
antioxidants

Review

Clinical Significance of Heme Oxygenase 1 in
Tumor Progression

Mariapaola Nitti , Caterina Ivaldo, Nicola Traverso and Anna Lisa Furfaro *

����������
�������

Citation: Nitti, M.; Ivaldo, C.;

Traverso, N.; Furfaro, A.L. Clinical

Significance of Heme Oxygenase 1 in

Tumor Progression. Antioxidants 2021,

10, 789. https://doi.org/10.3390/

antiox10050789

Academic Editor: Stefan W. Ryter

Received: 30 March 2021

Accepted: 10 May 2021

Published: 17 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Experimental Medicine, University of Genoa, Via L.B. Alberti 2, 16132 Genova, Italy;
mariapaola.nitti@unige.it (M.N.); caterina.ivaldo@edu.unige.it (C.I.); nicola.traverso@unige.it (N.T.)
* Correspondence: annalisa.furfaro@unige.it

Abstract: Heme oxygenase 1 (HO-1) plays a key role in cell adaptation to stressors through the
antioxidant, antiapoptotic, and anti-inflammatory properties of its metabolic products. For these
reasons, in cancer cells, HO-1 can favor aggressiveness and resistance to therapies, leading to poor
prognosis/outcome. Genetic polymorphisms of HO-1 promoter have been associated with an
increased risk of cancer progression and a high degree of therapy failure. Moreover, evidence from
cancer biopsies highlights the possible correlation between HO-1 expression, pathological features,
and clinical outcome. Indeed, high levels of HO-1 in tumor specimens often correlate with reduced
survival rates. Furthermore, HO-1 modulation has been proposed in order to improve the efficacy of
antitumor therapies. However, contrasting evidence on the role of HO-1 in tumor biology has been
reported. This review focuses on the role of HO-1 as a promising biomarker of cancer progression;
understanding the correlation between HO-1 and clinical data might guide the therapeutic choice
and improve the outcome of patients in terms of prognosis and life quality.
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1. Introduction

Heme oxygenase (HO) is an evolutionarily conserved enzyme that, in the presence
of molecular oxygen (O2) and reduced nicotinamide adenine dinucleotide phosphate
(NADPH), catalyzes the degradation of heme into equimolar amounts of biliverdin, carbon
monoxide (CO), and free iron (Fe2+), releasing NADP+ and H2O [1].

Two different isoforms of HO have been described in mammalian cells (HO-1 and
HO-2) and, heme oxygenase 1 (HO-1) represents the inducible form [2]. The HMOX-1
gene maps on the human chromosome 22q12.3 [3], on a region of approximately 13,148 bp,
containing five exons and four introns [4], and codifies for a 32 kDa stress protein present
at low levels in physiological conditions in most mammalian tissues [2]. HO-1 induction
generally occurs in response to different endogenous and exogenous stimuli, mainly related
to oxidative stress and inflammation, as well as to iron metabolism imbalance [5–8]. In
tissues responsible for heme metabolism, such as spleen, liver, and bone marrow, HO-1 is
highly expressed [9].

The induction of HO-1 exerts pleiotropic effects. It is well known that HO-1 is involved
in the adaptive response to cellular stress and in attenuating inflammation, and, in healthy
cells, HO-1 maintains redox homeostasis and prevents carcinogenesis. Importantly, in
cancer cells, its expression correlates with tumor growth, aggressiveness, metastatic and
angiogenetic potential. Recently, a crucial role of HO-1 in tumor immune escape has also
been highlighted [10–13].

All the above-mentioned functions are ascribed mainly to the activity of HO-1 metabolic
products [14–16]. Bilirubin (BR), derived by biliverdin reduction catalyzed by biliverdin
reductase (BVRA), is a powerful antioxidant [17–20], able to scavenge reactive oxygen
species (ROS) [21], therefore preventing protein and lipid peroxidation [17,22–24]. BR plays
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a key role in the regulation of inflammation and adaptive immunity, exerting immuno-
suppressive effects and promoting immune tolerance [25–27]. It is important to remark
that BR is an important modulator of endothelial cell activity also in the microvasculature.
Indeed, BR is able to reduce leukocyte transmigration and to prevent leucocyte rolling
by decreasing the expression of P- and E-selectin, VCAM, and ICAM [28–31]. CO is well
known as an antiapoptotic, anti-inflammatory, antiproliferative, and anticoagulant fac-
tor [32–35] and modulates the mitogen-activated protein kinase pathway (MAPK), soluble
guanylyl cyclase (sGC) and the level of intracellular cGMP [36–38]. HO-1-derived CO is
involved in blood vessel development [39] and VEGF synthesis [37], and enhances the pro-
liferation of endothelial cells [38]. In addition, CO is able to attenuate inflammation [40,41],
acting on both T cells [42] and antigen-presenting cells [11,12,33,43]. Finally, HO-1-derived
free iron induces the synthesis of the heavy chain of the iron-chelating protein ferritin
and activates the membrane transporter Fe-ATPase, which is crucial for decreasing the
intracellular concentration of free Fe2+ and for preventing ROS production through the
Fenton reaction [44,45]. Notably, HO-1 overactivation, if not balanced by the induction of
ferritin and iron transporters or quenching systems, can trigger ferroptosis. Indeed, in this
condition, iron accumulation leads to cell death through excessive ROS production and
consequent lipid peroxidation [46,47].

Among HO-1 metabolic products, only CO has been recognized to be directly in-
volved in tumor progression, promoting cancer cell proliferation, migration, angiogenesis,
and immune escape [11]. The role of HO-1-derived bilirubin in cancer biology has been
hypothesized considering its pro-surviving, pro-angiogenetic, and anti-inflammatory activ-
ity [31,48]. Instead, the generation of free iron due to HO-1 activation has been proved to
favor non-canonical ferroptosis and is considered a therapeutic approach.

This review touches on the relevance of HO-1 expression in cancer progression, with
a particular interest in the correlation with clinical features of tumors, taking into account
data from histopathological analysis of tumor specimens.

2. HO-1 Gene Transcription and Protein Localization
2.1. HO-1 Transcriptional and Post-Transcriptional Regulation

The regulation of HO-1 expression occurs mainly at the transcriptional level (Figure 1).
The promoter region of HO-1 contains several binding sites for different transcription
factors activated in oxidative stress conditions, such as AP-1, HIF-1, NF-kB, and Nrf2 [49,50].
Thus, HO-1 is under the control of different signaling pathways. Moreover, two kinds of
polymorphisms are present in its promoter region: the length of (GT)n repeats and the
single nucleotide polymorphism (SNP) at the codon −413. Further, HO-1 protein levels can
be regulated post-transcriptionally. Here, the main aspects of HO-1 synthesis regulation
will be in brief as they are already reviewed elsewhere [51,52]; in particular, we will focus
on the roles of HO-1 in cancer biology.

Among the HO-1 promoter polymorphisms, the (GT)n microsatellite repeats are
crucial in modulating HO-1 expression. In particular, (GT)n polymorphisms are usually
classified as short and long according to the number of the GT repeats: individuals with
long (GT)n repeats show lower HO-1 inducibility due to a decreased promoter activity
compared to individuals with short (GT)n repeats who have higher transcriptional activity,
higher HO-1 inducibility and thus higher HO-1 levels [53]. The presence of this polymor-
phism correlates with the development of various pathologies, such as cardiovascular
diseases, pulmonary disease [53–55], and cancer. However, contrasting results have been
reported in different types of cancers [56].

