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Abstract

Cellular aging, a progressive functional decline driven by damage accumulation, often cul-

minates in the mortality of a cell lineage. Certain lineages, however, are able to sustain long-

lasting immortality, as prominently exemplified by stem cells. Here, we show that Escheri-

chia coli cell lineages exhibit comparable patterns of mortality and immortality. Through sin-

gle-cell microscopy and microfluidic techniques, we find that these patterns are explained

by the dynamics of damage accumulation and asymmetric partitioning between daughter

cells. At low damage accumulation rates, both aging and rejuvenating lineages retain

immortality by reaching their respective states of physiological equilibrium. We show that

both asymmetry and equilibrium are present in repair mutants lacking certain repair chaper-

ones, suggesting that intact repair capacity is not essential for immortal proliferation. We

show that this growth equilibrium, however, is displaced by extrinsic damage in a dosage-

dependent response. Moreover, we demonstrate that aging lineages become mortal when

damage accumulation rates surpass a threshold, whereas rejuvenating lineages within the

same population remain immortal. Thus, the processes of damage accumulation and parti-

tioning through asymmetric cell division are essential in the determination of proliferative

mortality and immortality in bacterial populations. This study provides further evidence for

the characterization of cellular aging as a general process, affecting prokaryotes and

eukaryotes alike and according to similar evolutionary constraints.

Introduction

Aging, or the progressive loss of function at the macromolecule, tissue, organ, or individual

level, is largely driven by the deterioration of intracellular processes. Accordingly, the hall-

marks of the aging phenotype—such as telomeric attrition, mitochondrial dysfunction, loss of

proteostasis, and genomic instability—which have been well characterized by previous studies

[1], reveal conserved genetic and biochemical pathways at the cellular level. Considering cellu-

lar aging as a baseline for the study of aging as a general process, we can summarize its mecha-

nisms as the gradual intracellular accumulation of damage from various sources, along with a
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decreasing repair capacity. Furthermore, excessive damage accumulation within a cell lineage

may lead to cellular senescence, in which individual cells cease replicating, and the lineage

transitions to a mortal state [2–4].

The cellular aging process encompasses both multi- and unicellular organisms, such as

yeast, diatoms, and even bacteria [5–8]. Due to the traditional view of unicellular prokaryotes

as being functionally immortal, these organisms are often overlooked in the discussion of cel-

lular aging. However, research in bacterial aging stands out for offering quantitative

approaches to data collection and analysis, coupled with technical improvements on single-cell

microscopy, which have detailed the aging phenotype and its progression. Although bacteria

do not possess some of the eukaryotic aging targets, like telomeres and mitochondria, they are

sensitive to stresses that induce nongenetic damage accumulation, such as oxidation and dis-

ruptions in protein folding [9,10]. Stressed bacteria accumulate misfolded proteins in the form

of polar-localized aggregates [11–14], thus displaying loss of proteostasis. Repair occurs in a

slow and energy-consuming fashion, in which chaperone proteins such as DnaK and ClpB

mediate the disaggregation and unfolding of damaged proteins [10,12]. Additionally, the

potential prokaryotic origin of mitochondria raises the possibility of regarding bacterial aging

as a model for mitochondrial dysfunction, a noted hallmark of aging [1].

Besides aggregating and repairing damaged components, bacterial populations have devel-

oped another remarkable strategy to handle nongenetic damage. Experimental data from

long-term microscopy of bacterial lineages revealed that, in the presence of intracellular dam-

age, each cellular division produces 2 physiologically asymmetric daughters [8,11,15–17]. This

asymmetry is generated because the damage harbored by the mother is biased toward the old

cell pole [11,12], causing the daughter that inherits this pole—termed the old daughter—to

age. Its sibling, on the other hand, rejuvenates through the inheritance of a lower damage load,

being called the new daughter. Therefore, by partitioning damage with asymmetry, bacterial

populations engage in a trade-off in which the fast growth of new daughters is sustained at the

expense of the declining cellular function of old daughters. Mathematical models and compu-

tational simulations were developed to estimate the advantage of asymmetry, in contrast with

a symmetric control population—a hypothetical scenario in which both daughters display

equal physiology [18]. The models have shown that asymmetry is evolutionarily advantageous

because it increases the variance of elongation rates, which in turn increases the efficiency of

natural selection and the mean fitness of the lineage. Diverse studies are beginning to show

that asymmetric partitioning is not unique to bacteria but an advantageous mechanism for the

progression of cell lineages. In fact, this process was recently observed in neural, embryonic,

and germline stem cells [19–21], in which damage allocation plays a central role in self-renewal

capacity, fate determination, and somatic sequestration of damage.

A better understanding of how the key features of aging are interconnected requires the

eventual development of conceptual and mathematical models that can integrate with experi-

mental studies the growth and aging of individual organisms or cells. Unicellular systems,

such as bacteria, satisfy all these requirements. Here, we show that the maintenance of prolifer-

ative immortality in E. coli lineages depends on the physiological equilibrium produced by

contrasting damage accumulation and asymmetric partitioning. We demonstrate that

unstressed lineages accumulate damage produced by standard respiration levels, subsequently

partitioning this load with a level of asymmetry that allows for the dilution of damage within

both new and old daughters. We show that E. colimutants with decreased repair capacity also

exhibit asymmetric new and old daughters, reaching distinct states of growth equilibrium. Fur-

thermore, bacterial aging responds with a positive dosage relationship to an external damaging

agent, which progressively disrupts proteostasis by increasing damage accumulation rates and

disrupting asymmetry. With a sufficiently elevated stress level, the damage accumulation
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within old lineages surpasses their immortality threshold, leading these lineages to arrest divi-

sion and become mortal. However, due to asymmetric partitioning, new lineages within the

same population retain proliferative immortality. Our results show that the appropriate model

and system can contribute to identifying the dynamics of mortality and immortality in the

context of cellular aging.

Results

Functionally immortal bacterial lineages display damage accumulation and

asymmetry

To determine whether bacterial lineages undergoing immortal proliferation displayed damage

accumulation and partitioning dynamics, we cultured unstressed E. coli cells using microflui-

dic devices. We employed the “mother machine” design [22] containing series of 1.2-μm–wide

growth wells at the bottom of which an old daughter remains trapped for the length of the

experiment. Each well was connected in one end to large flow channels, constantly supplying

fresh culture medium to maintain a healthy state for an extended time. Bacteria were loaded

and tracked through time-lapse microscopy for 24 h in the absence of extrinsic damage. As an

estimate of fitness, elongation rates and corresponding doubling time conversions were deter-

mined for each individual, along with its age, according to cell pole inheritance following

division.

