such as SM proteins, complexin and 

synaptotagmin (at synapses) or large complexes such as HOPS63,100 (at the vacuole or 

lysosome). trans-SNARE pairs have transmembrane anchors in each bilayer, and the 

formation of continuous straight α-helices between these transmembrane anchors and their 

SNARE domains in the four-helix trans complex has been proposed to drive bilayer 

distortion87, triggering hemifusion (Fig. 1d) and then completion of fusion (Fig. 1e). 

Although insertion of aminoacyl residues between SNARE and transmembrane domains 

inhibits fusion, fusion is not blocked by insertion of helix-disrupting prolyl or glycyl resides, 

suggesting that this may not be the sole means by which SNAREs trigger fusion. Two other 

mechanisms have been suggested. SNARE transmembrane domains can be inherently 

bilayer disrupting101–103, perhaps because of their insertion at an angle to the bilayer104; 

trans-SNARE pairing may localize their bilayer-disrupting property to the fusion 

microdomain on the two docked membranes. SNAREs are also required for the enrichment 

of lipids, including DAG, that inherently disrupt bilayer structure3,105 (red lipid head-

groups in Fig. 1).

Mitochondrial fusion

An entirely distinct process of membrane fusion and fission regulates and executes the 

dynamic state of mitochondrial development in yeast and metazoan cells. The balance of 

fusion and fission permits mitochondrial mixing when yeast cells mate and partition the 

parental mitochondrial genomes in daughter diploid progeny. Genetic studies in yeast, 

Drosophila and mammalian cells have identified the main components of fusion and fission, 

defining processes quite distinct from the events that mediate membrane fusion among 

secretory organelles.

Because mitochondria possess a two-membrane envelope, the fusion process (Fig. 2a) 

begins by the apposition of outer membranes in a reaction dependent on the transmembrane 

protein Fzo1 (fuzzy onion; first identified in Drosophila melanogaster)106–108. In 

mammals, equivalent molecules termed mitofusins (Mfn1 and Mfn2) have been 

characterized structurally and seem to provide an outer-membrane tethering function 

through antiparallel coiled coils109. Fzo1 is proposed to be a dynamin-like GTPase, 

although it is not clear that it acts analogously to dynamin to promote membrane fusion. The 
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outer-membrane fusion event has been reconstituted in a cell-free reaction that depends on 

Fzo1 and shows distinct requirements for inner-membrane apposition and fusion110.

Two other proteins, Ugo1 and Mgm1 (OPA1 in mammalian cells), coordinate outer-

membrane fusion and inner-membrane contact. Ugo1 is an outer-membrane integral protein 

that seems to link Fzo1 to Mgm1 in the inner membrane111. Mgm1 is a GTPase and is more 

clearly related to mammalian dynamin than is Fzo1 (ref. 112). The in vitro fusion reaction 

allowed a demonstration that Mgm1, though present in a functional complex with Fzo1 and 

Ugo1, serves a distinct role after inner-membrane contact. Mutant studies in yeast have also 

shown that Mgm1/OPA1 also influences the morphology of normal inner-membrane cristae, 

but the strongest evidence favors a direct role of this dynamin in inner-membrane fusion113. 

Intra-allelic complementation studies using the in vitro fusion assay suggest that Mgm1 

function may require self-oligomerization, which may promote a SNARE-like close 

juxtaposition of inner-membrane partners. Another possibility, by analogy to endocytic 

dynamin, is that Mgm1 may promote membrane tubules or buds that project fusogenic, 

highly curved ends. Clearly, a more refined analysis will require reconstitution of fusion 

events with separated outer and inner membrane fractions.

Cell fusion

Fusion at the cell surface employs fusogenic proteins independent of the regulatory 

molecules available to intracellular fusion events. Classic studies on viral fusion have 

identified mechanisms mediated by viral envelope glycoproteins, but thus far little similarity 

has been seen in the potentially related event of cell-cell fusion. Genetic analysis of 

Caenorhabditis elegans development and yeast cell mating have yielded important 

information on cell fusion. Cells in a number of body tissues in C. elegans harbor multiple 

nuclei resulting from cell-cell fusion. Two related molecules, EFF-1 and AFF-1, are required 

for epithelial and anchor cell fusion, respectively114,115. These single membrane–spanning 

proteins oligomerize, and they may also associate in trans, as EF-1 function seems to be 

required in both fusion partner cells116. Although other membrane protein partners may be 

required for cell fusion, the expression of EFF-1 in a distant surrogate, insect Sf-9 cells, is 

sufficient to promote the formation of multinucleate syncytia116,117. EFF-1 is likely to 

promote fusion directly, as it becomes enriched at the point of contact between cells in a 

prelude to fusion118.