Moreover, the SNP rs2071746 (−413A > T) polymorphism can also modulate HO-1
inducibility, being the higher HO-1 expression associated with the 413-A variant [57].
This polymorphism correlates with a reduced incidence of ischemic heart disease [58]
and with graft survival after liver transplantation when present in the donor [59]. To our
knowledge, only recently, the role of SNPs −413A > T in cancer risk has been analyzed by
Bukowska [60]. The role of HO-1 polymorphisms in cancer will be discussed later.
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Figure 1. Schematic representation of heme oxygenase 1 (HO-1) activity and regulation. HO-1 induction can be regulated 
at the transcriptional level by several stress-related transcription factors (Nrf2, AP-1, NF-kB, and HIF-1). Two polymor-
phisms that modify HO-1 inducibility have been indicated. Post-transcriptional regulation can involve miRNA. HO-1 
regulates intracellular heme level catalyzing its degradation into biliverdin, carbon monoxide (CO), and ferrous iron (Fe2+). 
Biliverdin is converted into bilirubin by biliverdin reductase A (BVRA). Free iron activates iron transporters and induces 
the expression of ferritin. HO-1 metabolic products exert pro-survival activities, as indicated. A truncated form of HO-1, 
formed by signal peptide peptidase (SSP) cleavage, with nuclear localization and no enzymatic activity, has been de-
scribed. 

Different kinase pathways (i.e., MAPKs and PI3K/AKT) are involved in HO-1 induc-
tion in cancer cells, not only by acting on Nrf2 but also by favoring Nrf2 independent HO-
1 activation. p38 MAPK is responsible for Nrf2-dependent HO-1 activation in human 
MCF-7 breast cancer cells exposed to cadmium chloride [73] and cooperates with ERK for 
Nrf2-independent HO-1 activation in MKN-45 and in MKN-28 human gastric cancer cells 
[74]. Moreover, PI3K/AKT has been proved to be involved in HO-1 induction in SH-SY5Y 
neuroblastoma cancer cells in response to guanosine [75] and in cholangiocarcinoma cells 
treated with piperlongumine [76]. 

The regulation of HO-1 expression also occurs at the post-transcriptional level and 
microRNAs (miRNAs) play a key role. miRNAs can directly regulate HO-1 or indirectly 
modulate Nrf2, as already reviewed by Cheng and coworkers [77]. More recently, the in-
volvement of miRNAs in regulating HO-1 in cancer cells has been proved. In particular, 
miR-155 favors lung cancer resistance to arsenic trioxide through Nrf2/HO-1 activation 
[78]. miR200a, in breast cancer, regulates HO-1 via Nrf2 activation by targeting Keap1 
mRNA [79]. miR-1254 or miR-193a-5p, in non-small cell lung cancer (NSCLC) and pros-
tate cancer, respectively, act on HO-1, reducing its expression and contributing to decreas-
ing cancer cell growth [80,81]. We also demonstrated the involvement of miR494 in favor-
ing neuroblastoma cell adaptation to oxidative stress through HO-1 up-regulation [82]. 

2.2. HO-1 Sub-Cellular and Extra-Cellular Localization 
As far as HO-1 localization is concerned, HO-1 is mainly present at the endoplasmic 

reticulum (ER), where co-localizes with cytochrome P-450 reductase [83,84]. In addition, 

Figure 1. Schematic representation of heme oxygenase 1 (HO-1) activity and regulation. HO-1 induction can be regulated at
the transcriptional level by several stress-related transcription factors (Nrf2, AP-1, NF-kB, and HIF-1). Two polymorphisms
that modify HO-1 inducibility have been indicated. Post-transcriptional regulation can involve miRNA. HO-1 regulates
intracellular heme level catalyzing its degradation into biliverdin, carbon monoxide (CO), and ferrous iron (Fe2+). Biliverdin
is converted into bilirubin by biliverdin reductase A (BVRA). Free iron activates iron transporters and induces the expression
of ferritin. HO-1 metabolic products exert pro-survival activities, as indicated. A truncated form of HO-1, formed by signal
peptide peptidase (SSP) cleavage, with nuclear localization and no enzymatic activity, has been described.

The transcription factor nuclear erythroid 2-related factor-2 (Nrf2) is recognized to
be the master regulator of HO-1 activation. Under nonstressed conditions, Nrf2 is bound
to Kelch-like ECH-associated protein 1 (Keap1), which continuously targets Nrf2 for
proteasome degradation. When cells are exposed to electrophiles and/or oxidants, Keap1
is inactivated and the newly synthetized Nrf2 is free to move into the nucleus, where it
dimerizes with small Maf proteins and binds to the antioxidant/electrophile responsive
elements (ARE/EpRE), leading to HO-1 gene transcription [5,61].

Of note, in cancer cells, genetic and epigenetic modifications of Nrf2/Keap1 have
been described [5,62,63]. Indeed, gain-of-function mutations in Nrf2 or loss-of-function
mutations in Keap1 lead to constitutive activation of Nrf2 and of its downstream target
genes [5,62]. In particular, Nrf2 gain-of-function mutations have been identified in lung,
head and neck, and bladder cancer, while Keap1 loss-of-function mutations have been
identified in esophageal, head and neck, liver, gastric, and colorectal cancer [64]. In addition,
epigenetic, especially TET-dependent demethylation of the Nrf2 promoter or Keap1 and
CUL3 hypermethylation, favors Nrf2 activation, as demonstrated in lung, colorectal, and
ovarian cancer [65–68].

Furthermore, HO-1 transcriptional regulation specifically involves the BTB domain
and CNC homolog 1 (Bach1), a heme-binding protein that represents a major transcriptional
repressor of HO-1. Indeed, Bach1 competes with Nrf2 for the binding to ARE sequences
and impairs Nrf2-DNA binding activity. In response to oxidative stress, and in particular, to
high levels of intracellular heme, Bach1 detaches from ARE sequences and is degraded by
proteasome; in this condition, HO-1 transcription is allowed [10,69,70]. Of note, it has been
demonstrated that in lung cancer metastasis, Bach1 can be stabilized in terms of protein
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expression and correlates with poor overall survival [71,72]. In the same works, high levels
of HO-1 have been observed, meaning that the activity of HO-1 can halt Bach1 proteasomal
degradation by reducing heme content. Thus, Bach1 stabilization can be observed both
in the absence of Nrf2 activity or in the presence of Nrf2 activity, being dependent on the
content of intracellular free heme.

Different kinase pathways (i.e., MAPKs and PI3K/AKT) are involved in HO-1 induc-
tion in cancer cells, not only by acting on Nrf2 but also by favoring Nrf2 independent
HO-1 activation. p38 MAPK is responsible for Nrf2-dependent HO-1 activation in human
MCF-7 breast cancer cells exposed to cadmium chloride [73] and cooperates with ERK
for Nrf2-independent HO-1 activation in MKN-45 and in MKN-28 human gastric cancer
cells [74]. Moreover, PI3K/AKT has been proved to be involved in HO-1 induction in SH-
SY5Y neuroblastoma cancer cells in response to guanosine [75] and in cholangiocarcinoma
cells treated with piperlongumine [76].