Under such conditions, our previous studies have shown that new and old daughters dis-

play physiological asymmetry and long-term growth stability [17]. We confirmed these results

in the present experiments, observing that new daughters displayed significantly faster elonga-

tion rates when compared with old daughters (Fig 1A), a distinction that remained constant

over time. Moreover, comparing the maternal doubling time (hereby called T0) to that of its

daughters (new = T1; old = T2) in a phase plane, a clear separation between new (21.79 ± 1.60

min) and old (23.23 ± 2.12 min [mean ± SD]) daughter subpopulations emerged (Fig 1B, S1

Fig, and S1 Data). In these conditions, the difference between T1 and T2 (n = 1,384 pairs) was

significantly larger than zero (one-sample t test, t = 24.716, df = 1383, p< 0.001). These results

suggest that old daughters in our populations are inheriting a larger damage load upon divi-

sion, despite the absence of extrinsic damage in our growth conditions.

To quantify the possible damage accumulation and partitioning in these populations, we

applied these results to a population genetics model on unicellular aging [23]. Because the

accumulation of intrinsic damage positively correlates with increased doubling times, we can

estimate maternal damage levels, the fraction inherited by each daughter upon division, and

the resulting T1 and T2, reconstructing the progression of aging within a lineage. For this goal,

we described cell lineage dynamics though 3 key parameters: P, the doubling time of a dam-

age-free cell; λ, the rate of damage accumulation within a single cell (0 to approximately 0.01

min−1); and a, the partitioning asymmetry, ranging from 0 (complete asymmetry) to 0.5 (sym-

metric division).

Our growth parameters revealed the presence of intrinsic damage and asymmetry in physi-

ologically stable E. coli (S1 Table). Despite the ideal growth conditions provided by our micro-

fluidic device, we found that bacterial populations displayed longer doubling times

(22.34 ± 2.12 min [mean ± SD]) than predicted for damage-free cells (P = 19.66 min; one-

sample t test, t = 75.04, df = 3,482, p< 0.001). These longer doubling times were driven by

damage accumulation—which occurred at an average rate λ = 0.0028 min−1—thus suggesting

that metabolic processes in healthy cells may induce the retention of intrinsic damage. Finally,

as suggested by the separation between T1 and T2 subpopulations, we verified that these
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Fig 1. Maintenance of growth equilibrium and immortality through asymmetric damage partitioning. (A) New

daughters (n = 1,782; 0.032 ± 0.0023 min−1 [mean ± SD]) elongated at significantly higher rates than old daughters

(n = 1,285; 0.030 ± 0.0025 min−1 [mean ± SD]), a distinction that remained stable over several hours (one-tailed t test,

t = 24.747, df = 2,612.5, p< 0.001). Binned data comprise mean ± SD. (B) The distinction between new and old

daughters was also verified for the doubling times of sibling pairs (paired one-tailed t test, t = 24.716, df = 1,383,

p< 0.001; S1 Data). The separation of new and old subpopulations, according to the estimation of growth parameters

(see Materials and methods), was produced by the accumulation of damage at a rate λ = 0.0028 min−1, and the

partitioning of such load with asymmetry a = 0.375. (C and D) Model predictions on cellular aging withP = 18 min,

a = 0.4. (C) With λ = 0.002 min−1, asymmetry produces a separation between new (blue) and old (red) subpopulations.

The intersection of model predictions and the identity line creates equilibrium points, where T0 = T1 or T0 = T2, to

which new or old daughters converge over generations (arrows). (D) With λ = 0.008 min−1, the old lineages are

predicted to lose equilibrium and arrest division. New daughters, through constant rejuvenation, would retain

replicative immortality at the same damage levels. (E) Damage load harbored by a mother and its daughters at the time

of birth (k0, k1, k2) and division (D0, D1,D2; S7 Data). Applying the average growth parametersP and λ to calculate k1
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damage loads were partitioned asymmetrically at division, with old daughters inheriting 63%

of the maternal damage (a = 0.37).

Damage accumulation and partitioning in stable growth equilibrium

The growth parameters P, λ, and a can be used to predict doubling times T1 and T2. In Fig 1B,

the solid lines show predicted doubling times for our average population parameters, thus

showing the trend of new and old subpopulations. The crossing between these model lines and

the identity line represents points of growth equilibrium, where T0 = T1 or T0 = T2 (Fig 1C).

Asymmetric populations thus stabilize around 2 points simultaneously—one for new lineages

and the other for the old, with cells continuously inheriting either pole remaining at equilib-

rium over generations [7,17,23]. Cell lineages in physiological equilibrium replicate indefi-

nitely, thus remaining functionally immortal.

To confirm the long-term stability of new and old lineages in our experiments, we analyzed

linear regressions between T0 and T1 or T2 as previously described [17] (S1 Fig). Bacterial line-

ages remain stable provided the existence of equilibrium points, which is satisfied by the inter-

section between each linear regression and the identity line (Fig 1C and S1 Fig). This

intersection occurs when the slope of T1 or T2 lines is less than 1, which our data satisfy for

both T1 (a = 0.246, p< 0.001) and T2 (a = 0.309, p< 0.001). In the stable environment of

microfluidic devices, this equilibrium can still be disrupted by the stochasticity present in dou-

bling times. This stochasticity can be described as random variables ξ1 acting on the slopes in

Ti = T0 × (a + ξ1) + b, obtained in each generation from a Gaussian distribution with SD of σ1.

Loss of equilibrium occurs when a2 + σ1
2� 1 (see Materials and methods for details). We esti-

mated σ1 for T1 and T2 lines by obtaining the deviations from slopes in (Ti − b)� T0 = a + σ1.

Both new (σ1 = 0.0657) and old (σ1 = 0.0876) lineages satisfied the stability requirement a2 +

σ1
2 < 1, with a2 + σ1

2 = 0.0649 for T1 and a2 + σ1
2 = 0.1032 for T2.

Besides the possibility of being disrupted by stochasticity, our aging model predicts that sta-

ble equilibrium can be disrupted by the accumulation of intrinsic damage [23]. Our parame-

ters estimate that an increase in damage accumulation rates, from λ = 0.002 to 0.008 min−1,

would progressively drive the equilibrium points toward longer doubling times. Because asym-

metric partitioning produces higher doubling times in old daughters, a sufficiently intense λ
would act as a differential mortality threshold, leading to division arrest—i.e., a state of mortal-

ity—in the old lineage, whereas new daughters remain immortal (Fig 1D).

