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Abstract: Microsaccades are linked with extraretinal mechanisms that significantly alter spatial
perception before the onset of eye movements. We sought to investigate whether microsaccadic
activity is modulated by the speed of radial optic flow stimuli. Experiments were performed in the
dark on 19 subjects who stood in front of a screen covering 135 × 107◦ of the visual field. Subjects
were instructed to fixate on a central fixation point while optic flow stimuli were presented in full
field, in the foveal, and in the peripheral visual field at different dot speeds (8, 11, 14, 17, and 20◦/s).
Fixation in the dark was used as a control stimulus. For almost all tested speeds, the stimulation
of the peripheral retina evoked the highest microsaccade rate. We also found combined effects of
optic flow speed and the stimulated retinal region (foveal, peripheral, and full field) for microsaccade
latency. These results show that optic flow speed modulates microsaccadic activity when presented
in specific retinal portions, suggesting that eye movement generation is strictly dependent on the
stimulated retinal regions.

Keywords: self-motion perception; visual perception; visual processing; eye position; eye movements;
sensorimotor control; attention; visual system

1. Introduction

Eye movements are used to scan the environment to select visual stimuli, so they are
critically important in determining what we see and attend to [1–10]. Microsaccades are
small eye movements produced during attempted fixations. In past decades, studies on
microsaccades have successfully demonstrated their role in contrasting visual fading [11,12],
driving attentional and discrimination tasks [13–17], and processing the visual field [18–22].

The optic flow field is a crucial input to navigate the environment. Several neuro-
physiological studies demonstrated specific neuronal sensitivity to optic flow in some
cortical and subcortical areas of the monkey’s brain [23–35]. Some studies showed optic
flow sensitivity in various areas of the human brain, such as areas MST and V3A [36], area
MT [37] and the fronto-temporo-parietal network [38].

Speed represents an important input while navigating the environment. Neuronal
sensitivity to speed has been demonstrated in areas 7a and MST in the monkey [39,40].
Several studies on human subjects report that many motor actions such as steering or
walking are influenced by the speed of optic flow patterns. Kountouriotis et al. [41] showed
that the human brain performs global averaging of optic flow speed from the visual field
and uses this signal as an input for steering control. Durgin and Gigone [42] demonstrated
that the discrimination thresholds for appropriate visual speeds are enhanced during
walking. Gait parameters are modulated by optic flow speed; when optic flow speed
decreases, walking speed and stride length increase [43,44]. The motor response to heading
perception is also modulated by the speed of optic flow patterns [45].
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In a previous study, we used optic flow stimuli to reveal the relationship between
heading perception and microsaccades in a discrimination task. The results demonstrated
that microsaccades’ characteristics and directions are related to heading perception [20].
In the present work, we moved on to analyze the microsaccades’ characteristics during
the view of radial optic flow stimuli with different dot speeds. The rationale for this study
arises from evidence that during daily life, our gaze explores the visual field while we move
in the environment at different speeds of motion; i.e., we can walk slowly in a downtown
street while looking at stores, we can walk quickly in a busy road while scanning the
environment to cross the street, and we can run in the park while looking straight ahead
to keep the right heading. During walking, people discover the relationship among the
magnitudes of optic flow produced by varying magnitudes of walking [46]. All of our daily
behaviors change the optic flow fields depending on the task we are performing [47–49];
thus, our nervous system continuously shifts from covert to overt attention [50–52]. Given
that microsaccades seem to indicate where we unconsciously focus our attention [53,54],
we aimed to verify whether the speed of the optic flow stimulus could directly influence
microsaccades’ generation and properties.

2. Materials and Methods

Experiments were performed on 19 healthy volunteers, 9 females and 10 males, who
had normal or corrected to normal vision. The subjects’ ages ranged from 21 to 35 years
(average 27.9 ± 4.2 SD). Before the beginning of the experiment, each participant signed
a written informed consent form. The study protocol was approved by the Institutional
Bioethic Committee of the University of Bologna. The experiments were performed in
accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

To assess hand and foot laterality, each participant completed a laterality test, which
is a revised version of the standardized Waterloo Footedness Questionnaire (WFQ) and
Waterloo Handedness Questionnaire (WHQ) [55,56]:

[(right preference − left preference)/(right preference + left preference)] × 100

A positive index indicates right dominance, while a negative index indicates left
dominance. The cut-off points to determine the degree of handiness of the participants
were 70 for right-handed and −70 for left-handed. The rationale for computing a laterality
index was to correlate the microsaccades’ directions with the dominant side in order to
elucidate the potential mechanisms for motor control.