The regulation of HO-1 expression also occurs at the post-transcriptional level and
microRNAs (miRNAs) play a key role. miRNAs can directly regulate HO-1 or indirectly
modulate Nrf2, as already reviewed by Cheng and coworkers [77]. More recently, the
involvement of miRNAs in regulating HO-1 in cancer cells has been proved. In particu-
lar, miR-155 favors lung cancer resistance to arsenic trioxide through Nrf2/HO-1 activa-
tion [78]. miR200a, in breast cancer, regulates HO-1 via Nrf2 activation by targeting Keap1
mRNA [79]. miR-1254 or miR-193a-5p, in non-small cell lung cancer (NSCLC) and prostate
cancer, respectively, act on HO-1, reducing its expression and contributing to decreasing
cancer cell growth [80,81]. We also demonstrated the involvement of miR494 in favoring
neuroblastoma cell adaptation to oxidative stress through HO-1 up-regulation [82].

2.2. HO-1 Sub-Cellular and Extra-Cellular Localization

As far as HO-1 localization is concerned, HO-1 is mainly present at the endoplasmic
reticulum (ER), where co-localizes with cytochrome P-450 reductase [83,84]. In addition,
HO-1 can co-localize with caveolin 1/2 on plasma membrane caveolae [85] and a mito-
chondrial localization has been also demonstrated [86]. Of note, HO-1 can move into
the nucleus, and nuclear translocation is favored by the signal peptide peptidase (SSP)-
mediated intra-membrane cleavage, which leads to a C-terminal truncated form of HO-1
without catalytic activity but with transcriptional function [87–89]. Indeed, the truncated
form of HO-1 interacts with Nrf2, increasing its stabilization [90]. Moreover, it has been
demonstrated that the acetylation of the truncated form of HO-1 significantly enhances
JunD-mediated AP-1 transcriptional activity leading to cancer cell proliferation, invasion,
and resistance to therapy [91], indicating that post-translational modification of nuclear
HO-1 plays an important role in cell proliferation, migration, and metastasis [92]. HO-1
nuclear compartmentalization is associated with cancer progression and chemoresistance,
as demonstrated in chronic myeloid leukemia (CML) [93,94]; however, some opposite
observations are reported in the literature [95–98]. A deeper review of the significance of
HO-1 nuclear-truncated form has been recently published [92].

Furthermore, an extracellular localization of HO-1 in body fluids, including plasma,
serum, milk, and cerebrospinal fluid, has been described [99–101]. In this context, a poten-
tial role of HO-1 as a disease biomarker has been suggested [94]. To date, the mechanisms
of HO-1 release in biological fluids have not been understood. It has been hypothesized
that plasma levels of HO-1 are the result of an active secretion and not the consequence of
cell necrosis since it has been demonstrated, in patients with acute myocardial infarction,
that HO-1 plasma levels are independent of necrosis biomarkers [102]. Interestingly, in
acute kidney injury (AKI), HO-1 plasma and urinary levels parallel the level of HO-1
expression in renal tissue in response to damage [103]. Moreover, in both serum and urine,
a truncated form of HO-1 was detected, suggesting that proteolytic cleavage occurs, even
though the causes and consequences of this cleavage remain unknown [103]. More recently,
the involvement of extracellular vesicles (EVs), such as exosomes and micro-vesicles, as
potential sources of extracellular biomarkers has been considered [104,105]. In this context,
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HO-1 mRNA and protein have been detected in exosomes isolated from peripheral blood
mononuclear cells (PMBC) of psoriasis patients [106]. Schipper and coworkers detected
HO-1 protein in EVs from various human bio fluids [107]. With regard to cancer, HO-1
protein is found in EVs from the culture medium of several types of cancer cells, such as
breast, lung, melanoma, and kidney [108]. However, this aspect needs further investigation.

3. Role of HO-1 in Cancer Progression

HO-1 overexpression has been described in several types of cancers and is associated
with cancer cell proliferation, angiogenesis, invasiveness, immune escape, and resistance
to therapy. However, opposite evidence has been reported as well, correlating HO-1
expression with inhibition of cancer cell proliferation, induction of apoptosis, and reduction
of invasiveness; this suggests that the role of HO-1 in tumors could be tissue- and cell-
specific [10].

3.1. HO-1 in Cancer Cell Growth, Metastasis, and Angiogenesis

The overexpression of HO-1 correlates with an increase in proliferation of cell vi-
ability in many types of cancer, such as human renal adenocarcinoma and in murine
melanoma [109,110]. It favors the proliferation of malignant prostate tissues [111], pan-
creatic cancer, hepatoma, and lymphosarcoma [112], as well as brain and hematological
cancers, as widely reviewed [11,113,114].

The acquisition of a metastatic phenotype, characterized by more aggressive features,
is a key step in cancer growth and progression. In this context, HO-1 overexpression has
been shown to favor metastasis development in melanoma [110], pancreatic cancer [115],
oral squamous cell carcinoma [116], and prostate cancer [117]. In non-small cell lung cancer
(NSCLC), the invasive and migratory abilities of cancer cells significantly increase after
HO-1 overexpression, decrease after HO-1 silencing and correlate with the expression
of metastasis-associated protein EGFR, CD147, and MMP9 [118]. In gastric cancer, the
Nrf2-dependent HO-1 activation is involved in metastatic potential both in vitro and
in vivo models [119]. Furthermore, HO-1 is involved in the epithelial-to-mesenchymal
transition, a critical step in the metastasis process. Indeed, in ovarian cancer cells, HO-1
inhibition by zinc II protoporphyrin IX (ZnPPIX) down-regulates the expression of the
mesenchymal markers vimentin, N-cadherin, and Zeb1, while up-regulates the expression
of epithelial markers [120]. Consistently, it has been demonstrated that the down regulation
of GRP78 increases the migration and invasiveness of colon cancer cells by the activation of
Nrf2/HO-1, the induction of vimentin, and the reduction of E-cadherin expression [121].

Moreover, tumor invasiveness and metastasis development are strictly related to
the stimulation of angiogenesis. In this regard, the role played by HO-1 in pathological
angiogenesis of cancer is well documented both in vitro and in vivo. The up-regulation
of VEGF expression in response to prostaglandin in human microvascular endothelial
cells (HMEC-1) is mediated by the activation of HO-1 [122], and CO seems to be the
main mediator in stimulating blood vessel formation [39]. It has been shown that HO-1
overexpression promotes angiogenesis in urothelial carcinoma cells [123] as well as in
human pancreatic cancer [115]; in bladder cancer, HO-1 overexpression correlates with
HIF-1α and VEGF expression [124]. Moreover, HO-1 inhibition by ZnPPIX suppresses
VEGF production in GC9811-P gastric cancer cells, a cellular line characterized by high
peritoneal metastatic potential [125], and in HCT-15-induced xenografts model of colorectal
cancer reduces VEGF release and tumor angiogenesis [126]. In addition, inhibition of the
Nrf2/HO-1 pathway by oxysophocarpine treatment suppresses the migration, the invasion
potential, and the angiogenesis of oral squamous cells carcinoma [127].

3.2. HO-1 in Cancer Immune Escape

Recently, an important role of HO-1 in cancer immune escape has been highlighted.
Indeed, HO-1 expression in infiltrating immune cells, including macrophages, dendritic
cells (DC), neutrophils, natural killer cells (NK), and T and B lymphocytes, leads to their po-
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larization toward a tumor-promoting and immunosuppressive phenotype. Moreover, HO-1
expression in cancer cells can be associated with the recruitment of specific subsets of infil-
trating leucocytes and to the generation of specific cytokines that favor tumor progression.

