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Abstract

Identifying the fundamental molecular factors that drive weight gain even in the absence of

hypercaloric food intake, is crucial to enable development of novel treatments for the global

pandemic of obesity. Here we investigated both adipose tissue-specific and systemic events

that underlie the physiological weight gain occurring during early adulthood in mice fed a

normocaloric diet. In addition, we used three different genetic models to identify molecular

factors that promote physiological weight gain during normocaloric and hypercaloric diets.

We demonstrated that normal physiological weight gain was accompanied by an increase in

adipose tissue mass and the presence of cellular and metabolic signatures typically found

during obesity, including adipocyte hypertrophy, macrophage recruitment into visceral fat

and perturbed glucose metabolism. At the molecular level, this was associated with an

increase in adipose tissue tryptophan hydroxylase 1 (Tph1) transcripts, the key enzyme

responsible for the synthesis of peripheral serotonin. Genetic inactivation of Tph1 was suffi-

cient to limit adipose tissue expansion and associated metabolic alterations. Mechanisti-

cally, we discovered that Tph1 inactivation resulted in down-regulation of cyclin-dependent

kinase inhibitor p21Waf1/Cip1 expression. Single or double ablation of Tph1 and p21 were

equally effective in preventing adipocyte expansion and systemic perturbation of glucose

metabolism, upon both normocaloric and hypercaloric diets. Our results suggest that seroto-

nin and p21 act as a central molecular determinant of weight gain and associated metabolic

alterations, and highlights the potential of targeting these molecules as a pharmacologic

approach to prevent the development of obesity.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0255687 August 11, 2021 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Saponara E, Chen R, Reding T, Zuellig R,

Henstridge DC, Graf R, et al. (2021) Single or

combined ablation of peripheral serotonin and p21

limit adipose tissue expansion and metabolic

alterations in early adulthood in mice fed a

normocaloric diet. PLoS ONE 16(8): e0255687.

https://doi.org/10.1371/journal.pone.0255687

Editor: Clemens Fürnsinn, Medical University of

Vienna, AUSTRIA

Received: February 9, 2021

Accepted: April 30, 2021

Published: August 11, 2021

Copyright: © 2021 Saponara et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This research received grants from the

Swiss National Science Foundation (Grant no.

310030–146725) and the Amélie Waring
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Introduction

Accumulation of excessive body fat is a growing public health problem, as the number of peo-

ple overweight or obese has tripled in the last 40 years, affecting more than two in three adults.

Alarmingly, the problem has reached global proportions, concerning both developed and

emerging countries [1], and all age groups [2, 3] (WHO statistics https://www.who.int/en/

news-room/fact-sheets/detail/obesity-and-overweight).

Obesity is associated with the development of numerous life-threatening comorbidi-

ties, including type 2 diabetes, dyslipidemia, hypertension, non-alcoholic fatty liver dis-

ease and cardiovascular diseases [4], which are responsible for 70% of deaths worldwide

[5, 6]. In this context, finding effective and safe approaches to prevent and resolve obesity

is of paramount importance to improve quality of life in both present and future

generations.

Development of obesity is the result of a multifaceted interaction between different ele-

ments, including eating behaviour, sedentary life-styles, psychological factors, gut microbiota

and genetic components (reviewed in [7]. Importantly, the mainstay anti-obesity approaches

of hypocaloric diet and physical exercise have been proven insufficient to resolve the disease in

the long term in the majority of individuals [8, 9]. Thus, new pharmacologic interventions are

needed to complement the existing therapy and require elucidating the molecular determi-

nants of weight gain.

The monoamine signalling molecule serotonin (5-hydroxytryptamine, 5-HT) is a potent

regulator of energy balance, acting both at the level of central nervous system (CNS) and in

the periphery. While the predominant effect of serotonin in the CNS is the suppression of

food intake, the molecule exerts an opposing function in the periphery, negatively influenc-

ing glucose homeostasis and lipid metabolism (reviewed in [10]) and promoting the devel-

opment of obesity upon hypercaloric food intake [11, 12]. This dual role of serotonin is

supported by the fact that the molecule is synthesised by two different rate-limiting

enzymes, physically compartmentalised in the CNS (tryptophan hydroxylase 2, Tph2) and

in the periphery (tryptophan hydroxylase 1, Tph1). Important for anti-obesity interven-

tions, genetic or pharmacologic inhibition of Tph1 or serotonin receptors limits weight

gain induced by high fat diet [12–14].