To connect our observation of immortality and growth equilibrium to the internal dynam-

ics of damage accumulation and partitioning, we estimated damage loads using our growth

parameters. From experimental doubling times (S1 Data), we calculated the damage loads har-

bored by a mother, new daughters, and old daughters at the time of birth (k0, k1, k2) and divi-

sion (D0, D1, D2; Fig 1E and S7 Data). It is important to note that this model considers the

entirety of damage loads present in each cell, be it in aggregate or diffuse form. Each cell is

born with a load ki, and accumulates λ × Ti over its lifetime, resulting in a load Di. We verified

and k2, we verified that old daughters inherit larger damage loads than new daughters (paired one-tailed t test,

t = 27.988, df = 1,244, p< 0.001) and also bear more damage at the time of division (paired one-tailed t test, t = 27.914,

df = 1,244, p< 0.001). Bars represent mean ± SE. (F to K) Time lapse microscopy images showing the accumulation of

misfolded proteins at the old cell poles over time. The small chaperone IbpA (yellow dots) colocalizes with damaged

proteins, allowing the visualization of protein aggregates. (L) The fluorescence profile of an old lineage expressing

IbpA-YFP shows that a protein aggregate develops over time, remaining trapped in the old pole over generations.

Fluorescence profiles were measured every 10 min. See also S1 Fig for non-normalized length. (M) Combined

IbpA-YFP fluorescence heatmap of 428 old daughters at the bottom of mother machine wells, imaged over 6 h. a.u.,

arbitrary units; IbpA, inclusion body protein A; YFP, yellow fluorescent protein.

https://doi.org/10.1371/journal.pbio.3000266.g001
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that k2> k1, as expected from observed doubling times and asymmetry (paired one-tailed t
test, t = 27.988, df = 1,244, p< 0.001). Furthermore, we compared each mother to its old

daughter and verified that k2 = k0 (paired two-tailed t test, t = 0.373, df = 1,244, p = 0.709).

This indicates that old lineages in a state of equilibrium, as observed in the mother machine,

are born with a constant level of intrinsic damage. Consequently, the damage accumulated by

a mother over its lifetime is equivalent to the load inherited by new daughters upon division,

or λ × T0 = k1 (t = 0.367, df = 1,244, p = 0.714).

Taken together, our results suggest that unstressed bacterial populations accumulate intrin-

sic nongenetic damage. Every generation, new daughters inherit the damage a mother accu-

mulated over its lifetime (k1 = D0 × a = λ × T0), whereas old daughters inherit the same

amount the mother had at birth (k2 = D0 × (1 − a) = k0). These dynamics of damage accumula-

tion and partitioning allow for a state of physiological equilibrium, in which old lineages dis-

play stable growth over time and retain proliferative immortality.

Large protein aggregates become anchored at old cell poles

To visualize the biasing of damage loads toward old daughters in our microfluidic device, we

cultured E. coli expressing the small chaperone inclusion body protein A (IbpA) fusioned to

yellow fluorescent protein (YFP). IbpA-YFP was shown to colocalize with protein aggregates

in bacterial cells [11], thus serving as a marker for the presence and position of nongenetic

damage [24]. By culturing this strain in our microfluidic device, we observed the progressive

accumulation of damage in the old poles of lineages in a state of equilibrium (Fig 1F–1M). We

quantified the inheritance of IbpA-YFP fluorescent foci by following lineages over time, deter-

mining the subcellular localization of the aggregate and its partitioning upon division [25]. In

over 194 cell divisions, we observed the appearance of 43 new fluorescent foci. Small foci first

appeared in the center of a cell in 37.2% of the observations, diffusing freely throughout the

bacteria (S1 Fig). However, as these aggregates accumulated more misfolded proteins, they

quickly became anchored at the old poles (Fig 1L and 1M), resulting in the inheritance of fluo-

rescent foci by old daughters in 80.4% of the observed division events (S1 Fig). It is important

to note, however, that the YFP fusion might increase aggregation rates of the small chaperone

IbpA [26], and unstressed cells likely harbor diffuse fluorescence and smaller foci rather than

large aggregates. Nonetheless, the IbpA-YFP marker demonstrates the potential for asymmet-

ric damage partitioning arising from the anchoring of protein aggregates at the old poles of old

daughters over several generations.

Asymmetry and immortal proliferation in protein repair mutants

Given the asymmetric damage partitioning in equilibrium lineages, we investigated the rele-

vance of the protein repair machinery for the maintenance of proliferative immortality. For

this, we employed E. coli single-gene knockout mutants lacking the chaperones ClpB or DnaK

(Keio collection), which play a prominent role in the solubilization of protein aggregates

[10,12,27]. We cultured these cells in mother machine devices as described above, screening

bacterial lineages for asymmetric damage partitioning and physiological equilibrium. By fol-

lowing old lineages over time, we verified that both new and old ΔclpB daughters displayed

constant elongation rates throughout the experiment (Fig 2A). We observed that ΔclpB
mutants also displayed asymmetric doubling times, with new (24.81 ± 1.64 [mean ± SD])

daughters growing faster than their old (25.97 ± 1.87 [mean ± SD]) siblings (Fig 2B and S2

Data; paired one-tailed t test, t = 16.846, df = 770, p< 0.001). A distinct pattern emerged from

the analysis of ΔdnaKmutants, with several mortality events occurring over time (Fig 2C).

Nonetheless, a significant distinction between new (28.06 ± 2.49 [mean ± SD]) and old

Cellular aging and replicative immortality
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(30.20 ± 8.27 [mean ± SD]) daughter doubling times was observed in these cells (Fig 2D and

S3 Data; paired one-tailed t test, t = 4.262, df = 266, p< 0.001).

To verify the stability of growth equilibrium in asymmetric ΔclpB and ΔdnaK populations,

we analyzed the linear models presented in Fig 2B and 2D. To include mortality events in the

analysis, doubling times were converted to elongation rates. We investigated whether the sto-

chasticity present in the data could disrupt equilibrium stability in our populations, determin-

ing the noise acting on regression slopes as σ1 in (Ti − b)� T0 = a + σ1. To generate 95%

confidence intervals (CIs), we performed a 10,000-fold bootstrap on T0, T1, and T2 trios. We

verified that ΔclpBmutants satisfied the stability requirement a2 + σ1
2 < 1 (Fig 2E), thus

remaining proliferatively immortal, for both new (a2 + σ1
2 = 0.035 [0.016–0.064], mean [95%

CI]) and old lineages (a2 + σ1
2 = 0.107 [0.051–0.206]). For ΔdnaK, although new (a2 + σ1

2 =

0.241 [0.020–0.624]) and old lineages (a2 + σ1
2 = 0.473 [0.113–0.956]) satisfied the stability

requirement, several mortality events were observed, with our bootstrap analysis suggesting a

1.45% probability of equilibrium loss (binomial test, p< 0.001) in ΔdnaK old lineages.

