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Novel antimicrobials for effective treatment of uncomplicated gonorrhea are essential, and
the first-in-class, oral spiropyrimidinetrione DNA gyrase B inhibitor zoliflodacin appears
promising. Using our newly developed Hollow Fiber Infection Model (HFIM), the
pharmacodynamics of zoliflodacin was examined. A clinical zoliflodacin-susceptible N.
gonorrhoeae strain, SE600/18 (harbouring a GyrB S467N amino acid substitution; MIC =
0.25 mg/L), and SE600/18-D429N (zoliflodacin-resistant mutant with a second GyrB
substitution, D429N, selected in the HFIM experiments; zoliflodacin MIC = 2mg/L),
were examined. Dose-range experiments, simulating zoliflodacin single oral dose
regimens of 0.5, 1, 2, 3, and 4 g, were performed for SE600/18. For SE600/18-
D429N, dose-range experiments, simulating zoliflodacin single oral 2, 3, 4, and 6 g
doses, and zoliflodacin oral dose-fractionation experiments with 4, 6, and 8 g
administered as q12 h were performed. Both strains grew well in the untreated HFIM
growth control arms and mostly maintained growth at 1010–1011 CFU/ml for 7 days.
Zoliflodacin 3 and 4 g single dose oral regimens successfully eradicated SE600/18 and no
growth was recovered during the 7-days experiments. However, the single oral 0.5, 1, and
2 g doses failed to eradicate SE600/18, and zoliflodacin-resistant populations with a GyrB
D429N substitution were selected with all these doses. The zoliflodacin-resistant SE600/
18-D429N mutant was not eradicated with any examined treatment regimen. However,
this in vitro-selected zoliflodacin-resistant mutant was substantially less fit compared to the
zoliflodacin-susceptible SE600/18 parent strain. In conclusion, the rare clinical gonococcal
strains with GyrB S467N substitution are predisposed to develop zoliflodacin resistance
and may require treatment with zoliflodacin ≥3 g. Future development may need to
consider the inclusion of diagnostics directed at identifying strains resistant or
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predisposed to resistance development at a population level and to strengthen
surveillance (phenotypically and genetically), and possibly also at the patient level to
guide treatment.

Keywords: Neisseria gonorrhoeae, hollow fiber infection model, zoliflodacin, antimicrobial treatment,
pharmacodynamics, pharmacokinetics, gyrB, mutant

INTRODUCTION

The high and increasing levels of antimicrobial resistance
(AMR) in Neisseria gonorrhoeae globally (Wi et al., 2017;
Day et al., 2018; Unemo et al., 2019; Unemo et al., 2021)
are seriously threatening the management and control of
gonorrhea. The WHO Global Action Plan to Control the
Spread and Impact of Antimicrobial Resistance in N.
gonorrhoeae (WHO, 2012) and WHO Global Action Plan
on Antimicrobial Resistance (WHO, 2015) stress that new
antimicrobials for treatment of urogenital and extragenital
gonorrhea are imperative. Currently, solely two new
antimicrobials, zoliflodacin (Jacobsson et al., 2014; Alm
et al., 2015; Basarab et al., 2015; Foerster et al., 2015;
Unemo et al., 2015; Taylor et al., 2018; Foerster et al., 2019;
O’Donnell et al., 2019; Unemo et al., 2019; Bradford et al.,
2020; Jacobsson et al., 2021) and gepotidacin (Jacobsson et al.,
2018; Scangarella-Oman et al., 2018; Taylor et al., 2018), are in
later stages of clinical development for treatment of
uncomplicated gonorrhea.

Zoliflodacin is the first-in-class spiropyrimidinetrione and
a type II topoisomerase inhibitor with unique target (GyrB)
and mode of bactericidal action (Basarab et al., 2015; Kern
et al., 2015). Zoliflodacin has a high in vitro activity against N.
gonorrhoeae, including multi-drug-resistant clinical strains
(Jacobsson et al., 2014; Unemo et al., 2015; Unemo et al.,
2019; Bradford et al., 2020). No clinical N. gonorrhoeae isolates
with zoliflodacin resistance have been reported when
international gonococcal populations from the last decade
have been examined (Jacobsson et al., 2014; Unemo et al.,
2015; Unemo et al., 2019; Bradford et al., 2020; Le et al., 2021).
However, in static in vitro laboratory experiments
zoliflodacin-resistant mutants have been selected; all
containing substitutions of amino acids D429 or K450 of
GyrB (Alm et al., 2015; Foerster et al., 2015; Foerster et al.,
2019; Jacobsson et al., 2021). No clinical isolate with amino
acid substitution in GyrB K450 and only one single clinical
isolate with a GyrB D429V substitution has been found
(Jacobsson et al., 2014; Alm et al., 2015; Unemo et al., 2015;
Unemo et al., 2019; Bradford et al., 2020; Le et al., 2021;
Adamson et al., 2021). Additionally, an isolate with a GyrB
S467N substitution was selected previously in static in vitro
experiments (Alm et al., 2015). This substitution did not alone
cause zoliflodacin resistance as a first step mutation
(zoliflodacin MIC of 0.25 mg/L), however it further
increased the MIC of zoliflodacin as a second step mutation
(Alm et al., 2015). Rare clinical gonococcal isolates with a GyrB
S467N substitution (https://pathogen.watch/collections/all?
organismId=485), e.g., 1 of 143 isolates with zoliflodacin

MICs of 0.125–0.25 mg/L in Nanjing, China (Le et al.,
2021), and wild-type (susceptible) MICs of zoliflodacin have
been found. However, the international prevalence of these
strains is basically unknown. Overexpression of the MtrC-
MtrD-MtrE efflux pump can also further increase the MICs of
zoliflodacin (Foerster et al., 2015).