While these findings reveal a prominent role of serotonin in driving weight gain induced by

hypercaloric food intake, it is not known whether serotonin controls weight gain in the

absence of obesogenic diets. To answer this question, we characterized the physiological

weight gain that occurs in early adulthood, when normal levels of body fat percentage and

average waist circumference increase in both men and women, according to normative refer-

ence data [15–17].

The objectives of this study were twofold. Firstly, to test whether this physiological weight

gain is associated with metabolic changes that may predispose to the development of metabolic

dysfunctions later in life. Secondly, to analyse whether serotonin and its downstream effectors

are the molecular regulators of physiological weight gain, which may be targeted for preventive

or therapeutic interventions to counteract obesity.

Mice in the early phase of adulthood were used to examine the regulation of body weight

and metabolic parameters. This experimental model is a relevant approach as i) body weight

steadily increases in mice from adolescence through middle age [18, 19]; ii) similar to what is

observed in humans, increased body weight during early adulthood is matched by an increase

in fat mass [19]; iii) increased body weight is observed upon feeding a normocaloric diet and

consistent food intake [18].
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Materials and methods

Reagents

Unless otherwise stated, all chemicals were purchased from Sigma-Aldrich, Buchs, Switzer-

land. Cell culture reagents were from Gibco-BRL, Basel, Switzerland. Reagent stock solutions

were freshly diluted to the concentrations required for the individual experiment indicated in

the result section.

Animal experiments

All animal experiments were conducted in accordance with Swiss federal animal regulations

and approved by the cantonal veterinary office of Zurich. All studies involving animals are

reported in accordance with the ARRIVE and MINPEPA guidelines and were designed to stan-

dardize animal handling, tissue harvesting and tissue processing. Mice were kept in individually

ventilated cages with environmental enrichments; floors were covered with wood-shavings.

Maximum of 5 mice were kept in a cage. Cages were maintained in a semi-natural 12:12 hours

light:dark cycle and animals had free access to water and standard chow diet (3436, Kliba Nafag,

Kaiseraugst, Switzerland). All animal groups consisted of healthy,�25 g adult male mice.

Animals used in the study were adult male mice of the following strains: inbred C57BL/6

mice (Envigo (Itingen, Switzerland), mixed background Tph1-/-, p21-/-, Tph1-/-/p21-/-, and

wild type mice generated by crossing Tph1-/- mice (C57BL/6 background) [20] and p21-/- mice

(B6;129S2-Cdkn1a<tm1Tyj>/J; Jackson Laboratories, USA) bred in our facility.

In the high fat diet (HFD) experiments, 2 months old mice were fed ad libitum with a diet

containing 60% fat by calories (E15742, ssniff; Soest, Gemany) for 4 weeks. Body weight and

blood glucose level were quantified weekly after an overnight fast. No animal died before the

experiments were concluded.

Whole body composition

Whole body composition (fat and fat free mass) was measured by nuclear magnetic resonance

imaging (echoMRI tissue composition analyser, EchoMedical Systems, Houston, USA) as pre-

viously described [21], at 2 and 6 months of age. Before the measurement, mice where weighed

and anesthetised with isoflurane inhalation. All measurements were performed during the

light phase (9am-5pm).

Pathology data information

Experimental pathology data have been collected in accordance with the MINPEPA guidelines,

to maximise the consistency and reproducibility of results. Experiments were designed to stan-

dardize animal handling, tissue harvesting and tissue processing. Animals were harvested

according to a standard operation procedure where mice were anesthetized by isoflurane inha-

lation, received a midline laparotomy under continuing inhalation anaesthesia, followed by

dissecting and snap freezing a small piece of the pancreas near the spleen for subsequent RNA

extraction. Blood was sampled by exsanguination via heart puncture, and the remaining

organs were harvested for histology.

