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I
n response to development of the euglycemic-hyper-
insulinemic clamp technique in the 1980s, much em-
phasis was placed on skeletal muscle as the major site
of insulin resistance in patients with type 2 diabetes

(1). Following the discovery of the insulin receptor (IR)
tyrosine kinase activity by Ron Kahn and colleagues (2) and
the importance of IR substrate molecules in the 1990s (3,4),
attention was directed on intrinsic alterations in the insulin
signaling cascade in skeletal muscle and liver as funda-
mental causes of insulin resistance. In 1996, I joined Ron
Kahn’s laboratory as a participant in the gold rush to dis-
cover novel mechanisms responsible for insulin resistance.
It was a time of intellectual and scientific awakening. With
the advent of the Cre/loxP system, came the first surprise:
muscle-specific IR knockout (MIRKO) mice showed no
alterations in glucose homeostasis. Rather, they developed
visceral adiposity (5). MIRKO mice exhibited impaired in-
sulin activation of muscle glycogen synthase resulting in
decreased muscle glycogen content (6,7). MIRKO mice also
displayed reduced insulin-stimulated muscle glucose uptake
during the euglycemic-hyperinsulinemic clamp (6). How-
ever, under physiological conditions of a glucose tolerance
test, MIRKO mice had near normal skeletal muscle glucose
uptake and did not display insulin resistance (7). Con-
versely, disruption of insulin action in the hepatocyte-
specific IR knockout mouse produced severe resistance to
the blood glucose–lowering effect of insulin (8). Together
with the MIRKO, the hepatocyte-specific IR knockout mouse
demonstrated the importance of the liver in postprandial
glucose homeostasis and suggested that a considerable
portion of the hypoglycemic effect of insulin was due to
a suppression of hepatic glucose production rather than an
increase in muscle glucose uptake (5,8). Did this mean that
skeletal muscle was not necessary for glucose homeostasis?
No, but although insulin is necessary for storage of glucose
in the form of glycogen in skeletal muscle, IR signaling in
muscle is not necessary to maintain postprandial glucose
disposal in mice. Something else was needed independently
of the muscle IR: noninsulin-dependent glucose uptake via
skeletal muscle contraction and 59-AMP-activated protein
kinase. Indeed, exercise could still activate glucose trans-
port in muscle in MIRKO mice independently of insulin (9),

an observation that underscored the importance of AMP-
activated protein kinase in muscle glucose uptake and “in-
sulin” sensitivity (10). At the same time, the idea emerged
that brain insulin action was also important for glucose
homeostasis and that hypothalamic insulin resistance could
contribute to altered suppression of hepatic glucose pro-
duction and hyperglycemia in type 2 diabetes (11). Over
time, the concept evolved that the common form of insulin
resistance was not the result of genetic alteration in mole-
cules in the insulin signaling cascade. Rather, it was sec-
ondary to impaired fuel homeostasis in insulin-sensitive
tissues. Originally observed by Randle et al. (12), the in-
hibitory effect of lipid accumulation in skeletal muscle on
glucose metabolism and, ultimately, insulin-sensitive glu-
cose uptake, gained traction. This paradigm matured into
a hypothesis that focused on the importance of inflam-
matory lipid metabolites (e.g., ceramides) that activate IkB
kinase b, ultimately leading to serine phosphorylation and
inhibition of insulin signaling molecules in various tissues
(13). It also became clear that distant tissues such as fat
were modulating muscle insulin sensitivity by releasing
adipocytokines that promote insulin resistance—in the case
of tumor necrosis factor-a (14)—or that promote insulin
sensitivity as is the case with adiponectin (15). A parallel
paradigm emerged that highlighted the importance of skel-
etal muscle blood flow and especially the integrity of vas-
cular endothelial function in whole-body insulin sensitivity.
Production of nitric oxide by endothelial nitric oxide synthase
(eNOS) normally regulates blood pressure and increases
muscle blood flow. Perhaps the first evidence of the im-
portance of skeletal muscle blood flow in insulin sensi-
tivity came from a study of eNOS-deficient mice (16).
These mice developed hypertension and muscle insulin
resistance. Further, endothelium-derived nitric oxide also
mediates insulin-induced perfusion and substrate delivery
to skeletal muscle. Not surprisingly, vascular endothelial
elimination of IR in mice resulted in insulin resistance (17).
In addition, mice with insulin resistance in the endothelium
resulting from double IR substrates IRS1 and IRS-2 defi-
ciencies had decreased insulin-stimulated glucose uptake in
skeletal muscle (18). Nonetheless, the link among the met-
abolic syndrome, inflammation, and altered skeletal muscle
blood flow was not firmly established. In this issue of Di-
abetes, Tanigaki et al. (19) close the loop on this link and
reveal that C-reactive protein (CRP) causes muscle insulin
resistance in mice. CRP is an acute-phase reactant synthe-
sized in liver in response to acute inflammatory stimuli in
humans. In contrast to most vertebrates, mice synthesize
CRP in only trace amounts. Thus, it is not possible to study
the effect of endogenous CRP in mice. Using a transgenic
mouse overexpressing rabbit CRP to levels observed in in-
sulin-resistant patients, Tanigaki et al. show that elevated
CRP levels impair both insulin-induced skeletal muscle
blood flow and muscle glucose delivery, ultimately resulting
in insulin resistance. The effect of CRP is mediated by an
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isoform of the Fcg receptors (FcgRs)—designated FcgRIIB—
that binds CRP and is abundantly expressed in endothelial
cells in skeletal muscle. Insulin signaling in endothelial
cells normally stimulates the phosphorylation and activa-
tion of the eNOS on S1176 residue to increase muscle
blood flow, thereby promoting glucose disposal (Fig. 1).
CRP activation of FcgRIIB causes eNOS-S1176 dephos-
phorylation. Using a knock-in mouse with eNOS resistance
to S1176 dephosphorylation, Tanigaki et al. show that CRP
loses the power to induce muscle insulin resistance (19).
CRP does not affect hepatic or adipose insulin action; it
selectively produces skeletal muscle insulin resistance.
Thus, during inflammatory states, CRP activation of FcgRIIB
causes impaired insulin endothelial action in skeletal
muscle, impaired muscle glucose delivery, and insulin re-
sistance (Fig. 1). Because the mass of skeletal muscle is
predominant relative to other tissues, muscle glucose up-
take is clinically critical to whole-body glucose disposal.
However, the importance of muscle glucose uptake is not
due solely to IR signaling in muscle. Rather, it is the com-
bination of muscle insulin action, muscle contraction, and
vascular endothelium-induced muscle blood flow that to-
gether synergize to promote muscle glucose uptake. In
demonstrating that muscle blood flow and therefore in-
sulin sensitivity can be impaired by the production of CRP,
Tanigaki et al. open a new avenue in the research for the
treatment of insulin resistance.
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