Taken together, these results suggest that repair chaperones ClpB and DnaK might have

distinct roles in the maintenance of equilibrium stability. Although the decreased protein

repair capacity in ΔclpBmutants still allowed for the stable proliferation of new and old daugh-

ters, old lineages in ΔdnaKmutants begin to show signs of stability loss. We therefore

Fig 2. Equilibrium and asymmetry are present in repair mutants lacking ClpB or DnaK chaperones. (A) ΔclpB
cells (n = 1,642; 0.027 ± 0.002 [mean ± SD]) exhibited stable elongation rates over time, suggesting these mutants

might be in growth equilibrium. A single mortality event was observed. (B) ΔclpBmutants retained asymmetric

doubling times (S2 Data). A two-way ANOVA indicated a significant effect of both T0 (F = 82.32, p< 0.001) and age

(F = 178.07, p< 0.001) on doubling times, with interaction between factors (F = 5.66, p = 0.017). (C) ΔdnaKmutants

(n = 786, 0.0236 ± 0.004) exhibited signs of stability loss, with several mortality events occurring throughout the

experiment. (D) Similarly to ΔclpB, ΔdnaKmutants exhibited a separation between new and old subpopulations (S3

Data), with a two-way ANCOVA indicating a significant effect of T0 (F = 12.78, p< 0.001) and age (F = 16.89,

p< 0.001) on doubling times, with interaction between factors (F = 5.11, p = 0.024). (E) A stability analysis performed

on linear models from (B) and (D) revealed that both strains satisfy the stability requirement a2 + σ1
2 < 1. Although

mortality events were observed for ΔdnaKmutants, the strain remains mostly stable. Our bootstrap analysis (S7 Data)

revealed a 1.45% probability of losing equilibrium for old lineages, and complete stability for new lineages (x2 = 129.86,

df = 1, p< 0.001). Error bars: 95% CIs. CI, confidence interval; ClpB, chaperone protein ClpB; DnaK, chaperone

protein DnaK.

https://doi.org/10.1371/journal.pbio.3000266.g002
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hypothesize that dynamics of damage accumulation may greatly impact proliferative immor-

tality, with asymmetry determining a differential fate for new and old lineages.

The transition from immortality to mortality is determined by damage

accumulation and asymmetric partitioning

To investigate whether aging cell lineages would retain physiological equilibrium—therefore

proliferative immortality—under increasing levels of damage accumulation, we cultured bac-

teria in the presence of extrinsic damage. We employed light excitation (490 nm wavelength),

commonly used for green-fluorescent protein imaging, as a damaging agent known for induc-

ing the production of reactive oxygen species and mitochondrial damage [16,28–30]. Bacteria

were cultured in microfluidic devices and treated with variable lengths of light exposure, rang-

ing from 70 ms to 3 s, administered every 2 min for up to 24 h. Each experiment was preceded

by 24 h of control imaging in the absence of extrinsic damage.

Analyzing cell lineages over time, we observed a significant decrease in elongation rates on

each exposure treatment relative to its control (Fig 3A and S2 Table; unpaired two-sample t
tests; p< 0.001). The treatments revealed a significant effect of both age and light exposure on

individual elongation rates, with new daughters maintaining significantly faster growth than

their old siblings in all cases (Fig 3B). A similar effect was observed for the impact of light

exposure and age on damage inherited at birth (S2 Fig), showing that the overall damage

inheritance increased with treatment. We determined the growth parameters of each treat-

ment (S3 Table), verifying that λ increased linearly with the length of exposure to light excita-

tion (Fig 3C). This demonstrates that the rates of extrinsic damage infliction correlate linearly

with the rate of intracellular damage accumulation for our experimental design. From the

growth parameters P, λ, and a, we calculated the estimated doubling times of new and old lin-

eages, as well as the predicted doubling time equilibria for each treatment level (Fig 3D to 3H,

S4 Data). Our results showed a separation between new and old daughter subpopulations in all

cases (S4 Table).

The increasing induction of damage accumulation led to the stabilization of new and old

lineages at equilibria with progressively longer doubling times. Extreme damage levels caused

the old lineage equilibrium to approach infinite doubling times (Fig 4A and 4B) with 3 s of

exposure, meaning that old daughters undergo division arrest, suggesting a damage accumula-

tion rate of 0.009 min−1 as the threshold at which aging lineages transition to mortality. Fewer

mortality events were observed in new daughters, indicating that new lineages might remain

proliferative under the same conditions. We observed that the difference between damage

loads at birth (k2 and k1) was significantly reduced at 3 s of exposure, when compared to con-

trol conditions (S2 Fig; two-tailed t test, t = 2.805, df = 80.995, p = 0.0063). This outcome was

surprising, because one of the advantages of asymmetric damage partitioning in bacterial pop-

ulations is the ability to endure higher levels of damage [18]. Therefore, we expected to find

that populations exhibiting large damage accumulation rates should display greater

asymmetry.

Our experiments, nonetheless, revealed a consistent pattern of diminishing asymmetry

with the infliction of light excitation. Although all populations remained asymmetrical, with a

maximum a = 0.47, the asymmetry coefficient approached 0.5 as λ increased (Fig 4C). A possi-

ble driver of increasing symmetry would be the fast accumulation of new damaged compo-

nents, as expressed by increasing λ, surpassing the rate at which such components aggregate.

As a result, more damage would be partitioned as diffused rather than polar anchored mole-

cules at the time of division [18], leading to an increase in stochastically partitioned damage.

To investigate this hypothesis, we tested whether the doubling time variance produced by
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stochasticity increased with light exposure. We first normalized the doubling times of each sib-

ling pair around the expected values for symmetric cells (Fig 4D–4H) for each treatment level.

This normalization removes the variance produced by noise in maternal growth. Because new

and old daughters in our populations are physiologically distinct, 2 distributions arise from the

normalized data. The distance (D) between these distributions is produced by asymmetry,

which defines the variance explained by deterministic factors as D2� 4 (see Materials and

methods and [18] for details). The average variance of new and old distributions (VN + VO)�

2, on the other hand, represents the doubling time variance explained by stochasticity. The

estimates of deterministic and stochastic variance were summarized in Fig 4I and S5 Table.

Fig 3. Damage accumulation decreases elongation rates and displaces growth equilibrium. All panels depict MG1655 wild-type E.

coli. (A) Exposure to phototoxic damage led to decreasing elongation rates in all treatment levels (length of exposure, every 2 min: 70 ms,

700 ms, 1 s, 1.5 s, 3 s). (B) Both new and old daughters displayed slower growth in response to phototoxic damage (F = 9,272, p< 0.001),

with new daughters growing faster than their old siblings in all cases (F = 1,505, p< 0.001). There was significant interaction between

age and damage level in determining elongation rates (F = 2,384, p< 0.001; two-way ANCOVA). Data are represented as mean ± SD (S7

Data). (C) Linear correlation between length of phototoxic damage exposure and damage accumulation rates estimated for each

treatment (p< 0.001, R2 = 0.98). Data are represented as mean ± 95% CI. (D to H) Distinct subpopulations of young and old daughters

were observed in all treatment levels, with increasingly longer doubling time equilibria (S4 Data). At 3 s of exposure (λ = 0.009 min−1),

the old lineages lie at the threshold of arresting proliferation.

https://doi.org/10.1371/journal.pbio.3000266.g003
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Fig 4. Damage accumulation leads to mortality and disrupted asymmetry. All panels depict MG1655 wild-type E. coli. (A) Doubling

times of an old lineage as it accumulates damage at λ = 0.009 min−1
, induced by 3 s of light exposure. The line representing model

predictions (dark red) approaches identity (black), indicating that these cells do not reach equilibrium. After a few generations, the last

daughter in the lineage arrests growth, which equals an infinite doubling time, which represents the crossing of a mortality threshold for the

lineage. (B) Elongation rates of old lineages, showing the transition from control imaging (0–8.6 h) to the infliction of 3 s of light exposure

every 2 min. All cells exhibited lower growth rates, culminating in division arrest for old daughters. New daughters outlived their old siblings

by at least one generation and were sometimes able to generate a new lineage in the growth wells (shown in blue and expanded in the detail).