Indeed, HO-1 expression is involved in macrophages polarization towards a pro-
tolerogenic, pro-angiogenic, IL-10 producing, M2 phenotype [128], and HO-1-derived
CO keeps DCs immature and modulates their cytokines secretion towards a tolerogenic
phenotype [129].

In particular, it has been demonstrated that HO-1 is highly expressed in monocytes
within the tumor microenvironment once they differentiate to TAMs, which indicates that
HO-1 promotes their immunosuppressive function [130]. Furthermore, HO-1 detection in
TAMs of prostate and breast cancers correlates with accelerated tumor growth [131,132].

Interestingly, in aggressive and metastatic prostate cancer, both in vivo and in ex vivo
models, HO-1 positive macrophages were mainly detected outside the tumor tissue at
the invasive zone of prostate tumors. These data suggest that extra tumor HO-1 positive
macrophages could be involved in cancer aggressiveness, probably by playing a prominent
role in stimulating tumor growth and metastasis [117].

Furthermore, in HO-1 overexpressing solid tumors, as well as in hematological ma-
lignancies, a high number of T regulatory cells (Treg) are present and act to suppress the
immune response against the tumor mass [133–135]. For instance, in 4T1 breast cancer
and in breast and melanoma bearing mice, it has been demonstrated that Treg recruitment
is increased in an HO-1 dependent manner [136], and HO-1 expressing Treg accumulates
during glioma progression [137].

Regarding the role played by HO-1 in regulating NK lymphocytes, crucially involved
in the early immune response to tumor cells [138], little data are available in the literature.
In a co-culture of an HO-1 positive cervical cancer cell (CCC) line and NK cells, pretreat-
ment with various HO-1 inhibitors, tin II protoporphyrin IX (SnPPIX) and ZnPPIX, restores
the expression of NKG2D, NKp30, and NKp46, markers of NK activation, and increases the
production of IFN-γ and TNF-α, enhancing NK killing activity towards cancer cells [139].
Furthermore, we have recently demonstrated in BRAFv600 melanoma cells that HO-1 inhi-
bition with tin mesoporphyrin IX (SnMPIX) and HO-1 siRNAdown-regulation favors cell
death induced by vemurafenib, and increases NK cancer cell recognition by up-regulating
B7H6 and ULBP3 ligands of NK cells [140]. To the best of our knowledge, no studies have
been reported so far on the expression of HO-1 in NK cells.

3.3. HO-1 in the Resistance to Therapy

An important aspect of HO-1 expression in cancer cells is the gain of a resistant phe-
notype. It is well known that conventional anticancer treatments such as chemo- and radio-
therapies can act to induce oxidative stress by increasing intracellular ROS levels [141] in
order to favor apoptosis, as recently reviewed by Aggarwal and co-workers [142]. However,
cancer cells, by up-regulating their antioxidant defenses, including HO-1, can counteract
oxidative stress. Thus, the increase in HO-1 expression attenuates the efficacy of anticancer
therapy as shown in different types of tumor where high levels of HO-1 are associated with
a lower sensitivity to anticancer treatment. For instance, HO-1 overexpression is involved
in resistance to chemo- and radio-therapy in central nervous system malignancies [113]
and in resistance to cisplatin in hepatoma cells and ovarian cancer cells [143,144]. This
aspect will be discussed later in Section 5, in the context of the possible modulation of HO-1
to favor antitumor therapies [145–154].

4. HO-1 Promoter Polymorphisms and Cancer Risk

As reported above, two major polymorphisms in the HO-1 promoter have been
identified and linked to the modulation of HO-1 transcription: the (−413A > T) SNP
and the presence of long/short (GT)n repeats. So far, no association between SNP-413
and cancers has been demonstrated, as indicated by Wang et al., who analyzed studies
conducted on digestive neoplasms [155]. Moreover, recently, no prognostic significance
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has been shown for (−413A > T) SNP in children with acute lymphoblastic leukemia
(ALL) [60].

Considering the length of GT repeats, an association has been found considering only
East-Asian carriers of long (GT)n repeats, who show a high incidence of cancers in the
digestive tract compared to carriers of short repeats. In fact, in Caucasian, American, and
West-Asian populations, this association has not been demonstrated. Notwithstanding
the small number of samples and the lack of uniformity of the studies analyzed, it seems
evident that for the East-Asian populations, the presence of long (GT)n repeats is a risk
factor for digestive tract cancers, probably in association with environmental factors.
Indeed, in some studies, an association with alcohol consumption has been shown for
the development of laryngeal squamous cell carcinoma (LSCC) for L-allele carriers in
male Chinese [156]. Exposure to carcinogenic chemical compounds is a determinant to
be considered; for instance, the role of smoking in male Japanese carriers of long repeats
(GT)n who developed lung adenocarcinoma has been proven [157]; moreover, in asbestos-
exposed Japanese subjects, the frequency of L-genotype correlates with an increased risk of
developing mesothelioma [158].

An interesting study from Wu and collaborators, conducted in a cohort of patients
in the area of Taiwan in which arsenic poisoning is endemic, demonstrated that (GT)n
polymorphisms modify the risk of cancer due to arsenic exposure. Indeed, the risk of
developing the different subtypes of arsenic-dependent tumors (skin cancer and urothelial
carcinomas) is differently affected by (GT)n length. In particular, the S/S genotype carriers
show a high risk of skin cancer, while no association is found for the risk of developing
urothelial carcinoma among the three genotypes (S/S, L/S, and L/L) [159].

Based on this evidence, the analysis of (GT)n polymorphisms may represent a tool
for evaluating an individual risk profile for a specific type of cancer, also considering the
specific patient ethnicity.

5. HO-1 Expression, Tumor Aggressiveness, and Disease Outcome. Evidence
from Immunohistochemistry

To date, the most consistent data regarding the correlation among HO-1 expression,
cancer progression, patient prognosis, and outcome derive from immunohistochemistry
studies on specimens from surgical patients. The data available in the literature are
synthesized in Table 1 at the end of this paragraph. It is important to underline that,
since Nrf2 is crucially involved in the regulation of HO-1 transcription, its expression has
been considered as well. Both solid and hematopoietic malignancies have been taken into
consideration, and the possible existence of negative association has also been analyzed.

5.1. HO-1 Expression and Disease Outcome

HO-1 expression in tumor mass is associated with poor prognosis/outcome and with
high grade/stage in several types of tumors. In serous ovarian cancer, the association of HO-
1 expression with FIGO stage III-IV and with poor overall survival has been proven [160].
In non-muscle-invasive bladder cancer (NMIBC), HO-1 expression is associated with grade
3, and poor prognosis or low recurrence/progression-free survival [161,162]. Similarly, in
astrocytoma, high levels of HO-1 have been associated with tumor grade II and III and
poor overall survival [163], and NSCLC at stage III-IV, high levels of HO-1 have been
associated with high mortality risk and short overall survival [118]. In gallbladder cancer,
the positivity for Nrf2, together with high expression of HO-1, has been shown to correlate
with high grade/stage and poor prognosis [164], highlighting the role played by Nrf2 in the
induction of HO-1 during tumor progression. Similar observations have been provided for
clear cell renal cell carcinoma (ccRCC) [165], even though without correlation with tumor
grade or stage. Indeed, patients with ccRCC showing high levels of HO-1 and Nrf2 have
lower median survival time and shorter post-operative overall survival, with no proven
correlation with tumor grade/stage.