A phase 2 randomised controlled clinical trial (RCT) to
evaluate the efficacy and safety of zoliflodacin 2 and 3 g single
oral dose for treatment of uncomplicated gonorrhea was recently
performed (Taylor et al., 2018). The zoliflodacin 3 g single oral
dose was the most effective dose, providing microbiological cure
rates of 100% (47/47), 100% (6/6), and 78% (7/9) for urogenital,
rectal, and pharyngeal gonorrhea, respectively, in the per protocol
analyses. This can be compared to microbiological cure rates of
98% (48/49), 100% (4/4), and 67% (4/6) for urogenital, rectal, and
pharyngeal gonorrhea with zoliflodacin 2 g single oral dose. NoN.
gonorrhoeae isolates with in vitro resistance to zoliflodacin were
found (Taylor et al., 2018). To provide further understanding of
the findings of the zoliflodacin phase 2 RCT (Taylor et al., 2018),
we developed, optimized and quality assured a dynamic in vitro
hollow fiber infection model (HFIM) to simulate gonococcal
infections and the pharmacokinetic (PK)/pharmacodynamic
(PD) of antimicrobials acting against N. gonorrhoeae infections
(Jacobsson et al., 2021), using geographically, phenotypically and
genomically diverse WHO N. gonorrhoeae reference strains
(Unemo et al., 2015). This HFIM for N. gonorrhoeae was used
to study the PK/PD of zoliflodacin treatment against N.
gonorrhoeae strains with full susceptibility to zoliflodacin and
no gyrBmutations (Jacobsson et al., 2021). Further understanding
of the microbiological cures and failures of the treatments in the
zoliflodacin phase 2 RCT (Taylor et al., 2018), the zoliflodacin
concentration-dependent killing of N. gonorrhoeae, and
importance of also examining suppression of resistance
emergence was provided (Jacobsson et al., 2021). According to
the HFIM, for both effective killing and resistance suppression of
zoliflodacin wild-type N. gonorrhoeae strains, zoliflodacin should
be administered at ≥2 g as a single oral dose. However, it was also
stated as essential to examine treatment of gonococcal strains
with different gyrB mutations (Jacobsson et al., 2021).

The main aim of the present study was to examine the
pharmacodynamics of zoliflodacin treatment against one
clinical zoliflodacin-susceptible N. gonorrhoeae strain (SE600/
18), with a zoliflodacin-target GyrB S467N substitution, and
SE600/18-D429N (zoliflodacin-resistant mutant with an
additional in vitro selected GyrB D429N substitution) in our
dynamic HFIM for N. gonorrhoeae (Jacobsson et al., 2021). The
biofitness of the zoliflodacin-resistant SE600/18-D429N mutant
compared to the zoliflodacin-susceptible clinical SE600/18 strain
was also evaluated in the HFIM.
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MATERIALS AND METHODS

Bacterial Strains
The clinical zoliflodacin-susceptible N. gonorrhoeae strain with
GyrB S467N (SE600/18) was cultured in Sweden in 2018.
Additionally, the zoliflodacin-resistant mutant of SE600/18
with an additional GyrB D429N substitution selected in the
HFIM (SE600/18-D429N) was examined.

Antimicrobial Susceptibility Testing
For determination of zoliflodacin MICs (mg/L), agar dilution on
GCVIT agar plates (Foerster et al., 2019) and microbroth dilution
[in triplicates in the HFIM medium, i.e., modified Fastidious
Broth (mFB)] were performed, as previously described
(Jacobsson et al., 2021). Etest was used to determine MICs
(mg/L) of ceftriaxone, cefixime, ciprofloxacin, and
azithromycin, in accordance with the manufacturer’s
instructions (bioMérieux, Marcy-l’Etoile, France).

Hollow Fiber Infection Model
For simulation of a gonococcal infection and the PK/PD of
current and new antimicrobials, such as zoliflodacin, against N.
gonorrhoeae, we recently developed and optimized a dynamic
HFIM using cellulosic cartridges (FiberCell Systems Inc.,
Frederick, MD, United States) (Jacobsson et al., 2021). In
brief, our HFIM is a two-compartment model system, in
which N. gonorrhoeae cells grow in the extracapillary space
of a cellulosic cartridge containing a bundle of microfibers
(FiberCell Systems Inc., Frederick, MD, United States). A
syringe pump administered zoliflodacin into the HFIM and
peristaltic pumps isovolumetrically replaced zoliflodacin-
containing liquid growth medium with zoliflodacin-free
liquid growth medium to simulate the half-life of zoliflodacin
and non-protein bound (free) zoliflodacin concentration-time
profiles reported in human plasma throughout 7 days. N.
gonorrhoeae quantitative cultures (colony forming units
(CFUs)/mL) for total N. gonorrhoeae burden and
zoliflodacin-resistant N. gonorrhoeae population and
determination of zoliflodacin concentrations in the HFIM
were performed over 7 days (Drusano, 2017).