Biochemical analyses

Glucose, insulin and pyruvate tolerance tests were performed after an overnight fast (*15 h)

or morning fast (3 h) with free access to water. Mice were weighed before an intra-peritoneal

injection of glucose (2 g/kg, Sigma-Aldrich), insulin (0.75 U / kg, Novo Nordisk, Denmark) or

pyruvate (2 g/kg, Sigma-Aldrich), respectively. Blood samples from live animals were collected
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from the tail tip and blood glucose level was measured with a glucose meter (Accu-Chek,

Roche, Switzerland) at regular intervals as indicated in the figure legends.

Levels of total cholesterol (free cholesterol + cholesterol esters) and triglycerides present in

serum were measured using the Fuji Dri-Chem 4000i analyzer (FUJIFILM Corporation,

Tokyo, Japan). Blood was collected from the harvested animals via heart puncture.

Immunohistochemistry

Standard procedures were used to fix tissues by immersion in 4% formalin for 24 h, dehydrate

them through a series of graded ethanol baths using a Leica TP1020 Histokinette (Leica Instru-

ments GmbH, Nussloch, Germany) and subsequently embed them in paraffin. Consecutive

3 μm-thick sections were prepared for haematoxylin-eosin (H&E) staining and immunohis-

tochemistry [22]. Primary antibodies used in this study were rat anti-F4/80 (1:400, #T-2006

BMA Biomedicals, Augst, Switzerland) followed by rabbit anti-rat Immunoglobulins/HRP

(DAB) P0450 (Agilent Technologies, Basel). All staining was performed with a DAKO auto-

stainer Link 48 (Glostrup, Denmark).

Microscopy analyses were performed on a wide-field Nikon Eclipse Ti (Amsterdam, The

Netherlands). Quantification of labelled cells was performed in at least ten randomly selected

high-power fields (×200) per slide using the NIS Elements BR Analysis (Nikon, Amsterdam,

The Netherlands) and Cell^P (Olympus, Tokyo, Japan) analysis software. Number of positive

cells was normalized on the total tissue area present in each power field. Size of adipocytes was

quantified with Adiposoft software (ImageJ, University of Navarra, USA).

Transcript analysis

Total RNA was extracted from epididymal adipose tissue, using the RNeasy Mini Kit (Qiagen,

Hilden, Germany), and reverse-transcribed with qScript™ cDNA SuperMix (Quanta Biosci-

ences). Gene expression was measured by real-time PCR on a 7500 Fast Real-Time PCR Sys-

tem (Applied Biosystems, Thermo Fisher Scientific) using Taqman probes (Applied

Biosystems). Transcript levels were normalized using 18S RNA as a reference and expressed as

ΔΔCt relative to the value of control cells or animals. Taqman probes used in this study were:

p21 (Mm00432448_m1), p27 (Mm00438168_m1), p15 (Mm00483241_m1), p16

(Mm00494449_m1), p18 (Mm00483243_m1), F480 (Mm00802530_m1), TNFα
(Mm00802530_m1), Mcp1 (Mm00441242_m1), Ccl5 (Mm01302427_m1) and TaqManTM

ribosomal RNA control reagent (#4308329).

Statistics

At least five animals were tested for each experimental group. The data are expressed as

means ± SEM. The statistical significance of differences in the means of experimental groups

was determined using an unpaired, two-tailed Student’s t test or one-way analysis of variance

followed by Dunnett post-test (GraphPad Prism 7; GraphPad Software, Inc.). A probability

value of<0.05 was considered statistically significant.

Results

Increased body weight during early adulthood is accompanied by

hypertrophy and inflammation of visceral adipose tissue

To elucidate the changes associated with increased body weight in early adulthood, we analysed

metabolic and molecular parameters in mice between 2 and 6 months of age, which corresponds

to the equivalent period from adolescence to 30 years of age in humans (https://www.jax.org/
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news-and-insights/jax-blog/2017/november/when-are-mice-considered-old.). Body weight of

male mice fed a standard normocaloric chow diet significantly increased (Fig 1A), while food

intake remained comparable (S1A Fig), consistent with previous reports [18]. The increase in

body weight was due to a combination of increased fat mass and lean mass, as determined by

body composition analyses (Fig 1B). While lean mass contributed the highest absolute gain, fat

mass had the highest relative expansion, and almost doubled at 6 months of age.

