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Abstract

In vivo mapping of cerebrovascular oscillations in the 0.05–0.15 Hz remains difficult.

Oscillations in the cerebrospinal fluid (CSF) represent a possible avenue for noninvasively

tracking these oscillations using resting-state functional MRI (rs-fMRI), and have been

used to correct for vascular oscillations in rs-fMRI functional connectivity. However, the

relationship between low-frequency CSF and vascular oscillations remains unclear. In this

study, we investigate this relationship using fast simultaneous rs-fMRI and photo-

plethysmogram (PPG), examining the 0.1 Hz PPG signal, heart-rate variability (HRV),

pulse-intensity ratio (PIR), and the second derivative of the PPG (SDPPG). The main find-

ings of this study are: (a) signals in different CSF regions are not equivalent in their associa-

tions with vascular and tissue rs-fMRI signals; (b) the PPG signal is maximally coherent

with the arterial and CSF signals at the cardiac frequency, but coherent with brain tissue at

�0.2 Hz; (c) PIR is maximally coherent with the CSF signal near 0.03 Hz; and (d) PPG-

related vascular oscillations only contribute to �15% of the CSF (and arterial) signal in rs-

fMRI. These findings caution against averaging all CSF regionswhen extracting physiologi-

cal nuisance regressors in rs-fMRI applications, and indicate the drivers of the CSF signal

are more than simply cardiac. Our study is an initial attempt at the refinement and stan-

dardization of how the CSF signal in rs-fMRI can be used and interpreted. It also paves the

way for using rs-fMRI in the CSF as a potential tool for tracking cerebrovascular health

through, for instance, the potential relationship between PIR and the CSF signal.
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1 | INTRODUCTION

Low-frequency hemodynamic oscillations have long been known to

exist in the human vasculature (Mayer, 1876; Traube, 1865). In this

study, we focus on the slow and rhythmic spontaneous oscillations of

cerebral and peripheral blood flow that occur within the 0.1 Hz range

(0.05–0.15 Hz), which are also involved in the calculation of resting-

state functional connectivity. While the generators and pathways of
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such oscillations are not fully understood, these rhythms have been

recognized for their diagnostic significance (Schytz et al., 2010; Spie-

gelberg, Preuß, & Kurtcuoglu, 2016). In this range, Mayer waves

(M waves) are observed and interpreted as the magnitude of blood-

pressure (BP) oscillations that can translate into blood flow oscilla-

tions. An additional complication is that M waves overlap in frequency

with vasomotion. M waves are driven by BP oscillations (Julien, 2006;

Rieger, Klee, & Baumgarten, 2018), and are expected to be systemi-

cally synchronous. Conversely, vasomotion is regionally specific and is

defined as the oscillation in vascular tone, which may or may not be

accompanied by changes in vascular diameter. Vasomotion gives rise

to flowmotion (Sassaroli, Pierro, Bergethon, & Fantini, 2012) and is

not necessarily associated with fluctuations in blood pressure. It has

been suggested that vasomotion is entrained by coordinated oscilla-

tions in endothelial calcium concentration (Aalkjær, Boedtkjer, &

Matchkov, 2011; Drew, Mateo, Turner, Yu, & Kleinfeld, 2020; Mateo,

Knutsen, Tsai, Shih, & Kleinfeld, 2017), and can propagate in localized

regions instead of being systemic (like M waves) (Rayshubskiy

et al., 2014). It has been shown that the amplitude of vasomotion is

modulated by arterial blood pressure (Meyer, Borgström, Lindbom, &

Intaglietta, 1988). HRV is constructed from natural variations in the

R-R peak intervals and has been used as a measure of cardiovascular

health as well as stress level (Mather & Thayer, 2018; Tsvetanov

et al., 2015). Notably, all of these oscillation frequencies are within

the range of signal frequencies typically used for resting-state func-

tional connectivity mapping, prompting efforts to clarify their contri-

butions and distinguish them from neurally driven oscillations also

situated at <0.1 Hz.

The transcranial Doppler ultrasound (TCD) literature proves that

blood pressure-related spontaneous CBF fluctuations provide an

effective means of characterizing cerebral autoregulation. Rhythmical

oscillations in laser Doppler flow have characteristic frequencies for

the forehead (0.13 ± 0.03 Hz) and finger (0.07 ± 0.02 Hz)

(Podgoreanu, Stout, El-Moalem, & Silverman, 2002). Peripheral circu-

lation measured using finger photoplethysmography (PPG) represents

a simpler and more common approach to measuring vascular oscilla-

tions. Diastolic pressure derived from finger-pressure plethysmogra-

phy agrees with that obtained using brachial oscillometry (Allan,

O'Donnell, & Tzeng, 2018). The high-frequency PPG signal

(0.2–0.5 Hz) is generally attributed to respiratory effects, while the

lower-frequency component (0.05–0.15 Hz) is associated with sympa-

thetic regulation of peripheral vascular resistance (Anschütz &

Schubert, 2005; Krupatkin, 2009) as well as M waves (Allan

et al., 2018; Bernardi et al., 1996; Middleton et al., 2011). Indeed, PPG

has been used to identify a 0.1 Hz power-spectral peak (9–27 cycles

per minute), which could stem from either vasomotion or the M wave

(Kanders, Grabovskis, Marcinkevics, & Aivars, 2013; Kiselev

et al., 2020). From a clinical perspective, there is increasing recogni-

tion of the PPG signal as a means to provide cuffless measures of vas-

cular health (Attarpour, Mahnam, Aminitabar, & Samani, 2019;

Kanders et al., 2013). More recently, low-frequency PPG variance has

been suggested to provide a noninvasive estimation of blood pres-

sure, either through simple signal modeling (Sharma et al., 2017) or

through machine learning (Attarpour et al., 2019). The PPG intensity

ratio (PIR) is a plausible reference for M-wave-like vascular-diameter

oscillations (Ding et al., 2017; Ding & Zhang, 2015). Also, the second

deviation of PPG (SDPPG) signals is highly correlated with arterial

compliance and stiffness. Thus, not only is there value in identifying

the vascular origins in the CSF signal fluctuations but also in leverag-

ing this knowledge to generate markers of vascular health from the

CSF signal.

Pulsation and flow of the cerebrospinal fluid (CSF) are closely

linked to the changes in blood flow induced by the heartbeat and by

respiration (Berger, 1901; Dreha-Kulaczewski et al., 2015; Dreha-

Kulaczewski et al., 2017; Williams, 1981). The driving role of low-

frequency vascular oscillations (�0.1 Hz) has also been reported

recently (Marco et al., 2015; van Veluw et al., 2020). CSF flow has also

been linked to oscillations in glymphatic flow, through which waste

products are removed from the extracellular space by the exchange

between interstitial fluid and CSF along with the perivascular spaces.