All values were normalized by the average control elongation rates. (C) Increasing damage accumulation rates disrupted asymmetric

partitioning, as shown by the asymmetry coefficient approaching 0.5 (a = 0.1007 × ln(λ) + 0.95, p< 0.001). Points represent average growth

parameters and 95% CIs (S7 Data). (D–H) Distributions of new (blue) and old (red) daughter doubling times were normalized around a

symmetric midpoint. Whereas the combined population has a distribution centered at zero (dashed black lines), new and old

subpopulations split into 2 separate distributions. The distance between the averages of these distributions expresses the doubling-time

variance produced by deterministic physiological asymmetry. The average variance of new and old distributions around their own means,

on the other hand, represents the variance produced by stochasticity. (I) Deterministic and stochastic portions of the variance from (D–H)

were summarized for increasing light exposure, showing an increase in stochasticity. Error bars represent 95% CIs. (J) Our stability analysis

indicated that new and old daughters remained in stable equilibrium until exposed to 3 s of phototoxic stress. At 3 s, old daughters no longer
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PLOS Biology | https://doi.org/10.1371/journal.pbio.3000266 May 23, 2019 10 / 21

https://doi.org/10.1371/journal.pbio.3000266


With higher levels of light excitation, we observed an increase in the variance explained by sto-

chasticity, whereas the deterministic variance remained nearly constant. These results indicate

that, although the deterministic physiological distinction between new and old daughters

remains present, the perceived asymmetry between these lineages is attenuated by stochasticity

as extrinsic damage levels increase. It is important to observe that, although our results depict

the effect of constant damage exposure, other interesting outcomes could arise from transient

damage pulses.

To determine whether new and old lineages remained in equilibrium despite the presence

of large stochasticity, we performed a stability analysis on elongation rates. We followed the

same principles described in Fig 2 and S1 Fig, in which a linear regression between T0 and T1
or T0 and T2 is evaluated for its stability in crossing the identity lines. The maintenance of this

crossing, which acts as an equilibrium attractor, determines that these lineages display stable

growth over time, thus retaining immortal proliferation. In the presence of stochasticity acting

on the regression slope, the condition a2 + σ1
2 < 1 must be satisfied for the retention of equi-

librium. We estimated the slopes and σ1 values for each light exposure treatment (Fig 4J), per-

forming a bootstrap analysis to obtain CIs. The stability condition in our experiments was

reached by all lineages until 3 s of light exposure. At 3 s of exposure, or λ = 0.009 min−1, old

lineages reached their mortality threshold and became unstable, resulting in the mortality

events observed in Fig 4A and 4B. All new lineages in our experiments remained stable. How-

ever, because the CIs in Fig 4J indicated a chance of new lineages also losing stability at 3 s, we

investigated the probability of retaining immortal proliferation in Fig 4K. Our analysis

revealed that old lineages exhibited a significantly higher probability of losing equilibrium

(50.24%) than new lineages (28.10%, x2 = 1027.7, df = 1, p< 0.001), thus indicating that asym-

metric damage partitioning leads to differential maintenance of immortality in new and old

lineages within the same population. These results suggest that, despite the decrease in asym-

metric partitioning, new daughters are able to endure higher levels of damage while remaining

functionally immortal.

Old lineages transition from immortality to mortality under extrinsic

stress

To determine whether the differential mortality of new and old daughters could be translated

to other damage sources, we repeated our experiments replacing light exposure with heat stress

(Fig 5A–5C) or streptomycin (Fig 5D–5F) as damaging agents. We exposed cells growing in

the mother machine to 38 ˚C, 40 ˚C, and 43 ˚C, as heat exposure can lead to the accumulation

of misfolded proteins and senescence [12,31]. We observed an increase in mortality events at

38 ˚C and 40 ˚C, although elongation rates remained constant over time (Fig 5A and 5B, S4

Table, and S5 Data). At 43 ˚C, however, elongation rates declined and old lineages lost stability

(a2 + σ1
2 = 1.144), whereas new lineages remained in equilibrium (a2 + σ1

2 = 0.965). Our boot-

strap analysis suggested that old lineages had a higher probability of transitioning to mortality

(67.1%) than new lineages (43.4%, x2 = 1136, df = 1, p< 0.001; Fig 5C). We verified a similar

outcome for populations exposed to 2, 4, or 5 μg/ml of streptomycin, which has been shown to

induce protein misfolding in E. coli [14,16,32]. Although new and old lineages remained stable

at 2 and 4 μg/ml (Fig 5D and 5E, S4 Table and S6 Data), both lineages lost stability at 5 μg/ml.

Still, our analysis detected a differential probability of crossing the mortality threshold, with

satisfy the stability requirement (a2 + σ1
2 = 1.016), thus transitioning to a mortal state. Error bars represent 95% CIs (S7 Data). (K) At 3 s of

exposure, old lineages displayed a 50.24% probability of losing equilibrium, whereas new lineages exhibited only a 28.10% probability of

mortality (test for equality of proportions, x2 = 1027.7, df = 1, p< 0.001). CI, confidence interval.

https://doi.org/10.1371/journal.pbio.3000266.g004
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new lineages displaying a lower chance (81.2%) of becoming mortal than old lineages (88.0%,

x2 = 177.13, df = 1, p< 0.001; Fig 5F). Taken together, these results suggest that the asymmet-

ric partitioning of damage leads to a differential transitioning from immortality to mortality in

stressed bacterial populations. The asymmetric allocation of nongenetic damage, whether

inflicted by light exposure, heat, or streptomycin, leads to higher mortality in old lineages

while allowing the immortality of new lineages within the same population. Therefore, these

observations offer cellular aging as a model for both the maintenance of continuous replica-

tion, as in stem cells, and the loss of proliferative capacity due to cellular aging.