Genetic, molecular cloning and localization studies have identified several cell-surface 

proteins that mediate yeast cell fusion during mating (Fig. 2b). Yeast cells secrete one of two 

peptides that interact with G protein–coupled receptors specific for the a or α mating type. 

Signal transduction mediated by binding of pheromone to the G protein–coupled receptor 

produces a cell-cycle-arrest program of transcription, protein processing and polarized cell-

tip growth that results in the deposition of membrane and secretory proteins responsible for 

local cell fusion. An initial contact through the cell wall, promoted by cell type–specific 

agglutinins, leads to the dissolution of cell wall glycans and permits the generation of a 

fusion intermediate with two cells encased within a continuous wall. Two proteins required 

for fusion, Fus1p and Fus2p, were identified in a genetic screen wherein both mating 

partners must contain the mutation to display the defect. Fus1p is a single-spanning 
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membrane protein and Fus2p is a cytosolic protein bound peripherally on the inner surface 

of the mating tip119,120. Mutations in the FUS1 and FUS2 genes arrest mating pairs at a 

step before the dissolution of the mating-tip cell wall, and before the direct apposition of the 

plasma membranes of the mating cells. Thus, these proteins may not have a direct role in 

membrane fusion121.

PRM1 encodes a multispanning membrane protein that seems to play a more direct role in 

mating cell membrane fusion. Prm1p is expressed only during mating and is localized to the 

mating-tip membrane. As with Fus1p and Fus2p, a mating defect is observed only when 

both partners lack Prm1p (ref. 122). When mating partners arrest in a prm1 mutant, the 

defect is only partial, with 40% proceeding to fusion. Nonetheless, the remaining pairs arrest 

with close contact between the surface membranes, clearly subsequent to the step defined by 

Fus1p and Fus2p. Interestingly, another consequence of the prm1 mating arrest is cell 

lysis123, possibly similar to the membrane lysis that accompanies aborted SNARE-mediated 

fusion in the vacuole fusion reaction. The exact role of Prm1p is not known, nor is it clear 

whether it constitutes the core of the cell-fusion machinery. An experiment such as that 

performed with C. elegans EFF-1 and AFF-1, wherein Prm-1 is expressed in a surrogate 

cell, could determine whether this protein has a central role in cell fusion.

What's next?

Membrane fusion has progressed from the genetic and biochemical identification of the 

relevant proteins and lipids and determination of their associations and structures to the 

current era of mechanistic studies. In several systems, the pure proteins and lipids of 

fusogenic microdomains are being reconstituted into proteoliposomes. Understanding the 

factors that guide fusion without lysis and reconstituting efficient fusion that depends on the 

physiological mixture of Rab, Rab effector and lipids, as well as SNAREs, will set the stage 

for a coming era of quantitative and chemical studies. Clearly, our understanding of cell 

fusion is at a more primitive stage, but genetic and limited molecular studies make it clear 

that this process is quite distinct and worthy of a vigorous biochemical approach.

BOX 1

Membrane fusion: a glossary of basic terms

SNAREs: Soluble NSF/alpha SNAP receptors: proteins with conserved heptad repeats 

that bind to (snare) each other in four-helix bundles (complexes), in cis (with each 

transmembrane domain anchored to the same bilayer) or in trans (with transmembrane 

domains anchored in apposed bilayers, before fusion).

SNAP and Sec17p: Proteins that bind SNAREs and permit NSF or Sec18p to perform 

ATP-driven SNARE complex disassembly.

NSF and Sec18p: Hexameric AAA ATPases that actively disassemble SNARE 

complexes into SNARE monomers.

Rab/Ypt: A subfamily of Ras GTPases, with unique members on each organelle and 

defining roles in tethering, fusion microdomain assembly, and trans-SNARE complex 

formation.
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Rab-effector: A protein that binds to a GTP-activated Rab, then performs a downstream 

function in fusion.

SM protein: Sec1/Munc18-1 family proteins that bind to SNAREs and are required for 

their physiological promotion of fusion.

Tethering: An initial, reversible stage of membrane association, requiring Rab and 

effector(s) but not trans-SNARE associations.

Docking: All stages of membrane association that lead to fusion.