Increased body weight correlated with higher levels of cholesterol circulating in blood,

while levels of triglycerides did not increase in 6 months old mice (S1B Fig). In addition, epi-

didymal fat pads, a major reservoir of visceral adipose tissue with key metabolic roles

(reviewed in [23]), significantly expanded in this time period, as seen by increased absolute

(Fig 1C and 1D), and relative mass over total body weight (Fig 1E). Average size of epididymal

adipocytes was also enlarged (Fig 1F and 1G), indicating that hypertrophy of adipose tissue

occurs during early adulthood. Increased size and hypertrophic growth are considered a stress

factor for adipocytes and a strong predictor of inflammation and macrophage infiltration dur-

ing obesity [24]. Surprisingly, we found that 6 months old mice showed sign of inflammation

in epididymal fat, including recruitment of macrophages (Fig 1H), crown-like structures,

which represent macrophages recruited around dead adipocytes (Fig 1I and 1J), and increased

trend of cytokine expression (Fig 1H).

Collectively, these data indicate that increased body weight established during early adult-

hood is associated with hypertrophy and inflammation of visceral adipose tissue.

Increased body weight during early adulthood is accompanied by altered

glucose metabolism

During obesity, visceral adipose tissue alterations, including the development of low level

inflammation, are strongly associated with deterioration of glucose homeostasis, resulting in

insulin sensitivity and high glycemia [25, 26]. We found that, during physiological weight

gain, epididymal fat pad alterations were also accompanied by altered glucose metabolism,

characterised by higher blood levels of glucose, both in the fasted and fed state (Fig 2A) and

lower glucose tolerance after glucose loading during a glucose tolerance test (GTT) (Fig 2B).

Glucose levels during an insulin tolerance test (ITT) or a pyruvate tolerance test (PTT) were

not significantly different between the two age groups (Fig 2C and 2D), suggesting that older

mice did not develop insulin resistance or altered hepatic gluconeogenesis.

Metabolic changes in early adulthood are reduced upon genetic deletion of

Tph1
Increased expression of Tph1 in adipose tissue and consequent increased serotonin levels in

the periphery promote weight gain during consumption of high fat diet [12, 13]. Thus, we

tested whether increased Tph1 levels are also observed upon physiologic weight gain during

early adulthood and normocaloric diet. Expression of Tph1 transcripts increased in epididy-

mal fat pads of 6 months old mice, while levels of serotonin transporter (Sert) and serotonin

receptor isoforms 5-Ht1b, 5-Ht2a and 5-Ht2b did not significantly change with time (Fig 3A).

To test whether the time-dependent increase in Tph1 expression is responsible for the met-

abolic changes observed during early adulthood, we compared lipid and glucose parameters at

2 and 6 months of age in wild type and Tph1 knocked out mice (Tph1-/-), which are character-

ised by reduced levels of serotonin in the periphery [20] and which we previously used to dem-

onstrate the role of serotonin in pancreatic pathophysiology [27–29].

Body weight was comparable in the two strains at 2 months of age, as previously shown

[13], however, it was lower in Tph1-/- mice at 6 months of age (Fig 3B). Blood levels of
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Fig 1. Increased body weight during early adulthood is accompanied by hypertrophy and inflammation of visceral

adipose tissue. (A) Body weight of mice in the first 6 months of age when fed a normocaloric chow diet. (B) Whole body

composition (fat and fat free mass) measured by nuclear magnetic resonance imaging in 2 and 6 months old mice.

Numbers above the bars represent the percentage of weight increase at 6 months of age. (C) Representative macrograph

of epididymal fat pads in 2 and 6 months old mice. (D) Quantification of epididymal fat mass, expressed in grams, in 2
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cholesterol and triglycerides were lower in Tph1-/- mice at all time points analysed (S2A Fig).