Briefly, on the first day 0.5 ml of N. gonorrhoeae cultures
(18–24 h) from GCAGP agar plates (Foerster et al., 2019) were
inoculated in 49.5 ml of mFB and incubated at 36°C in a
humidified 5% CO2-enriched atmosphere to mid-log phase.
10 ml (~106 CFU/ml) of the N. gonorrhoeae suspension were
then inoculated into each HFIM cartridge to mimic a clinically
relevant N. gonorrhoeae cell concentration (Bissessor et al., 2011;
Chow et al., 2016; Priest et al., 2017; Van Der Veer et al., 2020).
Zoliflodacin was administrated to mimic an adult human PK
concentration-time profile following a single oral dose of
zoliflodacin [PK parameters for zoliflodacin 3 g oral dose were
used (linearly adjusted for other doses): 17% fraction of
zoliflodacin free (protein-unbound) in plasma, 6.47 h half-life
(t1/2), and a 3 h infusion time] (O’Donnell et al., 2019), as
previously described (Jacobsson et al., 2021). One HFIM
cartridge per examined strain and experiment was used as an
untreated growth control.

Dose-range experiments simulated zoliflodacin single dose
oral regimens of 0.5, 1, 2, 3, and 4 g against the clinical
SE600/18 strain, and single dose oral regimens of 2, 3, 4, and
6 g against SE600/18-D429N. Dose-fractionation experiments
simulated zoliflodacin oral dose therapy with 4, 6, and 8 g
administered as one half of the total dose given at 0 h and at
12 h (q12 h) against SE600/18-D429N. All experiments were
followed for 7 days.

Quantification of Viable Bacterial
Populations
To determine the N. gonorrhoeae total population and
zoliflodacin-resistant subpopulations, bacterial solution (1 ml)
was sampled from each HFIM cartridge at time points 3, 6.5,
24, 48, 72, 96, 120, 144, and 168 h for the dose-range experiments,
and at 3, 6.5, 12, 15, 18.5, 24, 48, 72, 96, 120, 144, and 168 h for the
q12 h dose-fractionation experiments. Samples were serially
diluted in mFB and quantitatively plated on GCAGP agar
plates (Foerster et al., 2019) and GCAGP agar plates (Foerster
et al., 2019) containing 2 × MIC of zoliflodacin, resulting in a
detection limit of ≥100 CFUs per HFIM cartridge, as previously
described (Jacobsson et al., 2021). Colony counts (log10 CFU/ml)
were quantified after incubation for up to 72 h at 36°C in a humid
5% CO2-enriched atmosphere using an automated colony
counter (Scan 4000, Interscience, Saint-Nom-la-Bretèche,
France).

Biofitness Experiments
To evaluate the biofitness of the zoliflodacin-resistant mutant
selected in the HFIM (SE600/18-D429N) compared to the
zoliflodacin-susceptible clinical SE600/18 parent strain,
competition experiments using coculture were performed in
the HFIM. Briefly, bacteria were harvested from GCAGP agar
plates (Foerster et al., 2019) and suspended in mFB to a quantity
of ~106 CFU/ml. Equal volumes (5 ml/strain) of the suspensions
of each strain were inoculated into the same HFIM cartridge.
Aliquots (1 ml) were sampled at 24, 48, 72, 96, 120, 144, and
168 h, serially diluted in mFB and quantitatively plated on
GCAGP agar plates (Foerster et al., 2019), as previously
described (Jacobsson et al., 2021). Colony counts (log10 CFU/
ml) were quantified after incubation for up to 72 h at 36°C in a
humid 5% CO2-enriched atmosphere using an automated colony
counter (Scan 4000, Interscience, Saint-Nom-la-Bretèche,
France). The competitive index (CI) was determined by
dividing the ratio of the SE600/18-D429N mutant to wild-type
SE600/18 at each time point with the ratio of the SE600/18-
D429N mutant to wild-type SE600/18 in the initial inoculum
(Vincent et al., 2018).

Zoliflodacin Concentration Determination
To confirm that the predicted zoliflodacin PK profiles were
observed in the HFIM, broth samples (500 µl) were collected
at time points 1, 2, 3, 6.5, 18.5, 24, 48, 72, 96, 120, 144, and 168 h
for the dose-range experiments, and at 1, 2, 3, 6.5, 12, 15, 18.5, 24,
48, 72, 96, 120, 144, and 168 h for the q12 h dose-fractionation
experiments. All zoliflodacin concentrations were determined
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from 100 μl sample aliquots using liquid chromatography-
tandem mass spectrometry (LC-MS/MS), as previously
described (Jacobsson et al., 2021).

Population Pharmacokinetic/
Pharmacodynamic Mathematical Modeling
We simultaneously modeled 3 system outputs for the analysis
of the experimental data. The system outputs were:
concentration of zoliflodacin, total N. gonorrhoeae burden,
and burden of N. gonorrhoeae with lower susceptibility/
resistance to zoliflodacin (containing MIC-increasing gyrB
mutation selected during treatment). Population modeling
was performed employing the Non-Parametric Adaptive
Grid (NPAG) program of Leary et al. (2001) and Neely
et al. (2012). Modeling choices (weighting, etc.) and
goodness of fit evaluations were as previously published
(Brown et al., 2015). Simulation was performed with the
ADAPT V Program of D’Argenio et al. (2009) using
Bayesian posterior parameter estimates.

