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ABSTRACT

Background: Plasma cell dyscrasias encompass a diverse set of disorders, where early
and precise diagnosis is essential for optimizing patient outcomes. Despite
advancements, current diagnostic methodologies remain underutilized in applying
artificial intelligence (AI) to routine laboratory data. This study seeks to construct an
Al-driven model leveraging standard laboratory parameters to enhance diagnostic
accuracy and classification efficiency in plasma cell dyscrasias.

Methods: Data from 1,188 participants (609 with plasma cell dyscrasias and 579
controls) collected between 2018 and 2023 were analyzed. Initial variable selection
employed Kruskal-Wallis and Wilcoxon tests, followed by dimensionality reduction
and variable prioritization using the Shapley Additive Explanations (SHAP)
approach. Nine pivotal variables were identified, including hemoglobin (HGB),
serum creatinine, and ,-microglobulin. Utilizing these, four machine learning
models (gradient boosting decision tree (GBDT), support vector machine (SVM),
deep neural network (DNN), and decision tree (DT) were developed and evaluated,
with performance metrics such as accuracy, recall, and area under the curve (AUC)
assessed through 5-fold cross-validation. A subtype classification model was also
developed, analyzing data from 380 cases to classify disorders such as multiple
myeloma (MM) and monoclonal gammopathy of undetermined significance
(MGUS).

Results: 1. Variable selection: The SHAP method pinpointed nine critical variables,
including hemoglobin (HGB), serum creatinine, erythrocyte sedimentation rate
(ESR), and B,-microglobulin. 2. Diagnostic model performance: The GBDT model
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exhibited superior diagnostic performance for plasma cell dyscrasias, achieving
93.5% accuracy, 98.1% recall, and an AUC of 0.987. External validation reinforced its
robustness, with 100% accuracy and an F1 score of 98.5%. 3. Subtype Classification:
The DNN model excelled in classifying multiple myeloma, MGUS, and light-chain
myeloma, demonstrating sensitivity and specificity above 90% across all subtypes.
Conclusions: Al models based on routine laboratory results significantly enhance the
precision of diagnosing and classifying plasma cell dyscrasias, presenting a promising
avenue for early detection and individualized treatment strategies.

Subjects Computational Biology, Hematology, Oncology, Computational Science, Data Mining
and Machine Learning

Keywords Artificial intelligence, Machine learning, Plasma cell dyscrasias, Diagnosis, Classification,
Laboratory biomarkers

INTRODUCTION

The 2022 International Consensus Classification (ICC) identifies plasma cell neoplasms,
including multiple myeloma (MM), monoclonal gammopathy of undetermined
significance (MGUS), solitary plasmacytoma (SBP), light-chain amyloidosis (AL), and
lymphoplasmacytic lymphoma (LPL), as a continuum of related disorders (Fend, Dogan ¢
Cook, 2023). However, overlapping clinical markers and variable risks of disease
progression present significant challenges for traditional diagnostic approaches (Brigle ¢
Rogers, 2017). Current methods rely heavily on the CRAB criteria (hypercalcemia, renal
insufficiency, anemia, and bone lesions) and tumor burden (Rajkumar et al., 2014; Kuehl ¢
Bergsagel, 2002; Kyle et al., 2010; Landgren et al., 2009), which frequently fail to distinguish
between precursor conditions and malignant stages, leading to delayed interventions or
misdiagnosis, with serious consequences for patient outcomes (Schinke et al., 2020). For
instance, MM is defined by clonal plasma cell proliferation within the bone marrow,
resulting in skeletal degradation and eventual collapse (Cowan et al., 2022). Representing
approximately 1.8% of all malignancies and over 15% of hematologic cancers in the U.S,,
MM poses a substantial clinical burden (Cerchione & Martinelli, 20205 Firth, 2019). Studies
reveal that diagnostic pathways for MM are intricate, and later-stage diagnoses correlate
with increased recurrence rates and diminished survival (Kazandjian, 2016), underscoring
the necessity to reassess conventional diagnostic and monitoring strategies (Kumar et al.,
2020).