Moreover, CSF oscillations in the 0.001–0.1 Hz range have been asso-

ciated with sleep cycles (Fultz et al., 2019). To come full circle, in

resting-state functional MRI (rs-fMRI) analysis, the CSF signals (mainly

from the ventricles) are routinely taken as a surrogate of cardiac pul-

sation, and used in nuisance regression when computing functional

connectivity, which is primarily based on signals found below 0.1 Hz

(Caballero-Gaudes & Reynolds, 2017; Chen et al., 2012; Chen, Lu, &

Yan, 2018; Chuang et al., 2019; Jo, Saad, Kyle Simmons, Milbury, &

Cox, 2010; Johnen et al., 2015; Parkes, Fulcher, Yücel, &

Fornito, 2018; Yan, Craddock, Zuo, Zang, & Milham, 2013). The ubiq-

uity of blood-oxygenation level-dependent (BOLD) rs-fMRI acquisi-

tions also provides an opportunity to study CSF dynamics and their

relationship with other vascular oscillations, potentially allowing the

expansion of rs-fMRI for noninvasive intracranial and vascular

oscillations.

In the context of rs-fMRI studies, low-frequency vascular oscilla-

tions directly overlap with the desired neurogenic signal and consti-

tute a major source of confound (Chang, Cunningham, &

Glover, 2009; Golestani, Kwinta, Khatamian, & Chen, 2017; Tong,

Hocke, & Frederick, 2019). The concern over the interpretation of the

0.1 Hz vascular oscillation stems from observations from optical imag-

ing (Obrig et al., 2000; Yücel et al., 2016). Given the nuances in the

physiological interpretation of different types of low-frequency vascu-

lar oscillations and their common frequency range within the rs-fMRI-

relevant band, it is of interest to understand how vascular waveforms

are associated with the rs-fMRI signal. Many studies have attempted

to find the generators and sources of the low and very low oscillations

of MRI data; to that end, time and frequency-domain analysis such as

correlation, Fourier and Wavelet transforms have been widely used

(He et al., 2018; Pfurtscheller et al., 2017; Whittaker, Driver, Venzi,

Bright, & Murphy, 2019). Nonetheless, given that these oscillations

are difficult to segregate from neuronally relevant signals by fre-

quency or amplitude (Drew et al., 2020; Mateo et al., 2017; Shams,

LeVan, & Jean Chen, 2021), the origins of these signals have yet to be

fully characterized. As fMRI signal oscillations in the CSF are not neu-

rogenic, it is widely assumed that they represent a multitude of
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cardiac-related oscillations which are to be removed in rs-fMRI. How-

ever, there has yet to be a detailed characterization of the vasogenic

origins of the CSF signal.

The first attempts to extract vascular oscillations from CSF fMRI

data were by Strik, Klose, Erb, Strik, & Grodd, 2002 and Strik, Klose,

Kiefer, & Grodd, 2002). Changes in arterial blood volume were found

to have a major influence on CSF flow, as well as on oscillations of the

brain parenchyma (Strik, Klose, Erb, et al., 2002). Here, nongated rs-

fMRI signal acquired at 1.5 Tesla with rapid sampling (TR of 150 ms)

and in a mid-sagittal orientation positioned at the cerebral aqueduct

was used to show that while the fast variation of the heart cycle is vis-

ible in CSF- and blood flow, slower waves are only detectable in the

venous blood flow and heart rate variability. Specifically, M wave

peaks, while detectable in the CSF and arterial blood, are more pro-

nounced in the venous blood flow (Strik, Klose, Kiefer, &

Grodd, 2002).

In this study, we analyze the dynamics of CSF flow as captured

using fast 2D rs-fMRI. Based on the previous studies, we hypothesize

that information about vascular oscillations can be observed in rs-

fMRI data (typically acquired for functional-connectivity mapping), as

long as the data sampling rate is sufficiently high. In this study, our pri-

mary goal is to investigate the extent to which these various vascular

oscillations are found in the rs-fMRI signal of the CSF and to relate

the findings to the same vascular contribution in the rs-fMRI signal

from the vasculature (arteries and veins) and brain parenchyma. More-

over, we also compare and contrast the association between the rs-

fMRI signal and PPG-derived metrics in the CSF, vasculature, and

brain tissue. This knowledge will enable the use of the widely available

rs-fMRI data for vascular monitoring in addition to its conventional

functional-network mapping, as well as inform the efforts in rs-fMRI

physiological denoising.

2 | THEORY

2.1 | Origins of CSF signal contributions in fMRI

It is generally recognized that CSF inflow effects contribute to the

majority of the BOLD signal in the ventricles. In any case, the CSF sig-

nal is driven by cardiac pulsation (Takizawa, Matsumae, Sunohara,

Yatsushiro, & Kuroda, 2017), but the flow is generally accepted to be

bidirectional, varying with phases of the cardiac cycle (Greitz,

Franck, & Nordell, 1993). In particular, Greitz et al. outlined that while

CSF in the cerebral aqueduct and the foramen of Monroe follow

largely anterior–posterior directionality, the flow in the lateral and

third ventricles flow more anterior–posterior. CSF flows at a peak

velocity of �3.3 cm/s in the cerebral aqueduct (Lee et al., 2004). Thus,

at short TRs, noticeable inflow effects can be expected. However, as

the CSF flow in the lateral and third ventricles are not predominantly

in the through-plane (superior–inferior) direction, inflow contributions

may be merged with partial-volume effects, which also contribute, as

variations in CSF shape can result in similar variations in BOLD signal

around the CSF (Thomas et al., 2013). It had been suggested that

cardiac-cycle related vascular and tissue expansion in the thalami is

the main driver of CSF flow in the third ventricle (O'connell, 1943).

Nonetheless, this dynamic partial-volume effect is still coupled with

cardiac pulsation, which enables the BOLD signal in all of these CSF

compartments.

Sources of slow oscillations in CSF have hovered between cardiac

(Kedarasetti, Drew, & Costanzo, 2020) and respiratory (Klose, Strik,

Kiefer, & Grodd, 2000). Regarding the latter, consistent upwards flow

has been found in the aqueduct during expiration (Spijkerman

et al., 2019). Through similar mechanisms, slow oscillations in CSF can

be driven by both slow-wave variations in cardiac pulsation

(i.e., heart-rate variability) and respiratory volume. Nonetheless, recent

study by Vinje et al. (2019), similar to previous study by Takizawa

et al. (2017), and Mestre et al. (2018), among others, indicate that car-

diac mechanisms dominate.

2.2 | Vascular measures from PPG

To help interpret the signals found in rs-fMRI in the CSF, we

referenced the rs-fMRI signal against features of the PPG signal.

These derivatives have different frequency content and physiological

interpretations, including the following parameters.

2.2.1 | PPG amplitude

Low-frequency PPG is a surrogate for the M wave. The M wave is

known to represent the 0.1 Hz fundamental oscillation of mean arte-

rial pressure. It is one of the vascular signatures that can be derived

from peripheral PPG through spectral analysis (Kanders et al., 2013).