Adipocytes were smaller in epididymal fat pads of 6 months old Tph1-/- mice (Fig 3C and 3D),

together with reduced expression of macrophage markers and inflammatory factors (Fig 3E).

Blood levels of glucose were also lower in older Tph1-/- mice, both in the fasted and fed state

(Fig 3F). Similarly, glucose tolerance was better in older Tph1-/- mice compared to wild type

animals (Fig 3G), while insulin tolerance and pyruvate tolerance did not change in the two

strains (S2B and S2C Fig).

Collectively, our results show that ablation of Tph1-/- limits the metabolic changes observed

during early adulthood.

Metabolic changes in early adulthood are reduced upon single or combined

genetic deletion of Tph1 and p21
We then investigated whether the smaller epididymal adipocytes in Tph1-/- mice were accom-

panied by altered expression of factors that regulate adipocyte size. Increased adipocyte size is

promoted by up-regulation of the cyclin-dependent kinase inhibitor p21Waf1/Cip1 during the

process of adipocyte formation, [30]. We found that expression of p21 transcripts was reduced

in epididymal fat pads of Tph1-/- mice, while expression of other cyclin-dependent kinase

inhibitors did not decrease (Fig 4A).

To further investigate whether activation of Tph1 and p21 signalling mediates the metabolic

changes observed during early adulthood, we tested whether single ablation of p21, or com-

bined with Tph1 ablation, limited weight gain and glucose alterations. Body weight was com-

parable in the four strains at 2 months of age, whereas it was lower in all knocked out mice at 6

months of age (Fig 4B). Daily food intake showed a reduced trend in 6 months old KO ani-

mals, however the reduction did not reach statistical significance (S3A Fig). In addition, daily

food intake normalised on body weight was comparable in the 4 strains analysed (S3B Fig).

Adipocyte size of epididymal fat pads was smaller upon single or combined deletion of p21
and Tph1, as shown by histological examination (Fig 4C) and cell area quantification (Fig 4D).

Moreover, levels of circulating cholesterol and triglycerides were lower in knocked out mice

(Fig 4E). This was paralleled by better glucose homeostasis, with lower levels of circulating glu-

cose, in both the fasted and fed states (Fig 4F), and better glucose tolerance (Fig 4G and 4H).

Collectively, our results show that ablation of either Tph1 or p21 limits the metabolic changes

observed upon weight gain during early adulthood. In addition, combined ablation of the two

genes did not provide a cumulative change in metabolic parameters, suggesting that disruption

of either factor (Tph1 or p21) is sufficient for the maximal effect.

Ablation of Tph1 or p21 limits early adulthood-associated fat mass

accumulation and prevents high fat diet-induced weight gain

We further investigated whether ablation of Tph1 or p21 differently impacts on the mass of

body components. Whole-body composition analysis performed by magnetic resonance imag-

ing revealed that total fat mass increased in wild type but not in Tph1-/- and p21-/- animals

and 6 months old mice. (E) Quantification of epididymal fat mass, expressed as percentage of body weight, in 2 and 6

months old mice. (F) Haematoxylin and Eosin (H&E) staining of epididymal fat in 2 and 6 months old mice. (G)

Quantification of adipocyte size in epididymal fat in 2 and 6 months old mice. (H) qPCR of macrophage marker F480

and inflammatory mediators in epididymal fat in 2 and 6 months old mice. (I) Immunostaining with the macrophage

marker F480 in epididymal fat in 2 and 6 months old mice. Arrows indicate crown-like structures present in the tissue.