Fzo1/Mfn1: dynamin-like GTPase responsible in part for mitochondrial tethering and 

outer membrane fusion.

Ugo1: A mitochondrial outer membrane protein that links Fzo1/Mfn1 to the inner 

membrane and helps coordinate fusion.

Ugo1: A mitochondrial outer membrane protein that links Fzo1/Mfn1 to the inner 

membrane and helps coordinate fusion.

Mgm1/OPA1: A mitochondrial inner membrane dynamin-like GTPase that is required 

for inner membrane fusion.

EFF1/AFF1: C. elegans epithelial and anchor cell plasma membrane proteins required for 

cell fusion.

Fus1: Yeast plasma membrane protein that promotes the bridging of mating cells in 

preparation for cell fusion.

Fus2: Yeast peripheral membrane protein that acts in conjunction with Fus1 to promote 

cell wall merger in mating pairs.

Prm1: Polytopic plasma membrane protein that promotes plasma membrane fusion in 

yeast mating pairs.
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Figure 1. 
Membrane fusion on the exocytic and endocytic pathways, in five steps. (a) The first 

association of membranes, termed ‘tethering’, requires a prenyl-anchored Rab-family 

GTPase and tethering proteins termed ‘effectors’124, which bind to the Rab in its activated, 

GTP-bound state. Proteins mediating tethering have been studied in the Golgi stacks125,126 

and other systems. (b) Rab-regulated enrichment of fusion proteins and lipids in a 

microdomain. Rabs, their multi-functional effector complexes, and lipids with defined roles 

in fusion (such as sterols (not shown) or phosphoinositides or diacylglycerol (red polar head 

groups)) assemble into a microdomain, the site of subsequent steps in the fusion pathway. In 

some systems, Rab effectors can include guanine nucleotide exchange factors, which 

activate Rabs; lipid kinases, which synthesize phosphoinositides; and SM proteins, which 

bind SNAREs. It remains unclear in most instances whether Rab effectors must remain 

bound to the Rab to be activated for these functions, or whether concentration of these 
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several protein and lipid factors in the fusion microdomain suffices. In some systems, such 

as the yeast vacuole, one multisubunit complex fulfills tethering, guanine nucleotide 

exchange, SM protein, and lipid-binding functions. (c) Assembly of trans-SNARE 

complexes127 with additional regulatory proteins. These include SM proteins48 and can 

include proteins or domains that bind to Ca2+, to lipids or to SNAREs. These complexes 

may encircle the site of future fusion44. Lipids with small head groups and negative 

membrane curvature, which promote hemifusion, are enriched at the cytoplasmic surface of 

the fusion microdomain (red head groups). (d) Hemifusion, formed by fusion of the halves 

of the lipid bilayer of each membrane that face the cytoplasm. Arrows indicate the direction 

of subsequent lipid movement to complete the fusion process. Lipids with positive curvature 

due to large head groups (shown here as blue head groups) may become enriched at this 

stage for invasion of the hemifused structure (arrows). (e) Completion of fusion, with 

mixing of lipid bilayers, membrane proteins and luminal compartments but retention of the 

barrier between cytoplasm and organellar lumen. This process converts trans-SNARE 

complexes to post-fusion cis-SNARE complexes; it is unclear whether cis-SNARE 

complexes can arise by any other route. SNAP (Sec17p) may displace other SNARE-bound 

proteins and prepare the cis-SNARE complex for ATP-dependent disassembly by NSF 

(Sec18p).
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Figure 2. 
Mitochondrial fusion and cell fusion in mating yeast cells. (a) Mitochondria initiate contact 

and fusion through the interaction of Fzo1 (or Mfn in mammals), a dynamin-like GTPase 

located in the outer mitochondrial membrane. The fusion of the outer membrane occurs first, 

and then inner membrane contact and fusion is regulated by another dynamin-like GTPase, 

Mgm1 (or OPA1 in mammals). Ugo1 in the outer membrane provides a physical link 

between Fzo1 and Mgm1. (b) Yeast cells initiate cell fusion by regulated expression of two 

membrane proteins, Fus1p (a single-pass membrane protein) and Prm1p (a multispanning 

membrane protein), and a cytoplasmic protein, Fus2p. Fus1p and Fus2p localize to the cell 

mating tip and are required for the dissolution of the cell wall separating the plasma 

membranes of the mating pair. Prm1p is required for some as-yet-undefined reaction, 

possibly the formation of a fusion pore, that occurs when the mating cell plasma membranes 

come into contact.
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