2.2.2 | Heart-rate variability

Heart-rate variability (HRV) is a surrogate of autonomic nervous regu-

lation. HRV is defined as the time or the number of samples between

two consecutive systolic peaks in the ECG or PPG signals. It is depen-

dent only on PPG peak-to-peak distances, not on PPG fluctuation

amplitude. It is commonly investigated in the context of rs-fMRI den-

oising (Chang et al., 2009; Shmueli et al., 2007). Low-frequency oscil-

lations in PPG that lag low-frequency HRV are likely to be neurogenic,

whereas HRV changes driven by low-frequency PPG changes are

likely to be hemodynamic (due to cardiac output) (Kiselev et al., 2020).

2.2.3 | Acceleration PPG

Within this category, the acceleration PPG, which is commonly

defined as the second derivative of the PPG (SDPPG), is much more

commonly used than the first derivative. The SDPPG was first pro-

posed by Takazawa et al. (Takazawa et al., 1998; Pilt et al., 2013) as a

surrogate of arterial compliance and stiffness. This is a measure that
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incorporates both PPG peak-to-peak distance and amplitude. Further-

more, the distance between the “a” waves used for SDPPG calcula-

tion can also provide a measure of HRV (Mohanalakshmi,

Sivasubramanian, & Swarnalatha, 2017).

2.2.4 | PPG intensity ratio

The PPG intensity ratio (PIR), a surrogate of slow variations in blood

pressure. The PIR is a reference for M-wave-like vascular-diameter

oscillations (Ding et al., 2017; Ding & Zhang, 2015). As PIR is the ratio

of PPG peak intensity to PPG valley intensity of one cardiac cycle, it is

highly dependent on PPG fluctuation amplitude and not on beat-to-

beat distance. In contrast to HRV, which is driven by heart rate, PIR is

driven by PPG amplitude. PIR is known to be negatively correlated with

SBP during deep breathing but positively during the Valsalva maneuver;

the reduction in sympathetic nervous activity during deep breathing

leads to the relaxation of vascular smooth muscles, increasing arterial

diameter, and elevating PIR in response (Sharma et al., 2017).

3 | METHODS

3.1 | MRI acquisition

MRI data were collected from 18 healthy adults (mean age 30

± 6.7 years) on a 3 T Siemens TIM Trio scanner and a 32-channel head

coil. Specifically, whole-brain resting-state fMRI (rs-fMRI) data were

acquired using simultaneous multi-slice (SMS) acceleration on the

gradient-echo echo-planar imaging (EPI) with leak-block slice GRAPPA

recon with a 3 × 3 kernel (Cauley, Polimeni, Bhat, Wald, &

Setsompop, 2014) (TR = 380 ms, TE = 30 ms, flip angle = 40�,

15 slices, 3.44 × 3.44 × 5.0 mm3 with 20% slice gap, 2,230 time

points, 14 min duration, acceleration factor = 3, phase encoding shift

factor = 2, slices ascending). A 3D T1-weighted anatomical scan was

acquired using MPRAGE, with resolution 1 × 1 × 1 mm, repetition

time (TR) = 2,400 ms, inversion time (TI) =1,000 ms, echo time

(TE) = 2.43 ms, flip angle = 8�, field of view = 256 × 256 mm (sagittal),

matrix size = 256 × 256, 192 slices (ascending order),

bandwidth = 180 Hz/pixel, and GRAPPA acceleration factor = 2.

During the fMRI scans, cardiac pulsation was recorded using the

Siemens scanner pulse oximeter (sampling rate = 50 Hz), whereas the

respiratory signal was recorded using a pressure-sensitive belt con-

nected to the Biopac (Biopac Systems Inc., CA) at a sampling rate of

200 Hz.

3.2 | PPG data processing

SDPPG and PIR were computed on PPG data that was filtered with a

fourth order Butterworth low-pass filter with a cut-off frequency of

4 Hz. The PPG signals were low-pass filtered to the maximum band-

width of the fMRI signal (1/TR � 1.3 Hz). Then, each signal is

normalized by subtracting the mean and dividing by the SD. Cardiac

and respiratory frequencies are estimated as the peak frequencies of

the spectra of the filtered (infinite-impulse response Butterworth fil-

ter) and normalized cardiac and respiratory signals, respectively. The

PPG data were aligned with the fMRI time-series so that their starting

points were the same. On the aligned PPG data, SDPPG, HRV, and

PIR were obtained. PIR and HRV signals were then interpolated using

the cubic spline method to match the length of the PPG data. All sub-

sequent band-pass filtering was performed using the fourth-order

Butterworth filters. Scripts to compute the PPG-derived parameters

can be made available upon request.

Power spectral density (PSD) of the PPG-driven data was calcu-

lated using Welch's overlapped segment averaging estimator. For this

analysis, a 250 s Hamming window with a 90% overlap was used. As a

result, the lowest frequency that can be considered is 0.004 Hz. The

percentage of M wave/vasomotion's frequency bands of each signal

was determined by dividing the integral of each band of frequency by

the integral of the whole PSD. For comparison of the results with

other studies, the values of mean and SE among all signals and sub-

jects were subsequently computed.

3.3 | Image data preprocessing

For all subjects, FreeSurfer reconstruction was performed on the T1

anatomical data using FreeSurfer 6.0 (publicly available: https://surfer.

nmr.mgh.harvard.edu). The reconstruction provided tissue segmenta-

tion of gray matter, white matter structures as well as ventricles,

which are used later for delineating the regions of interest.

The rs-fMRI processing pipeline includes motion correction, spa-

tial smoothing (Gaussian kernel with 5 mm FWHM), high-pass filtering

(>0.001 Hz), and registration of data into a 4 × 4 × 4 mm3 MNI atlas

(45 × 54 × 45 voxels). All steps were performed using the FMRIB

software library (FSL, publicly available at www.fmrib.ox.ac.uk/fsl). As

we aim to characterize the potential effects of vascular pulsation in

rs-fMRI data, we did not regress out nuisance variables in the

preprocessing stage.

3.4 | Regions of interest

As the primary aim of this study is to investigate the rs-fMRI signal

fluctuations in the CSF, we defined several disjoint CSF-related

regions of interest (ROIs) (see Figure 1):

• Lateral ventricles and third ventricle: Both of these structures are

taken from the FreeSurfer tissue segmentation, and subsequently

resampled to the spatial resolution of the rs-fMRI images using FSL

flirt. The bilateral lateral ventricles (LV) are both included in the

LV ROI.

• Cerebral aqueduct: This is the smallest of all visible CSF structures,

and was delineated manually in the rs-fMRI images using the T1

anatomical image as reference.
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Other ROIs were also defined for reference, as some of them

(such as blood vessels) have been linked with CSF pulsations, and

others (brain tissue) have been reported to also contain residual CSF

pulsatility:

• Arteries: First, the rs-fMRI signal variance map was generated from

the pre-processed data. The blood vessels have consistently high

variance (Churchill & Strother, 2013), thus the variance maps were

used for delineation of blood vessels. For each subject, the mask

for arteries was delineated manually based on known vascular

anatomy, made to contain the Circle of Willis as well as branches

of the internal carotid arteries and middle cerebral arteries.