Comparative Genomic Analysis
Whole genome sequencing (WGS) was performed, as
previously described (Jacobsson et al., 2016; Golparian
et al., 2020a), on selected colonies that grew on the
zoliflodacin-containing plates and that also had increased
MICs of zoliflodacin by agar dilution. The WGS was
primarily performed to identify zoliflodacin resistance-
associated gyrB mutations, i.e., the previously identified
gyrB mutations that were verified to cause the increased
MICs of zoliflodacin in in vitro selected zoliflodacin-
resistant mutants (Alm et al., 2015; Foerster et al., 2015;
Foerster et al., 2019; Jacobsson et al., 2021) or novel gyrB
mutations. However, the whole genome sequences of the
zoliflodacin-resistant mutants were examined to identify
also any other zoliflodacin resistance-associated mutations
selected in the HFIM. All reads were quality controlled and
trimmed accordingly using our previously described CLC
Genomics Workbench v20.0.4 workflow (Golparian et al.,
2020b), and all quality-controlled reads were mapped to the
gyrB reference obtained from Genbank (Genbank:
AE004969.1) using local alignment with CLC Genomics
Workbench with match score 1, mismatch cost of 2 and
linear gap cost of 3, the variants across the gene were called
with a minimum coverage of 10x and a minimum frequency of
35%. WGS reads of SE600/18 with a pre-existing GyrB S467N
mutation and the zoliflodacin-resistant mutant of SE600/18
with an additional GyrB D429N substitution (SE600/18-
D429N) are available through the European Nucleotide
Archive (ENA) accession number PRJEB50904.

The main experiments of the zoliflodacin-susceptible N.
gonorrhoeae SE600/18 parent strain (with a GyrB S467N
mutation) and the zoliflodacin-resistant N. gonorrhoeae SE600/
18-D429N mutant [with GyrB S467N plus GyrB D429N selected
in the Hollow Fiber Infection Model (HFIM)] have been
summarized in Supplementary Figure 1.

RESULTS

Phenotypic and Genetic Characteristics of
Examined N. gonorrhoeae Strains
The MICs of zoliflodacin determined using agar dilution and
microbroth dilution methods, GyrB substitutions, and additional
relevant characteristics of the two examined strains are
summarised in Table 1.

Briefly, the clinical zoliflodacin-susceptible N. gonorrhoeae
SE600/18 strain, containing a GyrB S467N substitution, and
the zoliflodacin-resistant SE600/18-D429N mutant (GyrB
S467N plus an in vitro selected GyrB D429N substitution)
were examined in the HFIM. The zoliflodacin MICs of both
strains were one MIC dilution higher using microbroth dilution
compared with agar dilution. Notably, SE600/18 belonged to
MLST ST7363, which has been a common gonococcal ST
internationally during latest decades and it has also been
associated with multi-drug resistance, including decreased
susceptibility and resistance to extended-spectrum
cephalosporins such as ceftriaxone and particularly cefixime
(Shimuta et al., 2015; Unemo, 2015; Harris et al., 2018;
Sánchez-Busó et al., 2021) (Table 1).

Hollow Fiber Infection Model results
The results of the zoliflodacin dose-range studies for the
zoliflodacin-susceptible clinical SE600/18 strain are
summarised in Figure 1.

Briefly, the SE600/18 strain grew well in the untreated growth
control arms and reached a bacterial density of 1010–1011 CFU/
ml at 24 h (Figure 1). All untreated controls also maintained
growth at approximately 109–1011 CFU/ml throughout the 7-
days experiments (Figure 1). A rapid bacterial kill was

TABLE 1 | Relevant phenotypic and genetic characteristics of N. gonorrhoeae
strains. Differences between the clinical SE600/18 isolate and the SE600/18-
D429N mutant selected in the HFIM are in bold letters.

Strain characteristics SE600/18 SE600/18-D429N

Zoliflodacin MIC (microbroth MIC)a 0.25 (0.5) 2 (4)
Ceftriaxone MICa 0.032 0.032
Cefixime MICa 0.125 0.125
Ciprofloxacin MICa 0.5 0.5
Azithromycin MICa 0.125 0.125
Relevant GyrB mutations S467N S467N, D429N
GyrA codon S91, D95 S91F, D95N S91F, D95N
mtrR promoter region 13 bp inverted repeat WT WT
mtrR coding region WT WT
Mosaic mtrRCDE — —

PorB1b codon G120, A121 A121D A121D
NG-MAST ST20643 ST20643
NG-STAR ST3537 ST3537
MLST ST7363 ST7363

MIC, minimum inhibitory concentration; WT, wild type; NA, not applicable; NG-MAST,N.
gonorrhoeae multiantigen sequence typing; ST, sequence type; NG-STAR, N.
gonorrhoeae sequence typing antimicrobial resistance; MLST, multi-locus sequence
typing.
aMIC (mg/L) was determined using agar dilution andmicrobroth methods for zoliflodacin,
and Etest (bioMérieux, Marcy-l’Etoile, France) for ceftriaxone, cefixime, ciprofloxacin, and
azithromycin.
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documented during the first 6.5 h for all doses. However, after
zoliflodacin 0.5 g single dose therapy the SE600/18 strain had
recovered growth at 24 h (approximately 107 CFU/ml) and at
48 h the bacterial density was as high as in the untreated control
(>1010 CFU/ml) (Figure 1A). Using both the zoliflodacin 1 and
2 g treatment (Figures 1B,C, respectively), SE600/18 was rapidly
killed and at 24 h no growth was detected. However, at 48 h
SE600/18 had recovered growth at bacterial density of
approximately 109 CFU/ml (Figure 1B) and 107 CFU/ml
(Figure 1C), respectively. Using the zoliflodacin 3 and 4 g
treatments, SE600/18 was eradicated at 6.5 h time point and
the strain did not recover any growth during the 7-days
experiments (Figure 1D).