2.1. Optic Flow Stimuli

In this experiment, we presented three types of optic flow stimuli that stimulated
different portions of the visual field: foveal, full, and peripheral (Figure 1A–C). In this
study, we used the same stimuli described in a previous paper [57]. In brief, we considered
the foveal visual field as the 7◦ surrounding the fovea. We considered the periphery as
the visual field outside the inner 20◦ of the foveal visual field. The stimuli were generated
by white dots with a luminous intensity of 1.3 cd/m2 and a size of 0.4◦. The stimuli were
back-projected onto a translucent screen that covered 135 × 107◦ of the visual field. All
recordings were performed in a dark room with dark walls. Each participant was instructed
to look at a fixation point (FP) of 0.6◦ in size without moving the head. The screen height
was adjusted for each subject to have the FP in the primary position. The subjects were
positioned 115 cm away from the screen. To assess the dependence of microsaccades on
the velocity of the stimulus, we varied the dot speed in all three stimuli, thereby obtaining
15 different conditions; the tested speeds of the optic flow stimulus were: 8◦/s, 11◦/s,
14◦/s, 17◦/s, and 20◦/s. A control stimulus (baseline) consisted of simple fixation on a
dark screen (Figure 1D). Optic flow stimuli were produced using Matlab psychophysical
toolbox (The Mathworks Inc., Natick, MA, USA). We recorded 2 repetitions for both the
baseline and the optic flow stimuli with different speeds; thus, each subject performed 32
trials. Each trial lasted 30 s.
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Figure 1. Optic flow and control stimuli. (A) Full field stimulation. (B) Foveal stimulation. (C) Pe-
ripheral stimulation. (D) Baseline condition (control). (E) Illustration of the experimental setup. Full,
foveal, and peripheral stimuli were presented at different speeds: 8◦/s, 11◦/s, 14◦/s, 17◦/s, 20◦/s.
Arrows represent the velocity vectors of moving dots.

2.2. Eye Movements and Eye Position Recordings

In this experiment, horizontal and vertical eye movements were recorded using an
EyeLink video-based eye tracking system (EyeLink® II, SR Research Ltd., Mississauga, ON,
Canada), which consists of two miniature cameras mounted on a leather-padded headband.
Pupil tracking was recorded at 500 Hz, with high spatial resolution (<0.005◦) and low noise
(<0.01◦). At the beginning of each recording session, we calibrated the eye tracking; we
instructed the subject to fixate on a target presented in a random order in a nine-point
25 × 25◦ square grid. After correct camera calibration, the data were validated, and drift
correction was executed by applying a corrective offset to the raw eye-position.

2.3. Data Analysis

Microsaccades are defined as small eye movements that occur during prolonged
visual fixation with an amplitude of less than 1◦ [58]. To identify microsaccades, we
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developed an algorithm based on that of Otero-Millan [59], and it has already been used
in a previous study [60]. To reduce the amount of potential noise, we considered only
binocular microsaccades for at least 3 data samples (6 ms). Trials with incorrect fixations,
eye blinks, or behavioral errors were discarded. Portions of data with very fast decreases
and increases in the pupil area (>50 units/sample) were removed from the analysis, given
that such periods are likely semi-blinks where the pupil is never fully occluded. We also
ignored the 200 ms before and after each blink/semi-blink to eliminate the initial and final
periods when the pupil was still partially occluded [61].

We computed the amplitude, duration, latency, rate and peak velocity of microsaccades
for each subject in each trial and in each condition. Then, we averaged the values for all
subjects in each condition and trial. We computed the microsaccade rates considering only
time spent in fixation periods; the total number of microsaccades for each subject in each
trial was divided by the total time spent in fixation during that specific trial. We computed
the microsaccades’ latency by averaging all latency from the trial’s onset.

Statistical analysis was performed using a repeated-measures ANOVA with stimuli
(foveal, full field, and periphery) and speed (8, 11, 14, 17, and 20◦/s) as within-subject
factors and with the baseline as covariant (SPSS® 22.0, Chicago, IL, USA). Results were
considered significant at p < 0.05.

3. Results

The analysis of the laterality test showed that 16 participants were strongly right-
handed as values were above 78. Three subjects were left-handed, and their values were
−44, −55, and −89, indicating a strong left laterality for only one subject.

The analysis of the repeated measures ANOVA showed that the microsaccades’ peak
velocity, latency, and rate showed significant effects, while the microsaccades’ amplitude
and duration did not show any significant effect.