• Veins: As in the case of the arteries, veins were also delineated

manually. The mask for veins includes the superior sagittal sinus

and the transverse sinus.

• Gray matter (GM) and white matter (WM): Whole-brain GM and

WM masks were both delineated on a per-subject basis using the

tissue segmentation results produced by the FreeSurfer recon pro-

cess. These masks were also subsequently resampled to the spatial

resolution of the rs-fMRI images using FSL flirt.

With the exception of the aqueduct, all ROIs are eroded by

1 voxel to minimize partial-volume effects. Note that while the BOLD

signal is primarily venous-driven, the arterial BOLD signal has been

found to correlate with the CSF signal (Strik, Klose, Erb, et al., 2002;

Theyers, Goldstein, Metcalfe, Robertson, & MacIntosh, 2018). In fact,

the arterial BOLD signal contains both high-frequency (cardiac fre-

quency) (Strik, Klose, Erb, et al., 2002) and low-frequency (<0.2 Hz)

components (Tong & Frederick, 2014). The origins of the arterial fMRI

signal are likely similar to those of the CSF fMRI signal, encompassing

inflow effect and blood-volume mediated partial-volume effects. PSD

of the ROI data was calculated using Welch's overlapped segment

averaging estimator.

3.5 | Statistical analysis

3.5.1 | Correlation analysis

To characterize the similarity and the relationship between different

fMRI ROIs, the Pearson correlation coefficient and its associated

p value were calculated. If a determined p value was below the signifi-

cance level (.05, corrected for multiple comparisons using the

Benjamini–Hochberg method; Haynes, 2013), then the corresponding

correlation was considered significant. Finally, the averages of the

absolute correlation coefficients among all subjects were computed.

3.5.2 | Cross-correlation analysis

In this step, the fMRI time-series and PPG-driven data were firstly fil-

tered to 0.05–0.15 Hz using a fourth-order Butterworth filter. As the

fMRI signals are nonstationary, sliding-window cross-correlation

between each fMRI time-series and PPG, HRV, SDPPG, and PIR was

calculated. In this study, we focus on negative lags, which indicate

fMRI time-series lagging PPG data. A window length of 342 s was

used, with 90% overlap between sliding steps. At each step, the maxi-

mum cross-correlation associated with negative lags was identified, as

F IGURE 1 Regions of interest, specifically CSF and vascular ROIs, for a representative subject, overlaid on the T1 anatomical. The lines
indicate the fMRI slice orientation, and the arrow indicates the aqueduct. A, anterior; P, posterior; R, right
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we assume the vascular signature that we seek in the CSF should lag

that in the PPG signal.

To test for statistical significance of the cross-correlation values

we created surrogate data (N = 200 sets) by phase-scrambling the

original data (Schreiber & Schmitz, 1996), and repeating the sliding-

window cross-correlation procedure outlined above. Significant cross-

correlation values were those that were beyond 2 SDs of the surro-

gate cross-correlation scores, with the p value corrected for multiple

comparisons using the Benjamini–Hochberg method. Nonsignificant

cross-correlations were discarded. Subsequently, outlier data seg-

ments were excluded as those with a peak cross-correlation that is

beyond 2 SDs of the mean for each subject.

3.5.3 | Cross-spectrogram

Cross-spectrograms between each fMRI time series and the PPG,

HRV, SDPPG, and PIR were calculated by using the short-time Fourier

Transform (STFT). The cross-spectrogram between two signals high-

lights the frequencies that they have in common. For that purpose, a

125 s Hamming window with a 90% inter-step overlap was used that

results in having frequency components higher than 0.008 Hz. In our

study, one constraint was considering the minimum frequency of

0.008 Hz, which led us to choose the 125-s window for this analysis.

In the STFT analysis, a trade-off must be considered between time

and frequency domains, and the choice of 125 s window length

reflects that trade-off.

For each cross-spectrogram, the maximum-energy time-frequency

ridge was then determined by averaging three obtained ridges

weighted by the amplitude of the cross-spectrogram results. For exam-

ple, the final ridge between the LV time series and PPG data represents

the most common frequencies over the time period that these two sig-

nals have in common. By averaging the frequencies of the final ridge,

the main common frequency between the two signals was computed.

4 | RESULTS

Of the 18 subjects, three had to be excluded due to failure to critically

sample the fundamental cardiac frequency (as the two subjects had

F IGURE 2 Time series the fMRI in CSF-related ROIs, contrasting signals from other ROIs as well as the PPG-associated signals, from a
representative subject. CSF-related ROIs include the lateral ventricles (LV), the third ventricle (3rd V), and the cerebral aqueduct. All signals have
been resampled (to the maximum frequency of the rs-fMRI data). Column 1: It can be observed that the rs-fMRI signals in the LV and 3rd V are
synchronized with those in the arteries and veins, and to a lesser extent, those in the GM and WM. Column 2: It can also be observed that PIR
best follows signals in these ROIs
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heart rates higher than 1.3 Hz). Furthermore, data from four of the

subjects did not allow for the inclusion of the cerebral aqueduct.

Therefore, 11 subjects were included in the full analyses.

In Figure 2, we show the regional-average rs-fMRI time series

plotted for CSF regions as well as vascular and tissue ROIs for com-

parison. It can be observed that the rs-fMRI signals in the lateral ven-

tricles and third ventricle are synchronized with those in the arteries

and veins, and to a lesser extent, those in the gray matter and white

matter. Moreover, the signals in the ventricles appear to be better

reflected in the PIR than in the SDPPG, the HRV, and in the PPG

itself.

The time-series patterns are mirrored in the spectral plots in

Figure 3. The third ventricle and the cerebral aqueduct contain more

signal at the cardiac frequency than the lateral ventricles. The aque-

duct also contains a peak at the respiratory frequency (0.25 Hz),

which is not evident in the other CSF ROIs. Moreover, in terms of

PPG-derived features, the spectral characteristics of PIR are more

similar to that of the LV and the blood vessels, echoing observations

in the time domain (Figure 2). On the other end of the spectrum,

SDPPG, like the aqueduct, appears to be mainly driven by high fre-

quencies (heart rate), which is also strongly manifested in the aque-

duct fMRI signal.

These relationships are also shown in the correlation matrices in

Figure 4. In the low-frequency range (0.008–0.15 Hz), the signals in

the lateral ventricles (LV) are significantly correlated with those in the

3rd ventricle and in the low-frequency band, the aqueduct as well.

However, the LV signal is more strongly correlated with those in the

gray matter (GM) and white matter (WM). Moreover, large arteries,

large veins, the GM and WM form an inter-correlated hub. However,

the highest correlations (that are also significant) are not found in the

CSF regions. Rather, they are found between WM and GM, between

GM and large arteries, between WM and large veins, and between

F IGURE 3 The frequency spectrum of the fMR time series in CSF-related ROIs, contrasting spectra from other ROIs as well as the PPG-
associated spectra. Spectra are averaged across subjects, and error bars represent SE. CSF-related ROIs include the lateral ventricles (LV), the
third ventricle (3rd V), and the cerebral aqueduct. All signals have been resampled (to the maximum frequency of the rs-fMRI data). Notice that
for the PPG spectrum, the cardiac peak is substantially higher than the low-frequency peak
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GM and large veins. These patterns are reproduced in the broadband

range, namely (0.005–1.2 Hz).