Zoliflodacin-resistant mutants grew on the zoliflodacin-
containing plates for all treatments arms where growth was
recovered, i.e., in the 0.5, 1 and 2 g treatment arms (Figures
1A–C). These zoliflodacin-resistant populations emerged after
6.5 h (0.5 g treatment; Figure 1A) or 48 h (1 and 2 g treatments;
Figures 1B,C). Notably, these zoliflodacin-resistant populations
were maintained at low concentrations of approximately
<102–104 CFU/ml during the 7-days experiment. Accordingly,
further amplification of the zoliflodacin-resistant populations was
not observed, and these zoliflodacin-resistant mutant populations
appeared to grow slower and in smaller colonies compared to the
SE600/18 strain on agar plates, which all may indicate a
suboptimal biofitness. These selected zoliflodacin-resistant
mutants had zoliflodacin MICs of 2 mg/L (agar dilution) and

contained the GyrB D429N substitution in addition to the pre-
existing GyrB S467N substitution (referred to as SE600/18-
D429N hereafter). No other selected mutations that appeared
to be associated with zoliflodacin susceptibility were found.

The results of the zoliflodacin dose-range studies for the
zoliflodacin-resistant SE600/18-D429N mutant are summarised
in Figure 2.

In brief, the SE600/18-D429N mutant grew well in the
untreated growth control arms and reached a bacterial density
of 1011 CFU/ml at 24 h (Figure 2). All untreated controls
maintained growth at around 1010–1011 CFU/ml throughout
the 7-day experiments (Figure 2). However, the zoliflodacin 2,
3, and 4 g single dose oral therapy did not result in any kill of
SE600/18-D429N (Figures 2A–C) and the zoliflodacin 6 g single
dose regimen only caused bacterial kill the first 6.5 h (Figure 2D).
Growth was recovered in all treatment arms and ranged from
approximately 107 CFU/ml (6 g arm) to 1011 CFU/ml (2 g arm) at
24 h and at the bacterial density of the untreated control at 48 h
(1011 CFU/ml), which was maintained during the remaining
5 days of the experiments (Figure 2).

Furthermore, zoliflodacin-resistant gonococcal populations
grew on the zoliflodacin-containing plates for all treatments
arms (Figures 2A–D). These zoliflodacin-resistant populations
grew at approximately 105 CFU/ml after 24 h in all treatment
arms. Notably, these zoliflodacin-resistant populations fluctuated
at 105–107 CFU/ml during the whole 7-days experiment
(Figure 2). Accordingly, further amplification of these

FIGURE 1 | Growth curves of the total population of the clinical zoliflodacin-susceptible N. gonorrhoeae strain SE600/18, containing a GyrB S467N amino acid
substitution, in the dose-range Hollow Fiber Infection Model experiment simulating zoliflodacin single oral dose of 0.5 (A), 1 (B), 2 (C), 3, and 4 g (D) and followed for
7 days are shown (black solid lines). The total growth of zoliflodacin-resistant populations (red lines) on the zoliflodacin-containing plates (2 × MIC) and total growth of the
untreated control (C; black dashed line) are also shown for each treatment.
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zoliflodacin-resistant populations was not observed, and these
mutant populations appeared to grow slower and in smaller
colonies on agar plates, which all may indicate a suboptimal
biofitness. These zoliflodacin-resistant populations had
zoliflodacin MICs of 2–8 mg/L (agar dilution) and contained
the GyrB D429N substitution in addition to the pre-existing GyrB
S467N substitution.

The results of the zoliflodacin dose-fractionation experiments
for the zoliflodacin-resistant SE600/18-D429N mutant are
summarised in Figure 3.

Briefly, the SE600/18-D429N mutant grew well in the
untreated growth control arms and reached a bacterial density
of 1011 CFU/ml at 24 h (Figure 3). All untreated controls
maintained growth at around 1010–1011 CFU/ml throughout
the 7-day experiments (Figure 3). The equivalent zoliflodacin
oral therapy of 4 and 6 g administered as equally divided doses at
q12 h did not result in any substantial kill of SE600/18-D429N
(Figures 3A,B) and the zoliflodacin 8 g q12 h regimen only
caused bacterial kill the first 24 h (Figure 3C). Accordingly,
growth was recovered in all treatment arms and ranged from
approximately 103 CFU/ml (8 g q12 h arm) to 108 CFU/ml (4 g
q12 h arm) at 24 h and the bacterial density at 48 h was at
approximately 1010–1011 CFU/ml, which was
maintained during the remaining 5 days of the experiments
(Figure 3).

Zoliflodacin-resistant populations grew on the zoliflodacin-
containing plates for all treatments arms (Figures 3A–C). These

zoliflodacin-resistant populations grew at approximately
103–104 CFU/ml after 24 h and at >106–109 CFU/ml at 48 h in
all treatment arms (Figure 3). The zoliflodacin-resistant
population selected in the zoliflodacin 8 g q12 h treatment arm
appeared to recover growth at nearly the same bacterial density as
the untreated control (Figure 3C), however, also this mutant
population appeared to grow slower and in smaller colonies
compared to the SE600/18 strain on agar plates, which may
indicate a suboptimal biofitness. These zoliflodacin-resistant
populations had zoliflodacin MICs of 2–8 mg/L (agar dilution)
and contained the GyrB D429N substitution in addition to the
pre-existing GyrB S467N substitution.

Population Pharmacokinetic/
Pharmacodynamic Modeling
The three output PK/PD model was fit to all the data for SE600/
18. The mean and median values for SE600/18 are displayed in
Table 2.