(J) Quantification of crown-like structures present in epididymal fat in 2 and 6 months old mice. Results are

average ± SEM (n�5), �p< 0.05.

https://doi.org/10.1371/journal.pone.0255687.g001
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Fig 2. Alteration of glucose metabolism during early adulthood. (A) Blood glucose quantification in 2 and 6 months

old mice measured in overnight fasted and fed state. (B) Glucose tolerance test (GTT) and area under the curve (AUC)

quantification in 2 and 6 months old mice. (C) Insulin tolerance test (ITT) and area under the curve (AUC)

quantification in 2 and 6 months old mice. (D) Pyruvate tolerance test (PTT) and area under the curve (AUC)

quantification in 2 and 6 months old mice. Results are average ± SEM (n�5), �p< 0.05.

https://doi.org/10.1371/journal.pone.0255687.g002
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from 2 to 6 months of age (Fig 5A). In contrast, lean mass increased in all strains over time

(Fig 5B), suggesting that Tph1 and p21 mainly regulate the adipose tissue.

Finally, we tested whether the protective effect observed upon deletion of Tph1 and p21
during physiological weight gain was also evident during high fat diet (HFD)-induced weight

gain. To this aim, we fed 2 months old mice with HFD for 4 weeks (Fig 5C). We chose this

short-term exposure to HFD to capture the metabolic changes induced by high caloric food

consumption and limit the confounding influence of age-induced changes. HFD increased the

body weight of wild type mice, compared to a standard normocaloric diet (Fig 5D). However,

increase of body weight was limited in Tph1-/- or p21-/- mice, evident by comparing the weight

of mice fed a normocaloric or HFD (Fig 5D) and by quantifying the percentage of weekly

weight gain in during HFD (Fig 5E).

As previously observed during spontaneous weight gain, HFD-induced weight gain correlated

with a progressive increase in the levels of circulating glucose, which was limited in the absence

of Tph1 or p21 (Fig 5F), especially evident when animals where in a fasted state (Fig 5G).

Collectively, these results indicate that Tph1 and p21 regulate metabolic parameters during

physiological and diet-induced weight gain.

Discussion

The most effective approach to develop prevention- and intervention-based strategies to coun-

teract the obesity pandemic requires a combination of life style changes together with pharma-

cological targeting of key molecular factors that promote the accumulation of fat mass. To

identify these factors, we investigated the determinants of weight gain that occurs spontaneously

during the early phases of adulthood. The analysis of this physiological process allowed us to

identify the metabolic and molecular signatures intrinsically associated with increased fat mass

that are independent from obesogenic life-style choices, including hypercaloric food intake. In

addition, these signatures are also largely independent from changes in physical activity, as this

parameter remains constant in mice between the age groups utilised in this study [31].

We found that adult mice had a preferential relative expansion of fat mass between the age

of 2 and 6 months, which corresponds to up to 30 years of age in humans. Notably, visceral fat

depots significantly increased in this time frame, bearing important implications for potential

health-related problems, as increased visceral fat is responsible for the metabolic consequences

of obesity [32, 33]. Surprisingly, expansion of visceral fat mass was associated with enlarge-

ment of adipose cells and recruitment of macrophages. These alterations are considered diag-

nostic features of adipose tissue dysfunction and are thought to be causally linked, with

enlargement of adipocytes leading to cellular stress and low-grade, chronic inflammation

(reviewed in [34]). An additional key sign of adipocyte dysfunction is the appearance of

crown-like structures, constituted by macrophages surrounding dead adipocytes [35]. Impor-

tantly, crown-like structures are highly prevalent in visceral fat depots during obesity, both in

mice and humans. They are also associated with altered glucose metabolism and the develop-

ment of insulin resistance [36, 37]. Thus, the triad of increased adipocyte size, crown-like

structures and development of insulin resistance represent a central element in the progression

Fig 3. Early adulthood metabolic changes are reduced in the absence of Tph1. (A) qPCR of serotonin synthetic enzyme (Tph1), serotonin

transporter (Sert), serotonin receptors (5-Ht1b, 5-Ht2a, 5-Ht2b) in epididymal fat in 2 and 6 months old mice. (B) Body weight of wild type (WT) and