The 0.1 Hz frequency range accounts for the highest percent rs-

fMRI signal power in the lateral ventricles, followed by the white mat-

ter (WM) and large veins (Figure 5a). Among the PPG-derived mea-

sures, the 0.1 Hz frequency range accounts for the most power in the

PPG signal, followed by the PIR signal, HRV and SDPPG (Figure 5b).

The cross-correlation lag patterns between various fMRI and PPG-

based signals are summarized in Figure 6. The group-mean lags for the

peak cross-correlation values are summarized in Table 1. For both low-

frequency PPG, HRV, and SDPPG, the peaks cross-correlation with var-

ious CSF signals occur at 2–3.5 s (fMRI signal lagging). With PIR, the

peak lags are generally shorter (2–2.5 s). Moreover, SDPPG is

associated with the lowest correlation coefficients with fMRI signals.

Also noted is the low average correlation between PIR and the aque-

duct fMRI signal, which could be explained by the highly variable peak

correlations observed across the group. For details on the subject-

specific cross-correlation patterns, see Figure S1.

Figure 8 contains the temporal-average of the cross-spectrograms

shown in Figure 7. Table 1 summarizes the results shown in Figure 8,

including the inter-subject variability. As before, we focus on negative

lags, which indicate the rs-fMRI signal lagging the PPG signal. In the

0.1 Hz range, the mean lag associated with the peak cross-correlations is

generally between 4 and 5 s, with no noticeable difference among the

various PPG-based metrics. At 0.35–0.4, the mean peak cross-

correlation of CSF signals with PPG is comparable to those of the

F IGURE 4 Signal correlations among different ROIs. The correlation coefficients are the average across all subjects. Statistical significance of
the correlations are indicated by asterisks (*p < .05, corrected for multiple comparisons). The patterns are reproduced across two frequency

ranges, namely (a) 0.005–1.2 Hz and (b) 0.008–0.15 Hz

F IGURE 5 The percent signal power found in the 0.1 Hz band. These are presented as fractions of the total spectral power up to 1.2 Hz.
(a) On average (across all subjects), the M-wave frequency range contributes most to the rs-fMRI signal in the lateral ventricles (LV), followed by
the white matter (WM) and large veins. (b) Among the PPG-derived measures, the 0.1 Hz frequency range accounts for the most power in the
PPG signal, followed by the PIR signal, HRV and SDPPG. GM: gray matter; LV: lateral ventricles; 3rd V: third ventricle; WM: white matter. Error
bars represent the SD across subjects

ATTARPOUR ET AL. 2613



vascular and tissue signals, as are the mean peak correlation coefficients

at these lags. SDPPG accounts for the lowest cross-correlation values,

with no distinction between CSF regions and non-CSF regions. Once

again, arteries and the white matter share similar lags, while veins and

the gray matter share similar lags with respect to PPG-based signals.

The results of the cross-spectral coherence analyses are summa-

rized in Figure 7. To quantify these plots, the peak coherence ridge

frequencies are identified for each subject (see Figure S2), and the

group averages are reported in Table 2. As shown in both Figure 7

and Table 2, the full-frequency (up to 1.3 Hz) PPG signal exhibits

coherence with CSF at two visible frequencies (one <0.2 Hz and the

other at the cardiac frequency). At the cardiac frequency, the PPG sig-

nal is most coherent with the third ventricle, the cerebral aqueduct

and the arteries. HRV and PIR exhibit coherence with CSF regions

(as well as other brain regions) exclusively at frequencies below

0.2 Hz, while SDPPG exhibit coherence with the rs-fMRI signal at

much higher frequencies (closer to 1 Hz). Conversely, PIR exhibits the

strongest coherence with CSF signals in the 0.02–0.03 Hz range, but

F IGURE 6 Cross-correlation plot for the M-wave frequency band. Each plot represents the group-mean cross-correlation pattern (error
bars = std. err.) between an fMRI ROI signal and a PPG-derived signal indicated by the column. As we target cases of PPG leading fMRI, we focus
on the negative lags. Each The fMRI and PPG-derived signals were all bandlimited to 0.05–0.15 Hz. Aqu.: cerebral aqueduct; Art.: arteries; GM:
gray matter; LV: lateral ventricles; 3rd V: third ventricle; Ven.: veins; WM: white matter

TABLE 1 Group-average peak cross-correlation and associated lag for the frequency range 0.05–0.15 Hz

PPG HRV SDPPG PIR

Mean
peak corr

Mean peak
lag (s)

Mean
peak corr

Mean peak
lag (s)

Mean
peak corr

Mean peak
lag (s)

Mean
peak corr

Mean peak
lag (s)

Lateral

ventricles

0.15 ± 0.03 −2.0 ± 0.3 0.19 ± 0.02 −3.4 ± 0.4 0.12 ± 0.01 −3.3 ± 0.5 0.15 ± 0.02 −2.3 ± 0.4

3rd ventricle 0.12 ± 0.02 −2.8 ± 0.6 0.14 ± 0.02 −3.5 ± 0.4 0.12 ± 0.01 −2.9 ± 0.4 0.12 ± 0.01 −2.8 ± 0.6

Gray matter 0.14 ± 0.02 −3.2 ± 0.6 0.21 ± 0.03 −2.7 ± 0.4 0.10 ± 0.01 −3.6 ± 0.4 0.13 ± 0.02 −2.6 ± 0.44

White matter 0.14 ± 0.03 −3.4 ± 0.4 0.23 ± 0.03 −2.5 ± 0.3 0.13 ± 0.02 −3.2 ± 0.4 0.13 ± 0.02 −2.0 ± 0.4

Arteries 0.14 ± 0.02 −2.5 ± 0.6 0.18 ± 0.03 −3.1 ± 0.5 0.10 ± 0.01 −2.4 ± 0.4 0.13 ± 0.01 −2.5 ± 0.5

Veins 0.18 ± 0.03 −2.1 ± 0.2 0.23 ± 0.03 −3.0 ± 0.5 0.11 ± 0.01 −2.9 ± 0.5 0.19 ± 0.03 −2.3 ± 0.5

Aqueduct 0.14 ± 0.04 −3.6 ± 0.6 0.17 ± 0.02 −3.9 ± 0.3 0.12 ± 0.02 −3.0 ± 0.4 0.17 ± 0.03 −0.2 ± 0.6

Note: All values are listed as mean and SD.
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this is also found to be the case in the vascular and tissue ROIs. HRV

is most strongly coherent with the LV signal at 0.14 Hz, but most

coherent with the third ventricle and the aqueduct at higher frequen-

cies (up to 0.25 Hz), similar to the case of PPG-fMRI associations in

the white matter and aqueduct ROIs. Interestingly, the HRV coher-

ence is at a much lower frequency in the tissue and venous ROIs than

in the arteries and CSF regions, against demonstrating the unique rep-

resentation of arterial pulsations in CSF. Lastly, for SDPPG, the stron-

gest coherence with all rs-fMRI signals are at a much higher

frequency for the CSF regions as well as arterial ROIs (0.8–1 Hz), and

at a lower frequency only for gray and white matter.