The fit of the model to the data was acceptable, with
exception of the pre-Bayesian (population) analysis for the
zoliflodacin-resistant mutants (SE600/18-D429N). The
predicted-observed regressions for the analysis are displayed
in Supplementary Figure 2. The reason for the poor model fit
for the zoliflodacin-resistant mutants is likely because of poor
biofitness of these zoliflodacin-resistant mutants.
This hypothesis is also supported by their very small Kg-r

FIGURE 2 |Growth curves of the total population of the zoliflodacin-resistantNeisseria gonorrhoeae SE600/18-D429Nmutant (containing GyrB S467N amino acid
substitution plus an in vitro selected D429N substitution), in the dose-range Hollow Fiber InfectionModel experiment simulating zoliflodacin single oral dose of 2 (A), 3 (B),
4 (C), and 6 g (D) and followed for 7 days are shown (black solid lines). The total growth of population with increased resistance (red lines) on the zoliflodacin-containing
plates (2 × MIC) and total growth of the untreated control (C; black dashed line) are also shown for each treatment.
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(Table 2) and, even when zoliflodacin was essentially gone, the
zoliflodacin-resistant mutants did not amplify
(Supplementary Figure 2; Figure 1).

Regarding the zoliflodacin PK profiles, the agreement between
observed and predicted zoliflodacin concentrations in the HFIM
during the experiments were high (Supplementary
Figures 2A,D).

For the HFIM dose-ranging study for the clinical N.
gonorrhoeae strain SE600/18, we performed simulation
with the identified parameter values to obtain an
approximate exposure of zoliflodacin that would suppress
amplification of selected mutants with increased
zoliflodacin MIC and gyrB resistance mutations. That
exposure was a zoliflodacin 2.7 g single dose oral
treatment in the HFIM.

The growth rate constant for the susceptible SE600/18
population (Table 2) was 58–60% of the growth rate
constants previously measured for WHO F and WHO X
(Jacobsson et al., 2021). However, the growth rate constant
for the zoliflodacin-resistant SE600/18-D429N population
(Table 2) was only 7–16% of the corresponding growth rate
constants for zoliflodacin-resistant populations of WHO F and
WHO X (Jacobsson et al., 2021). This suboptimal growth rate
of the zoliflodacin-resistant SE600/18-D429N population
shows that its growth is impaired and accordingly biofitness
decreased, which was further supported by the kill rate
constant for the zoliflodacin-resistant SE600/18-D429N
population that was more than 20 times higher than the
growth rate constant for the mutant (Table 2).

FIGURE 3 |Growth curves of the total population of the zoliflodacin-resistantNeisseria gonorrhoeae SE600/18-D429Nmutant (containing the GyrB S467N amino
acid substitution plus an in vitro selected D429N substitution), in the dose-range Hollow Fiber Infection Model experiment simulating a zoliflodacin oral fractionated dose
of 4 g (2 g given at 0 and 12 h) (A), 6 g (3 g given at 0 and 12 h) (B), and 8 g (4 g given at 0 and 12 h) (C) over 24 h and followed for 7 days are shown (black solid lines).
The total growth of population with increased resistance (red lines) on the zoliflodacin-containing plates (2 × MIC) and total growth of the untreated control (C; black
dashed line) are also shown for each treatment.

TABLE 2 | Mean, median and standard deviation of the parameter values for the
Hollow Fiber Infection Model study with the N. gonorrhoeae clinical SE600/18
strain with a pre-existing GyrB S467N amino acid substitution.

Parameter Mean Median Standard deviation

Vc (L) 1073 99.03 1050
CL (L/hr) 116.3 13.11 107.2
Kg-s (hr

−1) 0.68 0.117 0.591
Kg-r (hr

−1) 0.088 0.066 0.050
Kkill-s (hr

−1) 9.087 5.218 4.065
Kkill-r (hr

−1) 1.820 0.520 1.759
C50-s (mg/L) 0.724 0.134 0.670
C50-r (mg/L) 2.527 1.274 1.802
Hs (—) 4.202 3.191 2.350
Hr (—) 13.86 5.663 12.78
POPMAX (CFU/ml) 0.261 × 1011 0.109 × 1011 0.337 × 1011

IC2 (CFU/ml) 8.789 × 105 1.066 × 105 9.209 × 105

IC3 (CFU/ml) 5.012 3.059 3.769

Vc, apparent volume of the central compartment; CL, clearance; Kg-s and Kg-r, rate
constants of growth for the susceptible and resistant population, respectively; Kkill-s and
Kkill-r, rate constants of kill for the susceptible and resistant population, respectively; C50-s

and C50-r, concentrations of zoliflodacin at which the kill rate is half maximal for the
susceptible and resistant population, respectively; Hs and Hr, Hill’s constants for the
susceptible and resistant populations, respectively (unitless); POPMAX, maximal
population size; CFU, colony forming units; IC2 and IC3, sizes of the total and resistant
populations, respectively, at therapy initiation.
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Competition Biofitness Experiments Using
Coculture in the HFIM
To confirm if the in vitro-selected zoliflodacin resistance in the
clinical zoliflodacin-susceptible SE600/18 strain impaired
bacterial growth and accordingly decreased the biofitness, the
zoliflodacin-susceptible parent SE600/18 and the zoliflodacin-
resistant SE600/18-D429N mutant were cocultured in the same
HFIM cartridge for 7 days (Figure 4A) and the competitive index
calculated (Figure 4B). The growth of the zoliflodacin-susceptible
clinical SE600/18 strain was maintained at ~1010–1012 CFU/ml
during the 7 days experiments, which was at a similar level as in
the SE600/18 monocultures. However, the growth of the
zoliflodacin-resistant SE600/18-D429N mutant was
substantially lower particularly during the first 24 h and it
peaked at ~108 CFU/ml at 24 h and then decreased for each
day resulting in a bacterial density of ~106 CFU/ml after 7 days
(Figure 4A). The clinical zoliflodacin-susceptible SE600/18 strain
appeared to outcompete the zoliflodacin-resistant SE600/18-
D429N mutant, which was even more clearly shown when
plotting the competitive index over the 7 days experiments
(Figure 4B). Accordingly, the in vitro-selected zoliflodacin-
resistant mutant SE600/18-D429N was substantially less fit
compared to the zoliflodacin-susceptible clinical SE600/18
parent strain (Figure 4).