In some studies, the expression level of HO-1 in tumors has been associated with
clinical outcomes but without reference to the histopathological analysis. Thus, cholan-
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giocarcinoma [166], acute myeloid leukemia (AML) [167], and neuroblastoma [168] show
a correlation between high HO-1 expression and poor disease outcomes. Furthermore,
HO-1 positivity in chronic myeloid leukemia [169], acute myeloid leukemia [170], and
myelodysplastic syndrome [171] correlate with disease progression, resistance to therapy,
and relapse.

5.2. HO-1 Expression and Tumor Grade/Stage

Vice versa, in other reports, HO-1 expression has been correlated with grade and stage
and with invasion potential, but the clinical outcomes have not been analyzed. For instance,
HO-1 overexpression in papillary thyroid cancer positively correlates with the TNM stage
and cancer progression [172].

The intensity of HO-1 positivity has also been analyzed in order to find a possible
correlation with the progression of a disease or with clinical outcomes. Interestingly, in
NSCLC, the levels of HO-1 correlates with advanced stage (III-IV), T3, and T4 status
and with lymph node metastasis; however, no association with overall survival has been
demonstrated when patients were divided into two different subgroups related to HO-1
intensity of expression. Thus, no differences in patient survival were observed with regard
to HO-1 intensity, highlighting that HO-1 positivity also at a low degree correlates with
disease severity [98].

5.3. Correlation between HO-1 Expression and Tumor Markers

In many studies, HO-1 positivity has been correlated with other tumor markers. In
localized prostatic cancer, HO-1 positivity associates with relapse frequency and PTEN
deletion [173]. In NMIBC bladder cancers, HO-1 expression in tumor mass correlates
with HIF-1α expression and microvessel density [123], and in particular, Nrf2 and HO-1
positivity correlates with HIF-1α, HIF-2α, and VEGF expression in the tumor, and with
VEGF and interleukin levels in the plasma [124]. Similarly, in gastric cancer [174] and
hepatocellular carcinoma [175], HO-1 positivity is associated with VEGF expression, poor
differentiation, and microvascular density.

It is worth noting, in melanoma [176], thyroid cancer [172], and acute myeloid
leukemia [167], HO-1 positivity correlates with the gain of function mutations of spe-
cific oncogenes B-Raf and RET. Moreover, in high-risk and very high-risk myelodysplastic
syndrome, HO-1 expression correlates with overexpression of the enhancer of the zeste
homologue 2 (EZH2) gene [171].

It is remarkable to note that HO-1 expression can be detected not only in tumor
cells but also in cancer-associated cells, where it can contribute to the generation of a
tumor-permissive environment. The number of HO-1 positive cancer-associated cells
correlates with the tumor grade, metastatic competence, and neoangiogenesis. Indeed,
in NMIBC bladder cancer HO-1 positivity has been detected not only in tumor cells but
also in infiltrating fibroblasts and endothelial cells, in association with an increased risk
of metastasis but without association to recurrence [177]. Further, high levels of HO-1 in
infiltrating macrophages show a positive correlation with vascular density and high tumor
grade in glioblastoma [178], with stage II, lymph node metastasis, and poor prognosis
in colorectal cancer [179], and with a high Gleason score and bone metastasis in prostate
cancer [117]. High HO-1 expression in lymphocyte Treg shows a correlation with a high
tumor grade in glioma [137].

5.4. Contrasting Evidence

Although a great deal of literature highlights the correlation between HO-1 over-
expression and cancer progression and often with the poor clinical outcomes, it seems
important to consider that opposite evidence has also been provided. Indeed, it has been
demonstrated that high HO-1 expression level correlates with a better prognosis and better
overall survival in colorectal cancer [180,181], in gastric cancer [182], in small intestinal
adenocarcinoma [183], and in oral squamous carcinoma [184].
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An important observation concerning HO-1 subcellular localization comes from three
different studies on head and neck cancer [185], breast cancer [186], and colorectal can-
cer [187] that analyzed the correlation of histological features with HO-1 positivity in
cytosol or nuclei. In these studies, high expression of HO-1 in cytosol correlated with
low grade and differentiation without correlation with invasiveness. However, nuclear
localization of HO-1 was associated with a high grade and poor differentiation. Moreover,
in breast cancer, Gandini showed that cytosolic HO-1 is enzymatically active, while the
nuclear form is truncated and with no catalytic activity [186]. These observations appear
to be interesting and helpful in understanding the contrasting observation of the role of
HO-1 in tumor progression and lead to speculation that HO-1 pro- or antitumor activity
may depend on its subcellular localization and catalytic activity.
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Table 1. Correlation among HO-1 expression, aggressiveness, and outcomes in histological specimens.

Tumor HO-1 Nrf2 Grade and Stage Additional
Markers

Metastasis, Lymph Node,
Angiogenesis

Clinical and
Pathological
Features

Disease
Outcome/Prognosis Ref.

Positive correlation among HO-1 expression and tumor aggressiveness/poor prognosis

-Solid tumors

Astrocytoma High level n.e. Grade II and III n.e. n.e. n.e. Poor OS [163]

Clear cell renal cell
carcinoma High level High level

No correlation
with ISUP grade
and T stage

n.e.
No correlation
with lymph node
metastasis

No significant
correlation
with age,
gender

Poor prognosis
Low MST
Low post
operative OS

[165]

Colangiocarcinoma High level n.e. n.e. n.e. No association
with metastasis

No significant
association
with age, gender,
histological type

Poor OS [166]

Gastric cancer High level High level
Poor
differentiated
tumors

Positive
correlation
with VEGF

Positive
correlation with MVD n.e. n.e. [174]

Gallbladder cancer High level High level

Moderately
differentiated and poorly
differentiated
tumors (G2-G3)
Correlation with Nevin
classification
(III-IV-V)

Positive
correlation
with MRP3

Metastasis

No significant
correlation with
gender, age, and
histology type
(SCC and AD)

Poor OS [164]

Hepatocellular
carcinoma High level n.e.

Poor
differentiated tumors
Edmondson-Steiner grade 2–4

n.e. Microvascular and capsular
invasion

High levels of
preoperative AFP

No significant
correlation with OS
and recurrence

[175]

Hormone refractory
prostate cancer High level n.e. n.e. n.e. n.e. Cancer progression n.e. [188]

Laryngeal cancer High level High level
No correlation with
tumor stage (clinical stage III and
IV), size tumor

High level
Keap1 and NQO1

No correlation
with lymph node
metastasis

No correlation
with age n.e. [189]

Melanoma High level n.e. n.e.

Positive
correlation
with B-Raf
and ERK

n.e. n.e. n.e. [176]
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Table 1. Cont.

Tumor HO-1 Nrf2 Grade and Stage Additional
Markers

Metastasis, Lymph Node,
Angiogenesis

Clinical and
Pathological
Features

Disease
Outcome/Prognosis Ref.

Neuroblastoma High level n.e. n.e. n.e. n.e. n.e. Poor OS [168]

Non-muscle-invasive
bladder cancer

High level n.e. Tumor grade G3
tumor stage pT1 Ki-67 and p53 n.e.