As shown in Table 3, in the 0.1 Hz range, the PPG signal, HRV and

PIR all explain similar fractions of rs-fMRI variance in the CSF. The

SDPPG accounts for the least signal variance in CSF in this range. Again,

the trends in the CSF ROIs are mirrored in the vascular and tissue ROIs.

5 | DISCUSSION

Using ultra-fast MREG fMRI, Kiviniemi et al (Kiviniemi et al., 2016)

demonstrated the vascular contribution to the CSF signal can be

acquired using ultra-fast magnetic resonance encephalography

(MREG) sampling at 10 Hz. The Kiviniemi study demonstrated the par-

ticipation of three frequency bands, namely cardiac (�1 Hz), respira-

tory (�0.3 Hz), low-and-very-low frequency (LF 0.023–0.73 Hz and

VLF 0.001–0.023 Hz). Our study is in part inspired by this study, and

as a novelty, we are primarily interested in the contributions of low-

frequency vascular oscillations (<0.15 Hz) to the rs-fMRI signal. Our

main interest is the 0.1 Hz vascular oscillation, which is of great inter-

est in the fMRI literature but is under-studied (Julien, 2006; Martinez-

Tejada, Arum, Wilhjelm, Juhler, & Andresen, 2019). Such oscillations

are typically challenging to characterize as it is currently impossible to

isolate vascular from neuronally driven oscillations in this frequency

range. We sought to circumvent these challenges by focusing on CSF

regions, which are in theory devoid of neuronal activity. The low-

frequency vascular effects are also spectrally distinct from those of

respiration, which is another strong driver of CSF flow (REF).

The typical sampling rate (1/TR) of rs-fMRI is too low to allow

separation of low-frequency from aliased high-frequency physiologi-

cal noise. As another novelty of this study, instead of using MREG, we

use the more widely available simultaneous multi-slice acceleration

EPI to achieve a whole-brain sampling rate of 2.6 Hz, thereby

F IGURE 7 Cross-spectrograms linking PPG-derived signals and fMRI signals in various ROIs. The frequency range is 0.008 to 1.3 Hz.
Coherence is displayed in power per unit frequency (dB/Hz). The cross-spectrograms are generated using the short-time Fourier transform with
sliding windows of 250 s and 90% overlap between steps. High values indicate a high extent shared frequency coupled with high power at these
frequencies. The cross-spectrograms have been averaged across all subjects. Aqu.: cerebral aqueduct; Art.: arteries; GM: gray matter; LV: lateral
ventricles; 3rd V: third ventricle; Ven.: veins; WM: white matter
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alleviating aliasing from heartbeats and respiration. CSF flow fluctu-

ates and reverses direction with cardiac pulsation. The typical CSF

flow velocity is 50 mm/s (Zhu, Xenos, Linninger, & Penn, 2006). Thus,

given the short TR that we use, we expect CSF signals in rs-fMRI to

be driven by flow effects. As a further novelty, we use PPG recordings

as an independent reference point for helping to clarify the vascular

implications of the CSF signal.

The main findings of this study are: (a) signals in different CSF

ROIs are not equivalent in their vascular contributions or in their asso-

ciations with vascular and tissue rs-fMRI signals; (b) the PPG signal

contains the highest signal contribution from the 0.1 Hz range, while

the PIR contains the highest signal contribution from the 0.02 to

0.03 Hz range; (c) in the low-frequency range, PIR is more strongly

associated with CSF rs-fMRI signal than PPG itself, and than HRV and

TABLE 2 Summary of peak coherent
frequencies between PPG-derived signals
and fMRI signals

All values in Hz PPG HRV SDPPG PIR

Lateral ventricles 0.70 ± 0.07 0.14 ± 0.02 0.85 ± 0.06 0.02 ± 0.002

3rd ventricle 1.02 ± 0.03 0.20 ± 0.02 1.06 ± 0.03 0.03 ± 0.005

Gray matter 0.28 ± 0.08 0.09 ± 0.02 0.50 ± 0.07 0.02 ± 0.002

White matter 0.15 ± 0.08 0.09 ± 0.01 0.44 ± 0.07 0.03 ± 0.003

Arteries 1.00 ± 0.05 0.16 ± 0.03 1.00 ± 0.04 0.02 ± 0.002

Veins 0.57 ± 0.11 0.06 ± 0.01 0.78 ± 0.09 0.02 ± 0.002

Aqueduct 0.19 ± 0.03 0.25 ± 0.03 0.87 ± 0.07 0.02 ± 0.002

Note: The frequency range of interest is 0.008–1 Hz. These frequencies are derived from the weighted

average of the ridge frequencies extracted from the cross-spectrograms.

F IGURE 8 Temporal average of cross-spectrograms in various ROIs. The cross-spectrograms shown in Figure 7 are averaged across all
subjects. The frequency range is 0.008 to 1.3 Hz. Coherence is displayed in power per unit frequency (dB/Hz). The cross-spectrograms have been
averaged across all subjects. Aqu.: cerebral aqueduct; Art.: arteries; GM: gray matter; LV: lateral ventricles; 3rd V: third ventricle; Ven.: veins; WM:
white matter
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SDPPG; and (d) PPG-related vascular oscillations only contribute to

<20% of the CSF signal in rs-fMRI, insufficient support for the

assumption that low-frequency CSF signal fluctuations directly reflect

vascular oscillations.

5.1 | Characteristics of different CSF
compartments

CSF flows through the lateral ventricles (LV) downwards into the third

ventricle, and thereafter into the cerebral aqueduct, eventually exiting

into the central canal. Our results show that the third ventricle and

the cerebral aqueduct contain more signal at the cardiac frequency

than the lateral ventricles (LV; Figures 2 and 3). In fact, different com-

partments of CSF exhibit different spectral features altogether. The

signal in the lateral ventricle shares greater similarity with low-

frequency vascular oscillations, signals in the third ventricle and the

aqueduct contain more cardiac pulsatility. Moreover, as shown in Fig-

ures 5 and 6, the lateral ventricles contain more low-frequency oscilla-

tions of possible vascular origin than the third ventricle and the

cerebral aqueduct. Such a distinction is not commonly known in the

rs-fMRI community and can be particularly useful when using the sig-

nal averaged over all CSF regions as a regressor for physiological den-

oising (Caballero-Gaudes & Reynolds, 2017; Chen et al., 2012; Chen

et al., 2018; Chuang et al., 2019; Jo et al., 2010; Johnen et al., 2015;

Parkes et al., 2018; Yan et al., 2013). As our data proves (Figure 3 and

Table 1), the mean CSF signal (whether it be taken from the LV alone

or across all CSF ROIs) is not a strong reflector of the cardiac signal,

as averaging across the ROI can cause some of the pulsating signals to

cancel out. Respiration, as the reviewers mentioned, and other factors

can also contribute to it.