DISCUSSION

The high levels of AMR in N. gonorrhoeae globally (Wi et al.,
2017; Day et al., 2018; Unemo et al., 2019; Unemo et al., 2021) is
seriously threatening the management and control of gonorrhea,
and novel antimicrobials for effective treatment of urogenital and
extragenital gonorrhea are urgently needed. The novel
spiropyrimidinetrione zoliflodacin has been shown to be
effective in treating gonococcal urogenital and rectal infections
(Taylor et al., 2018). A single oral zoliflodacin 3 g dose was shown

to cure all anogenital gonococcal infections and most (78%, 7/9)
of the included pharyngeal infections, and no isolates with
zoliflodacin resistance were found (Taylor et al., 2018).
Recently, using our newly developed dynamic HFIM for N.
gonorrhoeae, we verified that zoliflodacin administered as
single oral doses ≥2 g is sufficient to eradicate infections
caused by zoliflodacin-susceptible N. gonorrhoeae strains
(wild-type gyrB gene and zoliflodacin MICs (0.064–0.125 mg/
L)), which were effectively killed while also supressing resistance
to zoliflodacin (Jacobsson et al., 2021). However, it was
additionally stated as essential to examine treatment of N.
gonorrhoeae strains with relevant gyrB mutations (Jacobsson
et al., 2021).

In the present study, we examined the clinical zoliflodacin-
susceptible N. gonorrhoeae strain SE600/18 with a pre-existing
GyrB S467N substitution (zoliflodacin MIC = 0.25 mg/L in
agar dilution). When treating SE600/18 with zoliflodacin
single oral dose of 0.5–4 g in the HFIM, the SE600/18 strain
was initially rapidly killed, however, with zoliflodacin 0.5, 1,
and 2 g single oral doses the strain had recovered growth at
24 h (zoliflodacin 0.5 g) or at 48 h (zoliflodacin 1 and 2 g).
Furthermore, zoliflodacin-resistant populations started to
amplify after 6.5 h (zoliflodacin 0.5 g) or after 48 h
(zoliflodacin 1 and 2 g). The zoliflodacin-resistant mutants
of SE600/18 all contained an additional GyrB substitution
(SE600/18-D429N; resulting in zoliflodacin MIC = 2 mg/L
in agar dilution) (Alm et al., 2015; Foerster et al., 2015;
Foerster et al., 2019; Jacobsson et al., 2021). Accordingly,
zoliflodacin 2 g single oral dose failed to eradicate SE600/18
in the HFIM, which further strengthens previous evidence that
single oral dose of zoliflodacin >2 g can be required for
effective treatment of rare gonococcal strains (Taylor et al.,
2018; Jacobsson et al., 2021), e.g., strains with the GyrB S467N
substitution (require ≥2.7 g according to our PK/PD
modeling). Our gonorrhea treatment simulations in the
HFIM also showed that zoliflodacin-resistant mutants with
GyrB S467N plus D429N substitution, if selected by

FIGURE 4 | (A) Growth curves of the total population of the zoliflodacin-susceptible clinical Neisseria gonorrhoeae SE600/18 strain (black dashed line) and the
zoliflodacin-resistant N. gonorrhoeae SE600/18-D429N mutant (containing the pre-existing GyrB S467N amino acid substitution plus an in vitro selected D429N
substitution; red solid line), when cocultured in the same Hollow Fiber Infection Model (HFIM) cartridge and followed for 7 days. (B) Competitive indexes for the
zoliflodacin-susceptible clinical Neisseria gonorrhoeae SE600/18 strain and the outcompeted zoliflodacin-resistant N. gonorrhoeae SE600/18-D429Nmutant (red
solid line), when cocultured in the same HFIM cartridge and followed for 7 days.
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suboptimal zoliflodacin exposures, may not be effectively
treated with zoliflodacin single oral dose of 2–6 g or 4–8 g
q12 h. Additionally, our HFIM results suggest that
zoliflodacin-resistant mutants are selected at a higher
frequency with zoliflodacin doses ≤2 g when a strain has the
pre-existing GyrB S467N substitution, i.e., compared to the
previously examined zoliflodacin-susceptible N. gonorrhoeae
reference strains WHO F andWHO X with wild type gyrB gene
(Jacobsson et al., 2021). Thus, the GyrB S467N substitution
appears to predispose to emergence of zoliflodacin resistance,
despite not conferring resistance to zoliflodacin on its own.
Fortunately, N. gonorrhoeae strains with GyrB S467N
substitution appear to be very rare internationally (https://
pathogen.watch/collections/all?organismId=485; Le et al.,
2021). Furthermore, the zoliflodacin-resistant SE600/18-
D429N mutant suffered from a biofitness disadvantage and
was outcompeted by the zoliflodacin-susceptible parent
SE600/18 strain, which suggests that these zoliflodacin-
resistant strains will be less effective at amplifying and
spreading after emergence.