Tph1 deficient (Tph1-/-) mice at 2 and 6 months of age. (C) Haematoxylin and Eosin (H&E) staining of epididymal fat in WT and Tph1-/- mice at 6

months of age. (D) Quantification of adipocyte size in epididymal fat in 6 months old mice. (E) qPCR of macrophage marker F480 and inflammatory

mediators in epididymal fat in 6 months old mice. (F) Blood glucose quantification in 2 and 6 months old mice measured in overnight fasted and fed

state. (G) Glucose tolerance test (GTT) and area under the curve (AUC) quantification in 6 months old mice. Results are average ± SEM (n�5),
�p< 0.05.

https://doi.org/10.1371/journal.pone.0255687.g003
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Fig 4. Early adulthood metabolic changes are reduced in the absence of p21. (A) qPCR of cell cycle inhibitors in

epididymal fat in 6 months old wild type (WT) and Tph1 deficient (Tph1-/-) mice. (B) Quantification of body weight of

WT, Tph1-/-, p21 deficient (p21-/-) and Tph1, p21 double deficient (Tph1-/-;p21-/-) mice at 2 and 6 months of age. (C)

Haematoxylin and Eosin (H&E) staining of epididymal fat in WT, Tph1-/-, p21-/- and Tph1-/-;p21-/- mice at 6 months of

age. (D) Quantification of adipocyte size in epididymal fat in 6 months old mice. (E) Quantification of blood

cholesterol (Chol) and triglyceride (TG) levels in WT, Tph1-/-, p21-/- and Tph1-/-;p21-/- mice at 6 months of age. (F)

Blood glucose levels in WT, Tph1-/-, p21-/- and Tph1-/-;p21-/- mice at 6 months of age in fasted and fed state. (G)

Glucose tolerance test (GTT) in WT, Tph1-/-, p21-/- and Tph1-/-;p21-/- mice at 6 months of age. (H) Area under the

curve (AUC) of GTT in WT, Tph1-/-, p21-/- and Tph1-/-;p21-/- mice at 6 months of age.Results are average ± SEM

(n�5), �p< 0.05.

https://doi.org/10.1371/journal.pone.0255687.g004
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of metabolic dysfunctions associated with obesity. Our data showed that 6 month old mice not

only presented crown-like structures in visceral fat depots but also had higher levels of blood

glucose and lower glucose tolerance. However, blood glucose levels were below the cut-off

Fig 5. Ablation of Tph1 or p21 limits early adulthood-associated fat mass accumulation and prevents high fat

diet-induced weight gain. (A) EchoMRI quantification of whole body fat mass in wild type (WT), Tph1 deficient

(Tph1-/-) and p21 deficient (p21-/-) mice at 2 and 6 months of age. (B) EchoMRI quantification of whole body lean

mass in WT, Tph1-/- and p21-/- mice at 2 and 6 months of age. (C) Schematic representation of diet regimens using

normocaloric standard chow diet (CD) and hypercaloric high fat diet (HFD). (D) Body weight of WT, Tph1-/- and

p21-/- mice fed CD or HFD for 4 weeks. (E) Body weight gain, expressed as percentage of initial body weight, of WT,

Tph1-/- and p21-/- mice during 4 weeks of HFD. (F) Blood glucose levels of WT, Tph1-/- and p21-/- mice during 4 weeks

of HFD. (G) Comparison of blood glucose levels in fasted or fed state of WT, Tph1-/- and p21-/- mice after 4 weeks of

CD or HFD. Results are average ± SEM (n�5), �p< 0.05.

https://doi.org/10.1371/journal.pone.0255687.g005

PLOS ONE Serotonin promotes metabolic changes

PLOS ONE | https://doi.org/10.1371/journal.pone.0255687 August 11, 2021 12 / 17

https://doi.org/10.1371/journal.pone.0255687.g005
https://doi.org/10.1371/journal.pone.0255687


values that are used to characterize diabetes in mice (glucose levels�11mM and�16mM in

the fasted and fed state, respectively) and overt insulin resistance was not detected. This sug-

gests that changes in visceral adipose tissue and glucose metabolism already occur during

spontaneous weight gain in early adulthood without the external trigger of hypercaloric diet.