Discussion

Individuals age by progressively accumulating damage over their life span, leading to loss of

function late in life [33,34]. Because biological organisms are composed of individual cells, the

process of cellular aging represents a baseline for understanding the general principles of aging

and its phenotypic manifestations. Cellular aging comprises the dynamics of intracellular dam-

age accumulation and partitioning, whose manipulation and quantification becomes possible

Fig 5. Old lineages are more likely to reach mortality when exposed to heat or streptomycin. All panels depict

MG1655 wild-type E. coli. (A) Elongation rates over time for populations exposed to control temperatures, 38 ˚C, 40

˚C, or 43 ˚C heat stress (n = 875, 535, 782, and 380 cells; S5 Data). A few mortality events were observed for 38 ˚C and

40˚C, with elongation rates declining at 43 ˚C. (B) At 38 ˚C and 40 ˚C, both new and old lineages satisfied the stability

requirement a2 + σ1
2 < 1. At 43 ˚C, new lineages in our experiment remained stable, whereas old lineages lost

equilibrium. (C) At 43 ˚C, old lineages displayed a significantly higher probability (67.1%) of losing equilibrium than

new lineages (43.4%, x2 = 1136, df = 1, p< 0.001; S7 Data). (D) Populations exposed to 0, 2, 4, or 5 μg/ml streptomycin

(n = 1,322, 453, 337, and 292 cells; S6 Data) showed declining elongation rates over time. (E) Both lineages remained in

stable equilibrium for 2 and 4 μg/ml streptomycin; however, new (a2 + σ1
2 = 1.236) and old (a2 + σ1

2 = 1.420) lineages

lost stability at 5 μg/ml. (F) Although both lineages displayed a large probability of transitioning to mortality, old

lineages (88.0%) had a higher chance of losing equilibrium than new lineages (81.2%, x2 = 177.13, df = 1, p< 0.001; S7

Data) at 5 μg/ml streptomycin. (B and E) Error bars represent 95% CIs. CI, confidence interval.

https://doi.org/10.1371/journal.pbio.3000266.g005
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in unicellular systems, such as bacteria. Bacterial populations display phenotypic variation aris-

ing from asymmetric cell divisions, an evolutionarily advantageous strategy for increasing the

efficiency of natural selection [18]. Previous studies have shown that, as a consequence of

asymmetric cellular divisions, aging and rejuvenating bacterial lineages stabilize at distinct

states of physiological equilibrium [7,17,23]. While in equilibrium, these lineages remain func-

tionally immortal. Here, we showed that this state of equilibrium is maintained by the balance

between damage accumulation and asymmetric partitioning. Unstressed bacterial lineages,

despite their immortal proliferation and constant environment, accumulated damage derived

from standard metabolic rates and partitioned around 63% of their damage load towards old

daughters. Repair mutants lacking the repair chaperones still retained asymmetric partitioning

and the ability to reach equilibrium, supporting the notion that asymmetry contributes toward

proliferative immortality in lineages that must rejuvenate constantly. This is the case of stem

cells, which were recently shown to asymmetrically segregate damaged components and pro-

teins targeted for degradation [19–21].

Although stem cell lineages rejuvenate at every division, their proliferation reaches exhaus-

tion in old individuals [1]. Stem cells from old mice were also shown to have a disrupted diffu-

sion barrier [20], which renders division more symmetric by causing the stem sibling to

inherit damaged components. Our results suggest that a similar phenomenon takes place in

bacterial lineages. We expected to find a larger asymmetry between daughter cells produced

under high levels of extrinsic damage, but instead the treatments caused a disruption in effi-

cient asymmetric partitioning and increased stochasticity. Because bacterial asymmetry

depends on the allocation of misfolded proteins to old cell poles, cells exposed to high levels of

stress might be failing to sequester their damaged components. It is possible that old poles

become saturated with damage, causing aggregates of misfolded proteins to be randomly

deposited in the new pole or along the cell. Another possibility is that high damage accumula-

tion rates interfere with the repair machinery, composed of chaperones that colocalize with

damage and are responsible for maintaining proteostasis [10,12,27].

The fact that asymmetry was disrupted by damage accumulation did not prevent new and

old lineages from undergoing strikingly distinct paths under intense levels of extrinsic damage.

When extreme damage accumulation rates are induced, new lineages display increased dou-

bling times but remain in equilibrium. Old lineages, however, undergo division arrest as a con-

sequence of inheriting larger damage loads, satisfying the classical pattern of cellular aging. In

this scenario, old daughters have reached the mortality threshold, whereas new daughters

remain functionally immortal. Asymmetry therefore allows for the coexistence of two distinct

physiological states in a clonal cell population. If this mechanism can be extrapolated to cells

within somatic tissues, asymmetric damage segregation could offer an explanation for the

simultaneous occurrence of senescent and proliferative cells in aging tissues [2,4]. Because

asymmetry dictates mortality or immortality in sibling cells, it may also relate to the processes

of cellular differentiation and fate determination.

Addressing the study of aging from a cellular perspective, our findings showed that bacterial

systems can provide an integrative view of the general principles driving the aging phenotype.

From a simple cellular system, we can quantify the dynamics of damage accumulation and par-

titioning along generations. Asymmetric partitioning of damage drives cell populations to

reach a stable equilibrium, in which the aging of a lineage enables the continued rejuvenation

of another. Moreover, even when old lineages cross the threshold and become mortal, asym-

metry allows the survival of new daughters and ensures the continuity of the population.

Applying this framework to the aging research may largely contribute to the understanding of

an evolutionarily conserved basis for the progressive functional decline experienced by pro-

karyotes and eukaryotes alike.
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Materials and methods

Bacterial strains and growth conditions

Experiments were performed with K-12 E. coli wild-type strain MG1655 for the determination

of damage accumulation in immortally proliferating bacteria and for experiments on the dis-

ruption of growth equilibrium. The visualization of protein aggregates was performed with

MG1655 E. coli expressing YFP bound to the small heat-shock protein IbpA, constructed

according to Rang and colleagues [24] from the construct IbpA-yfp-Cmr kindly provided by

Ariel B. Lindner (INSERM, France) [11]. Repair mutants were screened for asymmetry and

equilibrium using E. coli BW25113 ΔclpB (CGSC #11763) and ΔdnaK (CGSC #8342) from the

Keio knockout collection [35]. The antibiotic resistance marker was not removed from these

strains. For all experiments, cultures were inoculated in lysogeny broth (LB broth; per liter: 10

g tryptone, 5 g yeast extract, 5 g NaCl; Sigma-Aldrich) and grown overnight at 37 ˚C with agi-

tation. The culture medium was supplemented with 0.075% Tween 20 upon inoculation within

microfluidic devices, which prevents the formation of biofilms in the flow channels.