3.1. Microsaccades Peak Velocity

The ANOVA performed on the microsaccades’ peak velocity showed a main effect of
stimulus (F1,2 = 3.676, p = 0.037, ηp

2 = 0.197) and an interaction effect of stimulus × baseline
(F1,2 = 4.601, p = 0.018, ηp

2 = 0.235). Figure 2 shows the changes in the microsaccades’
peak velocity across stimuli, and it shows that the baseline differed from the three optic
flow stimuli.
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The non-significant effects values were: speed (F1,4 = 1.857, p = 0.130, ηp
2 = 0.110),

speed × baseline (F1,4 = 1.771, p = 0.146, ηp
2 = 0.106), speed x stimulus (F1,8 = 0.469,

p = 0.876, ηp
2 = 0.030), and speed × stimulus × baseline (F1,8 = 0.480, p = 0.869, ηp

2 = 0.031).

3.2. Microsaccades Latency

The ANOVA performed on the microsaccades’ latency showed an interaction effect
of stimulus × speed (F1,8 = 2.842, p = 0.006, ηp

2 = 0.159), indicating a combined effect of
optic flow speed and the stimulated retinal region. The results also show an interaction
effect of stimulus × speed × baseline (F1,8 = 2.734, p = 0.008, ηp

2 = 0.154), indicating that
the combined effect of optic flow speed and the stimulated retinal region differed from the
baseline. The Bonferroni pairwise comparison showed the following differences: baseline
vs. 11◦/s P, p = 0.027; baseline vs. 20◦/s P, p = 0.001; 8◦/s FO vs. 8◦/s FU; p = 0.040; 8◦/s FO
vs. 20◦/s P, p = 0.002; 8◦/s FU vs. 11◦/s P, p = 0.002; 8◦/s P vs. 11◦/s P, p = 0.024; 8◦/s P vs.
20◦/s P, p = 0.023; 11◦/s FU vs. 11◦/s P, p = 0.009; 11◦/s FO vs. 11◦/s P, p = 0.009; 11◦/s P vs.
14◦/s FO, p = 0.006; 11◦/s P vs. 17◦/s FO, p = 0.009; 11◦/s P vs. 17◦/s FU, p = 0.044; 11◦/s P
vs. 17◦/s P, p = 0.012; 11◦/s P vs. 20◦/s FO, p = 0.031; 11◦/s P vs. 20◦/s FU, p = 0.004; 11◦/s
P vs. 20◦/s P, p < 0.001; 14◦/s FU vs. 20◦/s P, p = 0.007; 17◦/s FU vs. 20◦/s P, p = 0.048.
Figure 3 shows microsaccade latency in all conditions. The microsaccades’ latency differed
within and across stimuli.
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The non-significant effects values were: speed (F1,4 = 0.400, p = 0.808, ηp
2 = 0.026),

speed × baseline (F1,4 = 0.487, p = 0.745, ηp
2 = 0.031), stimulus (F1,2 = 0.525, p = 0.597,

ηp
2 = 0.034), and stimulus × baseline (F1,2 = 0.525, p = 0.597, ηp

2 = 0.034).

3.3. Microsaccades Rate

The ANOVA performed on microsaccade rate showed a main effect of stimulus
(F1,2 = 4.774, p = 0.016, ηp

2 = 0.241) and an interaction effect of speed × stimulus × baseline
(F1,8 = 2.623, p = 0.011, ηp

2 = 0.149), indicating that the combined effect of optic flow speed
and the stimulated retinal region differed from the baseline. The Bonferroni pairwise
comparison showed the following differences: baseline vs. 8◦/s FO◦/s, p = 0.043; baseline
vs. 8◦/s FU, p = 0.041; baseline vs. 11◦/s FO, p = 0.014; 8◦/s P vs. 11◦/s FO, p = 0.029;
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11◦/s FO vs. 14◦/s P, p = 0.039. Figure 4 shows that the stimulation of the peripheral retina
evoked a higher microsaccade rate.
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The non-significant effects values were: speed (F1,4 = 1.718, p = 0.158, ηp
2 = 0.103),

speed × baseline (F1,4 = 1.498, p = 0.214, ηp
2 = 0.091), stimulus × baseline (F1,2 = 3.076,

p = 0.061, ηp
2 = 0.170), and speed × stimulus (F1,8 = 1.526, p = 0.155, ηp

2 = 0.092).