Mechanistically, we found that the serotonin signalling axis, supported by upregulation of

the serotonin-synthetic enzyme Tph1, is upregulated in visceral adipose tissue and promotes

weight gain and associated metabolic changes during a normocaloric diet. This discovery

expands and complements previous findings demonstrating that serotonin is a key regulator

of weight gain triggered by hypercaloric diet [12, 13]. These previous studies also showed that

targeting peripheral serotonin synthesis is an effective approach to limit weight gain induced

by high fat diet, as genetic deletion, like in our study, or pharmacologic inhibition of Tph1 pro-

tected mice from adipocyte hypertrophy and metabolic alterations. Collectively, our and previ-

ous studies identify a conserved role of serotonin in driving the expansion of adipose tissue

upon normocaloric and hypercaloric diet and support the broader concept that peripheral

serotonin acts as an endocrine agent stimulating energy storage. Previous studies using mice

exposed to hypercaloric diet revealed that serotonin exerts a concerted effect on both white

and brown adipose tissue, by stimulating lipogenesis in the former, and inhibiting thermogen-

esis in the latter [12, 13]. In our study using mice exposed to a normocaloric diet, we discov-

ered that the cyclin-dependent kinase inhibitor p21 is downregulated in Tph1 knock-out mice,

and that its ablation is sufficient to limit weight gain, adipose tissue expansion and alteration

of metabolic parameters during early adulthood, thus recapitulating the effects observed in the

absence of peripheral serotonin. p21 is a potent inhibitor of cell cycle and it is involved in the

process of adipogenesis, where adipocyte precursors undergo mitotic arrest before terminal

differentiation into adipocytes [30, 38]. Thus, it is tempting to envisage a dual role of serotonin

in promoting both adipocyte differentiation, by inducing p21 (our study), and adipocyte

enlargement, by stimulating lipogenesis [12]. While further studies are required to verify this

hypothesis, it is important to mention that the effect of p21 in regulating adipocyte expansion

was also observed in mice fed a hypercaloric diet (our study and [30]), once again suggesting

that serotonin and p21 are components of a conserved mechanism activated during any type

of weight gain. Contrary to these finding, Khanna reported increased weight and susceptibility

to high fat-induced atherosclerosis in p21 deficient mice [39]. Further studies are required to

understand whether the different phenotypes observed depend on different parameters

reported in the studies, including genetic background of the animals, length of diet administra-

tion, and diet composition.

Future studies are also required to quantify the level of spontaneous physical activity in our

genetic models, as a change in behaviour may impact on the observed phenotype. However,

pharmacologic inhibition or genetic deletion of Tph did not change the physical activity of

mice [12, 13].

Conclusions

Our data demonstrate that activation of the serotonin signalling axis in the periphery consti-

tutes a necessary underlying mechanism of weight gain and adipose tissue expansion that

occurs in early adulthood. Importantly, this physiological weight gain presents metabolic and

cellular signatures similar to the ones associated with overweight and obesity. This suggests

that obesogenic life-styles, including excessive consumption of hypercaloric diet and sedentary

behaviour, amplify existing physiological processes rather than trigger new events that lead to

cellular dysfunction and systemic alteration. Thus, targeting serotonin signalling may consti-

tute an effective strategy to control the expansion of adipose tissue and prevent the
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development of associated metabolic diseases. In this context, future studies are warranted to

test whether sex influences the way serotonin regulates metabolism, as fluctuating oestrogen

levels can influence serotonin activity [40] and serotonin availability modulates the level of cir-

culating oestrogen [41]. Additional investigations to elucidate the components of the serotonin

signalling that regulate its effects on metabolism are key to fully elucidate the mechanisms of

serotonin action and to discover novel therapeutic targets. While different serotonin receptors

have been identified as critical mediators of metabolic changes in several organs (reviewed in

[42]), the serotonin transporter SERT is also emerging as a pivotal player in the regulation of

metabolism mediated by serotonin signalling, and SERT reduction or absence associates with

metabolic syndrome and obesity [43–46]. Further studies using tissue-specific SERT KO mod-

els will reveal whether SERT effect is mainly due to a regulation of circulating serotonin levels

or modulation of intracellular serotonin levels and protein serotonylation [47, 48].
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