Microfluidic device design and fabrication

The device used in this study was based on the mother machine design by Wang and col-

leagues (2010), subsequently modified by Ryan Johnson (University of California, San Diego)

for the addition of more growth wells. This device included 16 parallel flow channels contain-

ing 2,000 growth wells (1.25 × 30 × 1 μm) each. Polydimethylsiloxane (PDMS; Kit Sylgard 184,

VRW International, California) microfluidic chips were fabricated from master silicon wafers

used as negative molds, provided by the Ryan Johnson and the Jeff Hasty Lab (University of

California, San Diego). PDMS chips fabricated through soft lithography yielded 12 devices per

process and were attached to 24 × 40 mm coverslips through a covalent bond. Previous control

experiments have shown that the asymmetry observed in mother machine devices is not pro-

duced by starvation [17,22] and that wide (>1.0 μm) growth channels can produce cells with

faster growth rates than liquid cultures [36].

Cell loading and experimental conditions

Cultures were grown overnight in LB medium and centrifuged for 2 min at 5,300g. The super-

natant medium was subsequently discarded, and the pellet was resuspended in 50 μL of

medium supplemented with Tween 20. Prior to loading, microfluidic devices were placed in a

vacuum chamber for 10 to 15 min. Bacteria were loaded by placing a droplet of concentrated

culture over the loading port, posteriorly used as an outlet during the experiment, and a drop-

let of sterile medium over the opposite port. Once all channels were properly filled, bacteria

were pushed into the growth traps by centrifuging the device at 1,410g for 7 min. Input and

output 60 ml syringes were connected to the ports for a continuous supply of growth medium

throughout the experiment. The device was incubated at 37 ˚C during imaging. When

required, extrinsic damage was induced by fluorescent light exposure (490 nm wavelength)

using a FITC filter, set at 25% strength. The length of exposure to light excitation ranged from

70 ms to 3 s, applied in 2-min intervals. Damage induced by heat stress was produced by

increasing the incubation temperature in the microscope chamber to 38 ˚C, 40 ˚C, or 43 ˚C,

which was monitored in real time. Extrinsic damage induced by subinhibitory streptomycin

concentrations was introduced by adding 2, 4, or 5 μg/ml of antibiotic to the growth medium.

Each of these experiments was preceded by a 24-h control imaging of the same bacterial

lineages.
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Time-lapse image acquisition

Cell movies were collected by a Nikon Eclipse Ti-S microscope, with imaging intervals con-

trolled by NIS-Elements AR software. Phase images were collected in 2-min intervals during

the entire length of mother machine experiments, immediately followed by the acquisition of

FITC pictures when required. For heat or streptomycin stress experiments, no FITC imaging

was used.

Quantification of bacterial growth

Images were analyzed with the free software ImageJ (NIH, https://imagej.nih.gov/ij), recording

cell coordinates as regions of interest (ROIs) and cell names as indicatives of lineage and cell

pole inheritance. Cell lengths were determined immediately before and after each division,

and time of division was recorded. Elongation rates (r) and doubling times (ln(2)� r) were

calculated from the data, and the resulting tables were entered in an R program to determine

maternity, sibling pairs, and lineage trees. To ensure that the measurements were unbiased, we

performed blind data collections in which elongation rates were recorded without knowledge

of pole inheritance. The ImageJ plugin MicrobeJ was used for the creation of fluorescence pro-

files and heatmaps [37].

Data presented in Proenca and colleagues [17] for verifying the stability of the old lineage

equilibrium attractor were included in our control data from phase imaging, accompanied by

new control experiments performed for this study. These experiments provided the necessary

baseline for our aging model parameters.

Statistical analysis

Statistical analysis was performed using R version 3.4.1. p< 0.05 was considered statistically

significant. Because distinct microfluidic devices yield small yet robust measurement differ-

ences, elongation rates and doubling times were normalized by population means when com-

paring data from different experiments. Data from phase imaging, our controls, were

normalized by their respective averages. Normalized data for all replicates were pooled and

compared by one- or two-sample t tests, as reported. Data from light exposure, heat, or strep-

tomycin stress imaging were normalized by the respective control experiment mean elonga-

tion rates. Raw data corresponding to these normalizations were presented in phase planes for

individual populations. Statistical parameters were reported as mean ± SD, or as mean ± 95%

CIs for growth parameters, as indicated in the text. Sample sizes (cells, sibling pairs, or repli-

cates, as informed) are indicated along with reports of statistical analyses.

Cellular aging model

This population genetics model determines the role of asymmetric partitioning of damage

upon cell division as a mechanism of survival in the presence of damage [23]. It was developed

for bacterial populations, assuming that cells must build up an intracellular product to a check-

point before dividing. Based on the rate with which a bacterium accumulates damage during

its lifetime (λ) and the doubling time of fittest cell (P), the damage load received at birth (k0)
by a mother bacterium can be determined from its doubling time (T0) as

k0 ¼ 1 � l
�

2

� �
T0 �

P=T0
:

The load received at birth (k0), along with the amount accumulated in its lifetime (λT0), is

the damage a bacterium will segregate to its daughters according to the asymmetry coefficient
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(a), ranging from 0 (complete asymmetry) to 0.5 (symmetry):

k1 ¼ ðk0 þ lT0Þa;

k2 ¼ ðk0 þ lT0Þð1 � aÞ:

This asymmetric inheritance will affect the doubling times of the offspring, causing old

daughters, which receive the higher load (k2), to slow down compared with their young sib-

lings. The doubling times of each daughter, T1 and T2, are given by

T1 ¼
ð1 � k1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 � k1Þ
2
� 2Pl

q

l
;

T2 ¼
ð1 � k2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 � k2Þ
2
� 2Pl

q

l
:

Estimates of doubling time equilibrium were determined as the points where prediction

lines cross the identity, which can be calculated as

a ¼
a

1 � a
;

T̂ 1 ¼
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4Pl 1=2

þ að Þ
p

2l 1=
2
þ að Þ

;

T̂ 2 ¼
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4Pl 1=

2
þ 1=

a
ð Þ

p

2l 1=
2
þ 1=

a
ð Þ

:

Estimation of growth parameters

The data collected for doubling times of trios composed by a mother bacterium and its two

daughters were entered in the model to determine growth parameters. The doubling times of

the daughters (T1 and T2) were estimated from a known maternal doubling time, using varying

values of P, λ, and a, and compared with the observed doubling times. Optimal parameters

were those that provided the least mean squared difference between expected and observed

doubling times. An independent combination of P, λ, and a was estimated for each control

experiment, whereas only λ and a were estimated for light treatment experiments (because P

is the baseline doubling time, it was provided by the respective control parameter). Nonsensi-

cal parameters were excluded based on previous knowledge of the model, such as the impossi-

bility of a being either negative or larger than 1, or P being larger than any observed doubling

time. To obtain the 95% CIs for each parameter, the average of results was entered in a boot-

strapped estimate of parameter combinations, repeated 10,000 times with resampling of the

observed mother and daughter trios.