As for the difference between the LV, third ventricle and aque-

duct, one possibility is the differences in ROI size. The LV is the larg-

est and therefore is likely to exhibit the highest SNR. Nonetheless,

due to the aforementioned understanding that CSF flow in the LV and

third ventricle are not superior–inferior (through-plane), fMRI-signal

sensitivity to inflow in these two ROIs is likely much reduced com-

pared to that of the aqueduct, leading to reliance on the pulsation-

related dynamic partial-volume effects to contribute fMRI contrast.

5.2 | Associations between CSF, vascular, and
tissue signals

In terms of beat-to-beat dynamics, CSF flow in the aqueduct is well

coupled to that of the common carotid arteries (Schmid Daners

et al., 2012). On the other hand, alterations in venous dynamics

(e.g., through venous compression) are known to alter intracranial

pressure and lead to reductions in CSF flow (Ichikawa, Motosugi,

Okumura, Shimizu, & Onishi, 2018).

The relationships between signals in CSF and non-CSF ROIs in

the whole frequency range (0.005–1 Hz) and in the low-frequency

range (0.008–0.15 Hz) are very similar (Figure 4). Note that the

highest correlations (that are also significant) are not found in the CSF

regions, but among WM, GM and large vessels, which may reflect the

strong contribution to CSF pulsation outside of cardiac sources,

including from respiration, CO2 and blood-pressure fluctuations

(Chang & Glover, 2009; Golestani, Chang, Kwinta, Khatamian, &

Chen, 2015; Whittaker et al., 2019).

As we may conjecture from Figures 2 and 3, the LV CSF signal is

strongly correlated with that in the third ventricle, the arterial ROI,

GM, and WM. As shown in Figure 7, high-frequency arterial pulsation

is well captured in the CSF ROIs. This is in general agreement with

previous findings (Kassinopoulos & Mitsis, 2019; Power et al., 2014;

Power, Plitt, Laumann, & Martin, 2017). However, the LV signal is only

significantly associated with the aqueduct signal in the low-frequency

range. In the low-frequency range, signals in the aqueduct are weakly

associated with those in the GM, WM, and veins, but significantly

associated with LV and arterial signals.

The 0.1 Hz frequency band contributes �28% of the CSF signal

in the LV, but only 15% of the signal in the 3rd ventricle. The LV mea-

surement is in excellent agreement with the 27% measured by Strik

et al., though the latter was made in the aqueduct rather than in the

LV. In veins, �25% of the signal fluctuation comes from the 0.1 Hz

band, lower than the 43% reported by Strik et al. in the M-wave fre-

quency range. In GM and WM, this figure is 20 and 28%, respectively,

and when averaged across the two, is comparable to the 30% mea-

sured by Strik et al. (Strik, Klose, Erb, et al., 2002). In arteries, a simi-

larly low signal percentage (13%) as in the third ventricle is observed.

These data suggest that the arteries share more signal characteristics

TABLE 3 Summary of signal variance
in rs-fMRI explained by PPG-derived
signals

Coefficient of determination (r2) PPG HRV SDPPG PIR

Lateral ventricles 0.14 ± 0.01 0.14 ± 0.01 0.09 ± 0.01 0.15 ± 0.01

3rd ventricle 0.13 ± 0.01 0.12 ± 0.01 0.10 ± 0.01 0.12 ± 0.01

Gray matter 0.13 ± 0.01 0.15 ± 0.01 0.09 ± 0.01 0.16 ± 0.02

White matter 0.12 ± 0.01 0.15 ± 0.01 0.09 ± 0.01 0.15 ± 0.02

Arteries 0.12 ± 0.01 0.12 ± 0.01 0.08 ± 0.01 0.13 ± 0.01

Veins 0.14 ± 0.01 0.15 ± 0.02 0.08 ± 0.01 0.15 ± 0.01

Aqueduct 0.12 ± 0.01 0.11 ± 0.01 0.10 ± 0.01 0.12 ± 0.01

Note: The frequency range of interest is 0.05–0.15 Hz. These frequencies are derived from the weighted

average of the ridge frequencies extracted from the cross-spectrograms. In general, each PPG-derived

parameter exhibits a distinct coherent frequency with rs-fMRI data.
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with the third ventricle and aqueduct rather than with the LV, as

reflected in Figure 3 as well.

5.3 | Potential implications of PPG-derived signals

The PPG provides the most direct method of tracking high- and low-

frequency vascular oscillations (Özbay et al., 2018), so long as periph-

eral sympathetic regulation is unimpaired. As seen in Figure 3, that

the PPG signal has a clear high-frequency peak (at the cardiac fre-

quency) and a strong low-frequency peak (<0.5 Hz). The PPG signal

has been used as a noninvasive way to directly assess vasomotion

(Kanders et al., 2013). The 0.1 Hz frequency band contributes �26%

to the PPG signal (Figure 5).

While HRV is often assumed to be an ultra-low-frequency phe-

nomenon in rs-fMRI, only a negligible fraction of the HRV signal is

found in the 0.008–0.03 Hz range (Figure 5b). As seen in Figure 3, the

power of HRV is mainly distributed between 0.2 and 0.6 Hz, situated

between the frequencies of PIR and SDPPG. SDPPG, which is

included in this study as a commonly cited measure of arterial compli-

ance, is mainly driven by high-frequency vascular oscillations, presum-

ably reflecting beat-to-beat compliance. PIR, as a surrogate measure

of SBP, contains the highest percentage of power in the band

<0.1 Hz, attesting to the relationship between intracranial and sys-

temic blood pressure (Martinez-Tejada et al., 2019).

5.4 | Association between CSF signals and PPG-
derived signals

PPG measures changes in subcutaneous blood volume that is induced

by the pulse pressure wave. This is done by tracking changes in subcu-

taneous absorption of near-infrared light throughout the cardiac cycle.

The PPG signal is measured at the fingertip, which is supplied from

the heart via the radial artery to the digital arteries, with a pulse-wave

transit time of no more than 0.5 s (Huttunen, Kärkkäinen, &

Lindholm, 2019). The same heart supplies the brain through the aorta

and the common carotid artery, with an associated transit time of no

more than 0.7 s (Huttunen et al., 2019).

Of all the PPG-derived features, the spectral characteristics of

PIR are most similar to that of the LV and the blood vessels, echoing

observations in the time domain (Figure 2). Peak coherence between

PIR and CSF signals is at 0.02–0.03 Hz, the lowest across all PPG-

derived measures. The amount of CSF signal fluctuation accounted

for by HRV, low-frequency PPG and PIR are similar (Table 3). On the

other end of the spectrum, SDPPG, like the aqueduct, appears to be

mainly driven by high frequencies (heart rate), which is also strongly

manifested in the aqueduct fMRI signal. However, SDPPG accounts

for the lowest variance in CSF signals (Table 3).