No significant
correlation with
age and gender

Poor prognosis
No correlation
with RFS and PFS

[161]

High level n.e. Tumor grade G3
Tumor stage T1

Positive
correlation
with S100A4

Lymph vascular
invasion n.e. Low RFS

Low PFS [162]

High level n.e. n.e.
Positive
correlation
with HIF-1α

High MVD n.e. n.e. [123]

High level High level n.e.
Correlation with
HIF-1α, HIF-2α,
VEGF

n.e.

Increased
serum/plasma level of
IL-6,
IL-8, VEGF

n.e. [124]

Non-small cell lung
cancer High level n.e. Stage III-IV

Positive
correlation
with MMP-9

High metastatic
rate

No correlation
with age
and gender

Poor prognosis
Low OS
High mortality risk

[118]

High level n.e. Stage III-IV
T status (T3-T4) n.e. Lymph node

metastasis
No correlation
with gender

No significant
difference in
patient survival
between high and
low
staining group

[98]

Ovarian cancer High level n.e.

Serous
undifferentiated tumors
Correlation with
FIGO stage (III-IV)

n.e. Lymph node
metastasis Non optimal-debulking Poor OS [160]

Prostate cancer High level n.e. Localized tumor PTEN
deletion n.e. n.e. Relapse after radical

prostatectomy [173]

Thyroid cancer High level n.e.

Positive
correlation with
TNM (1,2,3,4)
and with MACIS score

BRAFV600E
mutation

No significant
association with lymph node
metastasis

Correlation with
age and tumor
aggressiveness

n.e. [172]
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Table 1. Cont.

Tumor HO-1 Nrf2 Grade and Stage Additional
Markers

Metastasis, Lymph Node,
Angiogenesis

Clinical and
Pathological
Features

Disease
Outcome/Prognosis Ref.

-Hematopoietic tumors

Acute myeloid leukemia High level n.e. n.e.

Positive
correlation
with HIF-1α and
GLUT-1

n.e. n.e.
Correlation with
relapse and
refractory

[170]

High level n.e. Correleation with
M5 patients

Correlation with
RET gene n.e.

Correlation with
leukocytosis at
diagnosis

n.e. [167]

Chronic myeloid
leukemia

Higher
level in
peripheral
blood cells

n.e. n.e. n.e. n.e. Tumor progression Correlation with
relapse [169]

Myelodysplastic
Syndrome High level n.e. Correlation with high-risk and

very high-risk patients

Positive
correlation
with EZH2

n.e.

Progression to AML
and decreased
response to
decitabine

n.e. [171]

Positive correlation among HO-1 expression in tumor-associated cells and tumor aggressiveness/poor prognosis

Colorectal cancer

High level
in cancer
cells
and in
macrophages

n.e. Stage III n.e. Lymph node
metastasis

No significant
difference between the
HO-1-positive
and negative with
gender, age, tumor size,
histological type, and
depth of tumor
invasion

Poor prognosis
Short DSF [179]

Glioblastoma

High level
in
infiltrat-
ing
macrophages

n.e. Grade IV n.e. Positive correlation with vascular
density n.e. n.e. [178]

Glioma
HO-1
positive
Treg

n.e. Correlation with
grade glioma (II-III-IV) n.e. n.e. n.e. n.e. [137]
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Table 1. Cont.

Tumor HO-1 Nrf2 Grade and Stage Additional
Markers

Metastasis, Lymph Node,
Angiogenesis

Clinical and
Pathological
Features

Disease
Outcome/Prognosis Ref.

Non-muscle-invasive
bladder cancer

High level
in cancer
cells and
fibroblast-
like,
tumor-
infiltrating,
and en-
dothelial
cells

n.e.
Correlation with high grade
tumors
and with stage (T1)

COX-1 MVD, LVD, PI,
increased risk of metastasis

No association with age
and gender

No association with
recurrence [177]

Prostate cancer

HO-1
positive
macrophages
infiltrate
and in
bone
metastasis

n.e. High-grade tumors
Gleason score 7–10 n.e. Bone metastasis n.e. n.e. [117]

Negative correlation among HO-1 expression and tumor aggressiveness/poor prognosis

Colorectal cancer High level n.e. Invasive CRC
Significant
correlation
with K-ras

n.e.
Significant
correlation with
normal CEA level

Better
prognosis,
increased MTS

[181]

High level n.e. n.e. n.e.
Low vascular
invasion and
lymph node metastasis

n.e. Better survival rate [180]

Gastric cancer High level n.e. Well and moderate
differentiated n.e. Negative lymph node metastasis n.e. Better

prognosis [182]

Oral squamous cell
carcinoma High level n.e.

Well-differentiated Grade G1
No association with
T stage

n.e. Low lymph node
metastasis

No association
with age and sex
No association
with clinical stage

n.e. [184]

Small intestinal
adenocarcinoma High level n.e. Low T stage

(T1, T2, T3) n.e. Low pancreatic
invasion n.e.

Tend to have longer
OS
(difference not
significative)

[183]
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Table 1. Cont.

Tumor HO-1 Nrf2 Grade and Stage Additional
Markers

Metastasis, Lymph Node,
Angiogenesis

Clinical and
Pathological
Features

Disease
Outcome/Prognosis Ref.

Different correlation among HO-1 expression and tumor aggressiveness/poor prognosis depending on HO-1 subcellular localization

Breast cancer

High level
in
malignant
epithelial
cells

n.e. Grade I-II (>80%)

Positive
correlation
with
E-cadherin

Negative
correlation with lymph node
metastasis

Reduced tumor
size

Longer OS with
increased MST [186]

Colorectal cancer

High level
in cancer
cells and
in stromal
cells
(fibroblasts,
neu-
trophils,
and
macrophages)

n.e.

Well-differentiated
adenocarcinoma
Nuclear HO-1
localization in moderate and poor
differentiated
No association with TNM

n.e. No correlation with lymph node
and liver metastasis n.e. n.e. [187]

Head and neck
squamous cell
carcinoma

High level n.e.

High rate of HO-1
positivity
in well-differentiated
and moderately
differentiated (<90%)
Poor-differentiated high rate of
nuclear HO-1

n.e. n.e.
No association
with age,
gender, tumor location

n.e. [185]

Tumors are listed alphabetically. List of table abbreviations. n.e., not evaluated; AD, adenocarcinoma; AFP, alpha feto protein; CEA, carcinoempryonic antigen; ISUP, International Society of Urologic Pathologists;
LVD, lymph vascular density; MTS, median survival time; MVD, microvascular density; OS, overall survival; PI, proliferation index: PFS, progression free survival; RFS, recurrence free survival; SCC, squamous
cell carcinoma.
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6. HO-1 and Tumor Therapies

It has been widely reported that the induction of HO-1 in response to anticancer
treatments can attenuate the efficacy of therapy, increasing cancer cell survival. Indeed,
HO-1 expression is increased in response to different chemotherapeutic agents that act
through the imbalance of intracellular oxidative state. For instance, in neuroblastoma cells,
HO-1 expression is induced by exposure to etoposide through the activation of Nrf2 [145],
and by the exposure to proteasome inhibitors bortezomib or carfilzomib [148–150], and
mediates cell survival. To note, doxorubicin or pharmorubicin promote HO-1 expression
increasing cell survival in breast cancers through the activation of Src/STAT3 or PI3K/AKT,
respectively [146,147].

Remarkably, HO-1 induction mediates cancer cell resistance not only to chemothera-
peutic agents but also to radio-, photodynamic-, and non-thermal-plasma (NTP) therapies,
as demonstrated in non-small cell lung carcinoma [152–154].