Estimation of deterministic and stochastic variance components

Doubling time variances were analyzed for deterministic and stochastic components accord-

ing to Chao and colleagues [18]. For each T0, T1, T2 trio, the doubling time of a hypothetical

symmetric daughter was estimated based on P, λ, and T0. Daughter doubling times were nor-

malized by subtracting T1 and T2 from the symmetric daughter estimate, thus centering the
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mean distribution around zero. The distance (D) between the means of normalized T1 and T2
was estimated, as well as the variance of new (VN) and old (VO) distributions. The total vari-

ance (VT) in the population corresponds to VT = (VN + VO)� 2 + (D2� 4). In this equation,

D2� 4 represents the variance produced by deterministic asymmetry. (VN + VO)� 2 repre-

sents the unexplained variance, produced by stochastic sources.

Equilibrium stability analysis

T0, T1, T2 trios from phase planes were used to determine the stability of growth equilibria for

new and old lineages. When mortality events were common (stressed populations), elongation

rates were used instead of doubling times. New and old lineages were analyzed separately

according to linear regressions between T0 and T1 or T2. The effective slope for each mother-

daughter pair was determined as (T2 − b)� T0 = a + ξ1, where ξ1 represents a random variable

drawn from a Gaussian distribution each generation. The SD of the ξ1 distribution is given by

σ1. As described by Proenca and colleagues [17], a point of equilibrium where the regression

and identity lines intersect exists as long as the condition a2 + σ1
2 < 1 is satisfied. Values of a2

+ σ1
2 were estimated for new and old daughters of experimental populations and reported as

bar plots for all damaging conditions. This estimate was repeated as a 10,000-fold bootstrap of

T0, T1, T2 trios for the determination of 95% CIs and equilibrium probabilities.

Supporting information

S1 Fig. Stability and protein aggregation in unstressed populations. Growth stability in new

and old lineages can be expressed by linear regressions between T0 and T1 (A, solid blue line)

or T2 (B, solid red line). The intersect between regression lines and the identity line represents

a point of stable equilibrium where doubling times converge. Due to the doubling time vari-

ance produced by stochasticity acting on the slopes (σ1), given by Ti = T0 × (a + σ1) + b, equi-

libria might be disrupted when a2 + σ1
2� 1. Dashed lines in (A) and (B) represent the

maximum variation in regression lines obtained by the parameter σ1 acting on the slopes of

our data, demonstrating that new and old lineages retain equilibrium in the presence of sto-

chasticity. (C) Fluorescence profiles obtained in 10-min intervals for an old lineage, showing

the anchoring of protein aggregates (IbpA-YFP) in the old pole over time. (D) Over the course

of 194 cell divisions observed over 24-h imaging, we verified the first appearance of 43 protein

aggregates. The cellular localization of these new fluorescent foci showed no bias for old poles.

(E) The partitioning of new protein aggregates upon division showed higher inheritance by

new daughters (62.79% of cell divisions, n = 43, χ2 = 4.651, df = 1, p = 0.031). However, old

daughters inherited the majority of recurring aggregates (97.90% of cell divisions, n = 143, χ2

= 258.69, df = 1, p< 0.001) as these became anchored to old cell poles. IbpA-YFP, inclusion

body protein A bound to yellow fluorescent protein.

(TIF)

S2 Fig. Intracellular damage levels under light exposure. Intracellular damage at birth (ki)
and division (Di) was estimated from growth parameters extracted for each population, based

on individual doubling times. (A) The levels of damage inherited by new (blue) and old (red)

daughters increased with the exposure to light excitation. An ANOVA revealed a significant

effect of both exposure (n = 4,634 cells, F = 2,792.0, p< 0.001) and age (F = 968.4, p< 0.001)

on inherited damage. Data are represented as mean ± SD. (B) Intracellular damage levels of

populations at control conditions (reproduced from Fig 1E) or 3 s of light exposure. A signifi-

cant difference was observed between k1 and k2 (paired one-tailed t test, t = 5.175, df = 69,

p< 0.001) and between D1 and D2 (paired one-tailed t test, t = 5.304, df = 69, p< 0.001) in the
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3-s treatment. Old daughters in the treatment were born with higher damage levels than in

control (two-tailed t test, t = 32.408, df = 82.118, p<0.001). The difference k2 − k1 was signifi-

cantly higher for control than treatment cells (two-tailed t test, t = 2.805, df = 80.995,

p = 0.0063), an indication of higher symmetry in our 3-s treatment. Data are represented as

mean ± SEM.

(TIF)

S1 Table. Growth parameters of unstressed populations. Values of growth parameters P

(min), λ (min−1), and a obtained for wild-type populations.

(XLSX)

S2 Table. Elongation rates of MG1655 populations exposed to extrinsic damage. Means

and SDs of normalized elongation rates (min−1) measured for each level of light exposure,

heat, or streptomycin, compared to its respective control.

(XLSX)

S3 Table. Growth parameters of MG1655 exposed to phototoxic damage. Growth parame-

ters λ (min−1) and a obtained for populations exposed to phototoxic damage, using P from

each respective control population.

(XLSX)

S4 Table. Doubling time asymmetry of MG1655 exposed to extrinsic damage. Means and

SDs of new and old daughter doubling times (min), along with pairwise comparison, for popu-

lations exposed to phototoxic damage, heat stress, or streptomycin. Pairs in which one daugh-

ter arrested division were excluded.

(XLSX)

S5 Table. Variance partitioning in populations exposed to phototoxic damage. Partitioning

of doubling time variances into stochastic ([VN + Vo]� 2) and deterministic (D2� 4) compo-

nents. Values presented as mean and 95% CIs. CI, confidence interval.

(XLSX)

S1 Data. Doubling times of mothers, new siblings, and old siblings. Doubling times of

unstressed wild-type populations as trios composed of a mother bacterium and its 2 daughters.

(XLSX)

S2 Data. Doubling times of ClpB knockout mutants. Data for ΔclpB trios comprising a

mother and its 2 daughters. ClpB, chaperone protein ClpB.

(XLSX)

S3 Data. Doubling times of DnaK knockout mutants. Data for ΔdnaK trios comprising a

mother and its 2 daughters. DnaK, chaperone protein DnaK.

(CSV)

S4 Data. Doubling time of wild-type bacteria exposed to phototoxic damage. Data for wild-

type trios comprising a mother and its 2 daughters, exposed to 70, 700, 1,000, 1,500, or 3,000

ms of light excitation.

(XLSX)

S5 Data. Elongation rates of wild-type bacteria exposed to heat stress. Data for wild-type

new and old daughters exposed to 38 ˚C, 40 ˚C, or 43 ˚C.

(XLSX)
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S6 Data. Elongation rates of wild-type bacteria exposed to streptomycin. Data for wild-type

new and old daughters exposed to 2, 4, or 5 μg/ml streptomycin.

(XLSX)

S7 Data. Data corresponding to summary statistics. Raw data used for Figs 1E, 2E, 3B, 4C,

4C, 4J, 5B and 5E, S1D, S1E, S2A and S2B Figs.

(XLSX)
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