It is important to continue to survey phenotypic zoliflodacin
susceptibility, but our data demonstrate the need to also consider
the surveillance of known gyrB resistance mutations (in amino
acid codons for D429 and K450), the GyrB S467N substitution
and other mutations in gyrB or other genes that potentially cause
resistance to zoliflodacin or could predispose for zoliflodacin
resistance emergence. The failure to eradicate a N. gonorrhoeae
GyrB S467N strain with up to zoliflodacin 2 g single oral dose
(≥2.7 g required according to our PK/PDmodeling) in this study,
the higher selection rate of GyrB D429N resistance mutations in
the GyrB S467N strains, and the underlying human inter-
population PK variance could suggest that 100% of gonococcal
infections caused by the sporadic gonococcal GyrB S467N strains
may not be eradicated with a single oral dose of 3 g zoliflodacin, at
all body sites.

The limitations of this study include the absence of
zoliflodacin PK data from the infection sites for gonorrhea,
such as the anogenital tract and the oropharynx.
Consequently, the HFIM gonorrhea treatment simulations had
to be based on concentrations of free zoliflodacin in human
plasma which may not ideally reflect the urogenital and
extragenital infection sites. Nevertheless, human plasma
antimicrobial concentrations are commonly used as surrogates
for concentrations of the antimicrobials at the infection sites for
many bacterial infections (due to the lack of measured infection
site concentrations), and mostly, these surrogates are sufficient to
link drug exposure to effect (Drusano, 2004). It would be
exceedingly valuable if appropriate studies could provide
zoliflodacin PK data for the urogenital and extragenital
infection sites, particularly in the pharynx. In fact, such PK
data is lacking not only for potentially novel therapeutics but
also for antimicrobials currently used for the treatment of
gonorrhea, highlighting the urgent need in generating this type
of PK data (Kong et al., 2019). Ideally, PK studies should be
included in all RCTs for treatment of gonorrhea and other STIs,
however, this may not be feasible and/or cost-effective in many
studies. Furthermore, significantly enhanced understanding of

pharyngeal gonorrhea and where and how to measure the
relevant PK parameters of therapeutic antimicrobials in
gonorrhea infection sites, especially in the pharynx, is urgently
needed (Kong et al., 2019). Finally, inter-patient variance in PK
parameters for zoliflodacin and other gonorrhea therapeutic
antimicrobials from population modeling and employing these
data in Monte Carlo simulations for target attainment is
additionally imperative (Drusano et al., 2001; Drusano, 2004).

The ongoing international phase 3 RCT (ClinicalTrials.gov
identifier NCT03959527) is comparing a zoliflodacin 3 g single
oral dose to ceftriaxone plus azithromycin dual therapy for
treatment of uncomplicated gonorrhea. This study will provide
evidence on whether this single dose of oral zoliflodacin, is non-
inferior to the globally recognised dual comparator but is not
designed to address the suitability of the dose for infections
caused by strains with emerging zoliflodacin resistance
regardless of body site.

In conclusion, by examining the pharmacodynamics of
zoliflodacin against one clinical zoliflodacin-susceptible N.
gonorrhoeae strain with the pre-existing zoliflodacin-target
GyrB S467N substitution in our dynamic HFIM for
gonorrhea, we demonstrated that the rare N. gonorrhoeae
clinical strains with a GyrB S467N substitution are
predisposed to develop zoliflodacin resistance and require
treatment with zoliflodacin ≥3 g. In the HFIM, zoliflodacin-
resistant mutants (with an additional GyrB substitution,
i.e., D429N) were selected using zoliflodacin single oral doses
of 0.5–2 g. These selected zoliflodacin-resistant mutants
(containing GyrB S467N and D429N substitutions) were not
eradicated at any of the single- or multiple-dose regimens of
zoliflodacin studied in the HFIM. A rapid point-of-care test
simultaneously detecting N. gonorrhoeae and gyrB mutations
causing or predisposing to zoliflodacin resistance may be
valuable, i.e., for antimicrobial stewardship to avoid
zoliflodacin treatment of patients without N. gonorrhoeae or
with N. gonorrhoeae having relevant gyrB mutations. However,
for this a clinical study evaluating this type of approach would be
needed. It is additionally imperative to continue to survey
zoliflodacin susceptibility phenotypically as well as genetically,
i.e., with emphasis on mutations in gyrB or other genes that are
verified to cause or predispose to zoliflodacin resistance. Finally,
pharmacokinetic data for zoliflodacin (and other gonorrhea
therapeutic antimicrobials) in urogenital and extragenital
human infection sites, particularly in the pharynx, would be
valuable.

Future use of zoliflodacin will require an additional evidence-
base to support interventions such as dose adjustments, dual
antimicrobial therapy to potentially enhance the bacterial
eradication, prevent the emergence and or spread of resistance,
and possibly also cure additional STIs.
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Supplementary Figure 1 | Schematic flow chart summarizing the main
experiments of the zoliflodacin-susceptible Neisseria gonorrhoeae SE600/18
parent strain (with a GyrB S467N mutation) and the zoliflodacin-resistant N.
gonorrhoeae SE600/18-D429N mutant (with GyrB S467N plus GyrB D429N
selected in the Hollow Fiber Infection Model (HFIM)).

Supplementary Figure 2 | Predicted-Observed regressions for zoliflodacin
concentrations, total Neisseria burden and resistant bacterial burden,
respectively for the pre-Bayesian regression (A–C) and for the Bayesian
regressions (D–F) for the clinical zoliflodacin-susceptible Neisseria gonorrhoeae
SE600/18 strain with a GyrB S467N amino acid substitution.
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