As far as hematological malignancies are concerned, HO-1 expression significantly
increases in myeloid neoplasms both in chronic and acute myeloid leukemia. Its over-
expression occurs mainly after therapeutic intervention and induces chemoresistance.
Recently, it has been demonstrated that PI3K/AKT-dependent HO-1 induction drives drug
resistance to imatinib in CML [190] as well as to panobinostat in AML [191] by modulating
the expression of HDACs. HO-1 overexpression enhances the viability and decreases the
apoptotic rate in AML cell lines treated with cytarabine. Accordingly, the derived xenograft
mouse model shows a significantly shorter survival and a great extent of organ invasion,
while HO-1 down regulation significantly increases the survival rate [192]. Moreover, HO-1
up-regulation in myelodysplastic syndromes is closely related to resistance to decitabine-
induced apoptosis [193], and in multiple myeloma, HO-1 up-regulation is involved in
bortezomib chemoresistance [194].

In this context, pharmacological and genetic tools to reduce HO-1 activity have been
proposed, and their use has been hypothesized in therapy, as described later and summa-
rized in Table 2.

6.1. Inhibition of HO-1 by Pharmacological Compounds

Among the pharmacological tools, metalloporphyrins and imidazole-based com-
pounds are the most well-known and have been recently reviewed [195].

Briefly, metalloporphyrins represent the first generation of HO-1 inhibitors and include
deuteroporphyrin, mesoporphyrin, and protoporphyrin [196]. Structurally similar to heme,
metalloporphyrins strongly inhibit HO-1 by a competitive mechanism [197]. The most used
metalloporphyrins are ZnPPIX, SnPPIX, and SnMPIX, and their efficacy in favoring con-
ventional tumor therapies has been widely demonstrated in vitro and in vivo. For instance,
ZnPPIX favors the sensitivity of nasopharyngeal carcinoma cells to radiotherapy [198]
and of neuroblastoma to glutathione depletion and etoposide [145]. Moreover, ZnPPIX
sensitizes C-26 colon and MDAH2774 ovarian carcinoma cells to photodynamic therapy-
mediated cytotoxicity [199] and increases the effects of cisplatin in liver cancers [143]. It
has also been demonstrated that treatment with ZnPPIX reduces cell growth in hepatoma,
sarcoma, lung cancer, and B cell lymphoma [52,125]. Furthermore, in melanoma cells,
SnPPIX enhances the efficacy of photodynamic therapy [200] and in BRAFV600-mutated
melanoma cells SnMPIX increases cell death induced by vemurafenib/PLX4032 [140].

Unfortunately, metalloporphyrins are able to act on other heme-dependent enzymes,
such as nitric oxide synthase (NOS), sGC, and cytochrome P450 [201,202]. Moreover, even
though they efficiently inhibit HO-1 activity, they can often favor HO-1 protein synthesis,
as demonstrated in liver cells and fibroblasts, and more recently, in prostate cancer PC-3
cells by a compensatory mechanism [203–205]. Of note, another important disadvantage of
using metalloporphyrins is related to their photo reactivity, which is responsible for side
effects and even tissue and organ damage [196]. Another strong drawback for the potential
clinical use of some metalloporphyrins (e.g., ZnPPIX) is represented by their poor solubility
in aqueous solutions, which limits translational applicability. However, this inconvenience
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has been overcome by conjugation with specific molecules, e.g., polyethylene-glycol or
amphiphilic styrene-maleic acid copolymer, generating water-soluble molecules [206–210].

Imidazole-based compounds represent the second generation of HO-1 inhibitors. These
molecules are non porphyrin-based and non competitive water-soluble inhibitors of HO-1 and
exhibit low or even no inhibitory action on NOS, sGC, and CYP [211,212]. The first reported
was Azalanstat [213], but other molecules and novel azole-based compounds derived from
the structural modification of Azalanstat have been recently discovered [214,215]. Imidazole-
based compounds have shown potent antitumor activity in prostate and breast cancer cell
lines [216]; in a preclinical model of hormone-refractory prostate cancer, the small molecule
imidazole-derived OB-24 acts in synergism with the conventional chemotherapy drug Taxol,
preventing tumor growth and formation of lymph node and lung metastasis [188]. However,
imidazole-based compounds have not been tested in clinical studies so far.

6.2. Inhibition of HO-1 by RNA Interference and CRIPR/Cas9 Technology

With regard to genetic tools to modulate HO-1 activity, the most consistent data derive
from studies on RNA interference, including small interfering RNA and short hairpin
RNA, able to inhibit HO-1 activity by targeting HO-1 transcription and consequently
protein synthesis. Thus, HO-1 silencing increases the effect of chemotherapeutic drugs in
pancreatic cancer [217], neuroblastoma [148,149], and melanoma cancer cells [140], as well
as in myeloid leukemia [170]. Moreover, HO-1 silencing sensitizes cancer cells to apoptosis,
as demonstrated in lung, colon, and leukemic cancer cells [195]. Similar results have been
obtained in an in vivo experimental mouse model of hepatocellular carcinoma, where
injection of siRNA-HO-1 results in the diminished growth of the tumor [218]. Furthermore,
HO-1 is considered a survival factor in ALL, regardless of Philadelphia chromosome
positivity; indeed, the down-regulation of HO-1 expression by siRNA increases apoptosis
and arrests cell growth [219]. Consistently, in chronic lymphocytic leukemia (CLL), it has
been demonstrated that HO-1 silencing directly leads to apoptosis of MEC-1 cells and
enhances the effects of the combined therapy fludarabine plus entinostat [220].

A new approach in the inhibition of HO-1 activity is represented by genetic ablation
of HO-1 with the CRISPR/Cas9 editing system. It has been recently demonstrated that
homozygous HO-1 knock-out in BRAF-WT melanoma cells is able to decrease clone forma-
tion and to lower tumor cell growth [176]; further, in pancreatic ductal adenocarcinoma
cells, HO-1 CRISPR/Cas9 is able to suppress cell proliferation and improve the efficacy of
gemcitabine treatment [151]. Importantly, in in vivo experiments on C57/BL6 mice, HO-1
CRISPR/Cas9 editing blocks lymphocyte B development [221].
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Table 2. HO-1 inhibitory tools.

Pharmacological Inhibitors Benefits Drawbacks Ref.

Porphyrin-Based Compounds

Metalloporphyrins

- Zinc II protoporphyrin IX (ZnPPIX)
- Tin protoporphyrin IX (SnPPIX)
- Tin mesoporphyrin IX (SnMPIX)

- Competitive inhibitors
- Well proved activity in vitro and

in vivo

- Non selective on HO-1 isoform
- Active on other heme-dependent
- enzymes (NOS, sGC, and CYP)
- HO-1 inducers
- Photo reactive
- Poor soluble

[196,201,202]

Modified protoporphyrins
- Polyethylene-glycol (PEG-ZnPPIX)
- Amphiphilic styrene-maleic acid

copolymer (SMA-ZnPPIX)

- Water-soluble [206–210]

Imidazole-based compounds

- Azalanstat
- Other imidazole-derived compounds
- (OB-24)

- Non competitive inhibitors
- Selective on HO-1 isoforms
- Limited inhibitory activity on NOS,

sGC, and CYP
- Water-soluble

- Not well studied and not tested in
clinical trials [211,212]

Genetic tools

Small interfering RNA and short hairpin RNA - Specific targeting HO-1 mRNA - Limited therapeutic application