4. Discussion

When we move in the environment, we precisely evaluate our heading and speed.
Speed information can be obtained by integrating visual speed from optic flow and lo-
comotion. Given the importance of optic flow for navigation in the environment and
the involvement of microsaccades in visual processing, we sought to investigate whether
microsaccadic activity is modulated by the speed of radial optic flow stimuli. In this study
we decided to test five speeds (8, 11, 14, 17, and 20◦/s), starting from 8◦/s, which represents
a slow walk, and ending with 20◦/s, which represents a fast run. The results show that the
microsaccades’ latency and rate were influenced by the speed of radial optic flow stimuli in
combination with the stimulated retinal region.

Microsaccade rate is linked to cognitive load in several neural processes. Microsaccade
rate is modulated by the load of the working memory [62] and by action preparation [63–65].
During mental arithmetic processing, task difficulty has been shown to reduce microsaccade
rate [66,67]. Valsecchi and colleagues [68,69] showed that a reduced microsaccade rate
might be related to memory updating. Betta and Turatto [70] found a strong reduction in
microsaccade rate during the preparation of a manual response. Piras et al. [15] performed
an experiment on goalkeepers who needed to predict the ball direction of a penalty kick. The
results of that study showed that the temporal sequence of microsaccade rates decreased
by ~1000 ms just before the goalkeepers’ final movement initiation. There is a general
consensus about the inverse relationship between microsaccade rate and cognitive load.
Our results indicate that microsaccade rate is influenced by both the optic flow speed and
the stimulated retinal region. Microsaccade rate is significantly higher in the peripheral
stimulation at almost all tested speeds. This result could be interpreted in the framework of
the stabilizing effect that stimulation of the peripheral retina has on postural control. While
it must be noted that the literature is somewhat controversial, several studies agree with the
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view that stimulation of the peripheral visual field stabilizes posture (cfr. [71] for review),
so it is possible to hypothesize that such a stabilizing effect requires a lighter cognitive load
allowing the generation of more microsaccades in a search strategy.

The present results are also in line with those of previous perceptual studies. It has
been shown that when a cue is shown in a peripheral portion of the visual field, the
frequency of microsaccades in the cue’s direction increases [54,72]. On the other hand,
when a cue is presented centrally, the frequency of microsaccades takes more time to
move in the cue’s direction [53,73]. Although there was no specific attentional cue in the
present study, the moving dots in various portions of the visual field were a powerful
visual stimulus. Neuronal density and spatial resolution are low in the peripheral retina
because it is specialized for movement detection and sensitivity; the cortical regions that
process this information are also limited in size with respect to the processing of foveal
information [74]. Peripheral visual function has a more pivotal role than that of central
vision in locomotion and postural stability (cfr. [74] for review), so it is reasonable that the
frequency of microsaccades increases with peripheral vision.

The latency of the microsaccades showed combined effects between optic flow speed
and the stimulated retinal region. As evident from Figure 3, in some cases, microsaccades
were more concentrated toward the end of the trial (i.e., 11◦/s periphery, 14◦/s periphery,
and 8◦/s fovea), while in some other cases, they occurred more at the beginning of the
trial (i.e., 20◦/s periphery and 8◦/s full field). This lack of clear relationship between optic
flow speed and stimulus could be due to the nature of the task. First, each trial lasted
30 s allowing the generation of several microsaccades (about 30–50 per trial). Second, the
participants were instructed to keep their gaze on a central target, and the dots did not have
any behavioral meaning. Although it is important to show and discuss this interaction
effect between optic flow speed and the stimulated retinal region, we believe that more
studies are needed to access the main effect of speed on latency. Future studies should be
designed using very short trials that allow the recording of only one microsaccade per trial.

It is worth noting the lack of a significant main effect of optic flow speed; indeed,
we found combined effects only. In this experiment, we instructed our subjects to keep
their gaze on the fixation point while ignoring the optic flow field. As already stated
by Hafed et al. [75], it is necessary to study microsaccades in experiments that require
fixation to be able to make inferences about vision and cognitive processes. As shown by
Wang et al. [76], the view of radial expanding optic flow stimuli attracts attention toward
the focus of expansion. It is possible that the experimental conditions used in this study
were not optimal to uncover stimulus speed modulation on microsaccades. A task designed
with an attentional cue upon different optic flow speed may be helpful in determining the
exact relationship between microsaccades and stimulus speed.

5. Conclusions

In this study, we showed that microsaccades are modulated by the speed of optic
flow stimuli when presented in specific retinal regions. The peripheral retina plays a
critical role in visual motion perception. It is thus possible to hypothesize that such high
generation of microsaccades is used in heading perception strategies. All things considered,
the present results seem to suggest a different involvement of retinal regions in triggering
microsaccades.
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