We used short-term cross-correlations via sliding windows as the

signals involved are nonstationary. The goal of the cross-correlations

is to provide an easily understandable view of the data (Table 1). For

the 0.1 Hz frequency range, the PPG signal is found to lead the CSF

signal by 2–4 s. If indeed Mayer waves dominated these correlations,

then these would likely be driven by the baroreflex (Ghali &

Ghali, 2020; Julien, 2006), the time delay of which has been estimated

at 2.5 s (Borst & Karemaker, 1983), similar to our estimate. We find

no noticeable difference among the various PPG-based metrics in

terms of lags and correlations, and CSF ROIs are similar to non-CSF

ROIs judging by the correlations. The peak lags for GM and WM are

also consistent with findings by Ozbay et al. (2018). SDPPG accounts

for the lowest cross-correlation values, with no distinction between

CSF regions and non-CSF regions. Moreover, arteries and the white

matter share similar lags, while veins and the gray matter share similar

lags with respect to PPG-based signals.

While 28% of the LV signal is in the M-wave range, only 14% of

the signal variance in the 0.1 Hz band is explained by variance in the

PPG signal. This indicates that a substantial portion of CSF signal fluc-

tuations in rs-fMRI may not directly reflect vascular fluctuations.

Indeed, as stated earlier, one of the other signal sources in the low-

frequency range may be respiratory variability (Dreha-Kulaczewski

et al., 2015; Dreha-Kulaczewski et al., 2017; Kassinopoulos &

Mitsis, 2019; Power et al., 2017). However, in the 0.1 Hz range, it is

immediately obvious why 50% of the CSF signal is unaccounted for

by PPG. Competing effects from HRV, SDPPG, and PIR may account

for the difference.

Figure 7 and Table 2 show a clear distinction among the manifes-

tations of the four PPG-based metrics in the CSF signal. PPG exhibits

the strongest coherence with CSF signals at the cardiac frequency,

and at the M-wave frequency with the tissue and venous ROIs. Con-

versely, PIR exhibits the strongest coherence with CSF signals in the

0.02–0.03 Hz range. This latter frequency range is in contrast with

results from a recent study by Whittaker et al., which found arterial

blood pressure to the highest degree of fMRI correlations in the

0.06–0.13 Hz range (Whittaker et al., 2019), and also distinct from

the coherent range for low-frequency PPG and HRV. One likely expla-

nation is that PIR reflects the low-frequency aspect of arterial blood

pressure, tracking the sympathetic rather than parasympathetic modu-

lation of vascular tone (Ding et al., 2017), and being influenced by res-

piration in its unique way, as described in Theory. Thus, PIR likely

offers information unavailable in the other PPG-derived metrics, and

the CSF signal in the 0.02–0.03 Hz range in the LV and third ventricle

could potentially be used as a surrogate for PIR, hence a surrogate for

blood-pressure oscillations. Nonetheless, PIR only accounts for up to

15% of CSF signal variance (Table 3), indicating that the current linear

model is insufficient for extracting PIR from the CSF signal. For that

purpose, further data partitioning and/or explicit data modeling is

likely required (Behzadi, Restom, Liau, & Liu, 2007; Chang &

Glover, 2009; Golestani et al., 2015). Furthermore, the low frequency

of the PIR-CSF coherence implies that much longer measurements are

required to extract PIR information from the CSF.

Heart-rate variability is coherent with CSF signals at between

0.15 and 0.25 Hz, while SDPPG is coherent with CSF signals at

0.8–1 Hz. Neither of these is within the range of the M wave or

vasomotion. Moreover, the pattern of an artery-CSF coupling con-

tinues, in contrast to a vein-GM coupling, and corroborating the use
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of the CSF ROI for arterial-pulsation estimation. Interestingly, the

PPG-CSF coherence peaks at the cardiac frequency, in contrast to the

PPG-tissue coherence, which peaks at frequencies between 0.1 and

0.3 Hz (Table 2). The latter frequency range is also where HRV is max-

imally coherent with the CSF signal, suggesting mixed contribution of

both PPG and HRV to CSF signal fluctuations in rs-fMRI. Also, both

signals are similarly associated with CSF and arterial ROIs (Table 3),

but neither signal accounts for more than 15% of CSF-signal variance.

Thus, the ROI-average CSF signal is not a strong representative of car-

diac pulsation or low-frequency HRV contributions to the rs-fMRI sig-

nal. Rather, for cardiac-denoising purposes, individual regions or

voxels in the CSF ROI that best represent the cardiac signal should be

isolated, through the use of principal-component analysis, for instance

(Behzadi et al., 2007) or voxel-wise signal analyses (Dagli, Ingeholm, &

Haxby, 1999).

5.5 | Limitations and future study

Due to the desire to achieve imaging speed with the widely accessible

SMS-EPI method, we used modest slice resolution (5 mm with 1 mm

gaps) and were still limited in spatial coverage such that we could not

include the fourth ventricle. Moreover, critical sampling of heart rate

implies sampling all major harmonics, which was unachievable at a TR

of 380 ms. Follow-up studies can involve faster methods such as

MREG (Lee, Zahneisen, Hugger, LeVan, & Hennig, 2013), inverse

imaging (Lin et al., 2012), generalized inverse imaging (Boyacio�glu &

Barth, 2013) or echo-volumar imaging (Posse et al., 2012) VEPI (REF),

although the gain in temporal resolution is not without a cost to image

quality.

As mentioned previously, the use of PPG in this setup assumes

that reliable pulse signals can be obtained in all subjects. For instance,

the temperature of the index finger should be kept adequate and con-

stant during the measurement (Pilt, Meigas, Temitski, &

Viigimaa, 2013). In work of this kind, care must be taken to perform

careful quality assurance on the PPG signal. Moreover, nonlinear

interactions between PPG-related oscillations and CSF signal fluctua-

tions were not explored.

Lastly, this study does not use explicit data modeling and separa-

tion strategies (such as multivariate modeling and principal-

component analysis). Our immediate goal is not to extract the compo-

nent of the CSF signal that is vasogenic, but rather to investigate the

vascular contribution to the CSF signal itself. Our future study will

build on these findings and leverage more advanced models to extract

the vascular signal from fMRI of the CSF.

6 | CONCLUSIONS

The characterization of the CSF signal in rs-fMRI is useful for den-

oising the rs-fMRI signal, for understanding the appropriate measure-

ment of CSF fluctuations using fMRI and also for determining what

aspects of vascular health may be reflected by measuring CSF

fluctuations. In this study, we show that the CSF signals measured

from various brain regions are not equivalent, and demonstrate the

manner in which each CSF region is affected by the pulse. This infor-

mation can pave the way for the refinement and standardization of

how the CSF signal in rs-fMRI can be used.
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