(delivery methods)
[195]

CRISPR/Cas9
- Genetic ablation of HO-1 gene
- Stable knock-down
- High efficiency of HO-1 inhibition

- Limited therapeutic application

(delivery methods)
[195]
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6.3. Induction of HO-1 as a Therapeutic Strategy

Thus, a great deal of literature shows a direct correlation between the overexpres-
sion of HO-1 and the gain of resistance of cancer cells and tumor progression. However,
it must be taken into account that in some tumors, the over expression of HO-1 exerts
opposite effects by inhibiting tumor growth and cancer progression. In particular, it has
been shown in some types of prostate cancer that HO-1 expression and carbon monoxide
generation are associated with significant inhibition of cell proliferation and invasive-
ness [96]. Moreover, in non-small-cell lung carcinoma NCI-H292 cells, the stable HO-1
overexpression is able to up-regulate tumor-suppressive miRNAs and to down-regulate
the expression of oncomirs and angiomirs, leading to the inhibition of cell proliferation,
invasiveness, and angiogenesis [222]. It has been highlighted that this tumor-suppressive
phenotype is characterized by the attenuation of the metastatic potential mainly by down
regulating MMP-9 and MMP-13 [223]. Similarly, stable overexpression of HO-1 retards
hepatocellular carcinoma progression [224]. The antitumorigenic effects of HO-1 have also
been demonstrated in human and rat breast cancer, where its overexpression correlates
with inhibition of cell proliferation [225] and in pancreatic and prostate cancer, where it is
associated with a decrease in cell proliferation and invasiveness by a down regulation of
the proangiogenic mediators VEGF and MMP-9 [97,195,226]. In this context, the induction
of HO-1 has been proposed to increase conventional cancer therapies, and some “natural”
compounds derived from plants have shown interesting properties. In colorectal cancer,
it has been demonstrated that treatment with extracts from Sageretia thea, a medicinal
plant used for treating hepatitis and fevers in Korea and China, decreases cell viability by
inducing GSK3β-dependent cyclin D1 degradation and increasing HO-1 expression via
activation of Nrf2 [227]. In addition, Ginnalin A, a polyphenolic compound isolated from
red maple (Acer rubrum), inhibits cell viability and colony formation in colorectal cancer,
inducing cell cycle arrest by activating the Nrf2/HO-1 pathway through the up-regulation
of p62 and the inhibition of Keap1 [228]. Similarly, treatment with fisetin, a bioactive
flavonol molecule abundantly found in strawberries, decreases the level of MMPs and
cell migration in metastatic breast cancer with a mechanism depending on Nrf2 nuclear
translocation and HO-1 up-regulation [229].

Since ferroptosis may be a way to kill cancer cells, and it can be enhanced by HO-
1 overactivation, the pharmacological induction of HO-1 has been proposed. Indeed,
HO-1-dependent intracellular Fe2+ overload induces lipid peroxidation and triggers a
noncanonical ferroptosis [230]. Phytochemicals are often used for this purpose [231]. Neu-
roblastoma cell treatment with withaferin A, a steroidal lactone derived from Withania
somnifera (Indian ginseng), directly targets Keap1, leading to Nrf2 release and HO-1 up-
regulation and consequently increasing intracellular Fe2+ and inducing ferroptosis [232].
Similarly, in human colon cancer cells, a high concentration of extract of Betula etnensis
extract induces HO-1 leading to ferroptotic cell death through an increase of ROS pro-
duction and in lipid peroxidation mediated by iron accumulation [233]. Moreover, HO-1
up-regulation has been proved to be the primary factor for curcumin-induced ferropto-
sis in human breast adenocarcinoma-derived MCF7 cells and in human triple-negative
MDA-MB-231 cell line [234]. In addition, β-elemene, a sesquiterpene found in a variety of
plants, is able to induce ferroptosis by enhancing HO-1 activity in KRAS mutant colorectal
HCT116 cancer cells [235]. In addition, in this work, the presence of possible side effects
of β-elemene were tested in the derived orthotopic murine colon cancer model, and no
toxicity was found relatively the different organs analyzed (lung, heart, liver, kidney, and
spleen) by H&E staining.

Thus, the evaluation of HO-1 expression in cancer samples from patients may help
to define a therapeutic strategy where inhibition or induction of HO-1 could improve the
efficacy of the standard antineoplastic therapy used.
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7. Future Perspectives and Conclusions

The chance to analyze HO-1 expression in cancer patients seems to be a useful tool to
improve tumor diagnosis and to better define prognosis and therapy. On the one hand, the
analysis of (GT)n length polymorphisms seems a very promising approach to assess the
risk of treatment failure as recently proved in ALL patients carrier of short (GT) repeats [60].
On the other hand, the characterization of HO-1 expression in tumors may be a useful tool
to improve tumor diagnosis and prognosis because it can correlate with tumor grade/stage,
invasiveness, and clinical outcomes. However, contrasting data are reported, and larger
analyses need to be performed. Importantly, it has been recently highlighted the role
played by the truncated form of HO-1 in favoring cell growth, opening to a new scenario
in which HO-1 can be involved in tumor biology [92].

As a future perspective, in order to better assess tumor progression, the correlation
between tissue expression of HO-1 and its levels in a blood sample could be taken into
consideration, even though no evidence has been reported so far. However, the analysis of
HO-1 level may be proposed in other biological fluids such as urine, peritoneal or pleural
fluids, if directly related to the tissue bearing neoplastic cells. It is important to remember
that in other diseases, HO-1 levels in bio fluids correlate with HO-1 expression levels in
tissues [103].

Moreover, a great amount of data support the efficacy of HO-1 modulation in order to
improve cancer response to therapies (Figure 2). Different approaches have been proposed,
using either pharmacological agents or genetic tools. Unfortunately, concerning HO-1
pharmacological inhibitors, the translational applicability is not completely elucidated,
even though both SnPPIX and SnMPIX have been already tested in humans [236] and
approved for the treatment of hyperbilirubinemia [237]. Instead, genetic tools have been
tested only in experimental animal models. Therefore, HO-1 modulation may represent an
important strategy also to prevent cancer immune escape. However, we must consider that,
so far, little data in the literature are available on the role played by HO-1 in the function of
tumor-related immune cells. This is still an open field of research.
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Figure 2. Schematic representation of the effects of HO-1 activation and generation of its metabolic products in healthy
and cancer cells. HO-1 activation is involved in antioxidant defenses and in healthy cells promotes the hormetic response
and cancer prevention through the generation of bilirubin and CO. In cancer cells, HO-1 favors cancer progression, and
its inhibition represents a therapeutic opportunity. However, also HO-1 over-activation can be proposed as a therapeutic
option, as it can favor unconventional ferroptosis through the accumulation of pro-oxidant-free iron.



Antioxidants 2021, 10, 789 20 of 30

Conversely, molecules able to induce HO-1 may be used in order to favor cancer
cell death due to iron imbalance. About this issue, as mentioned before, many natural
compounds have been tested and showed their efficacy in this sense, but even in this case,
translational applicability in humans seems to be still far away.

In conclusion, a deeper investigation of the specific multifaceted role played by HO-1
in different types of cancers, in the tumor microenvironment and bio fluids is needed in
order to customize therapy and improve the outcome of cancer patients. Thus, HO-1 could
become in the future an important clinical tool for cancer management.
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MAPK mitogen-activated protein kinase pathway
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