Artificial intelligence (AI), particularly machine learning models, offers a transformative
solution to these diagnostic limitations (Allegra et al., 2022). AT’s ability to process routine
laboratory data and detect subtle patterns that elude traditional methods significantly
enhances the speed and precision of early detection (Rabbani et al., 2022). This study
developed Al-driven models using gradient-boosted decision trees (GBDT) (Li et al., 2020)
for diagnosis and deep neural networks (DNN) for subtype classification, leveraging
critical laboratory variables to enable accurate and efficient classification of plasma cell
dyscrasias.
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MATERIALS AND METHODS

Patients and methods

The study adhered to the principles of the Declaration of Helsinki and received approval
from the Medical Ethics Committee of Zhejiang Provincial People’s Hospital (Approval
No. Zhejiang Provincial People’s Hospital Ethics 2024 Other No. 034, Acceptance No.
QT2024029). Given the retrospective design, the Ethics Committee granted a waiver for
the requirement of individual informed consent.

Patients and data selection

A retrospective analysis was conducted on common and biochemical markers from 609
newly diagnosed plasma cell dyscrasia cases and 579 control cases (comprising infectious
diseases, autoimmune disorders, liver diseases, and kidney diseases) treated at Zhejiang
Provincial People’s Hospital between January 2018 and February 2024. To further evaluate
the model’s clinical applicability and generalizability, data from an additional 30 newly
diagnosed plasma cell dyscrasia cases and 34 control cases were included. Diagnoses
followed the 2014 International Myeloma Working Group (IMWG) criteria. Thirteen
variables—sex, age, hemoglobin (HGB), calcium, serum creatinine, erythrocyte
sedimentation rate (ESR), k light chain, A light chain, k/A ratio, albumin/globulin ratio,
albumin, globulin, and p,-microglobulin—were selected as initial modeling variables,
representing key biomarkers associated with the CRAB criteria. These markers have been
validated as independent diagnostic indicators for plasma cell dyscrasias (Cowan et al.,
2022), aiding in early detection. For subtype classification, additional data on
immunofixation electrophoresis and CD markers were utilized. A deep learning model was
employed, optimizing classification accuracy and effectively distinguishing between
plasma cell dyscrasia subtypes.

Despite the essential role of radiological assessments, such as X-ray, whole-body MRI,
and PET-CT, in diagnosing plasma cell dyscrasias, these modalities were deliberately
excluded from the analysis. The focus was on developing a model based solely on routine
laboratory parameters, which are more accessible and cost-effective, allowing for broader
and faster clinical implementation. Incorporating radiological data could introduce
variability due to differing resource availability, potentially compromising model
performance. The emphasis on routine laboratory markers aimed to preserve simplicity
and clinical practicality, though it is acknowledged that the exclusion of radiological data
may limit the model’s ability to capture certain disease-specific features.

Methodology for evaluating different variables
Demographic and clinical parameters: Sex and age were documented at the time of
diagnosis.

Biochemical marker evaluation: HGB, calcium ions (Ca**), serum creatinine, ESR,
and A light chains, albumin, globulin, and 8,-microglobulin were quantified using standard
clinical laboratory techniques. Automated analyzers were utilized for HGB and calcium
measurements, nephelometry for light chain assessment, and ELISA for ,-microglobulin
detection.
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Flow cytometry (MFC) analysis: Multiparametric flow cytometry (MFC) was
employed to assess CD markers, including CD45, CD38, and CD138, using an antibody
panel with 8-12 fluorochromes. Antigen expression was classified as positive when more
than 10% of plasma cells demonstrated expression. Table S1 provides detailed
antibody-fluorochrome combinations, and further information on tube combinations is
available in Table S2.

Data processing

Based on diagnostic criteria and physicians’ auxiliary judgments, factors relevant to
diagnosing plasma cell dyscrasias were identified. Raw data for diagnostic prediction were
extracted from the LIS database, but the initial dataset required additional preprocessing
before it could be used to train machine learning algorithms.

Missing value handling

A significant portion of missing values, especially in immunoglobulin and
immunophenotyping data, was observed among non-plasma cell dyscrasia patients. As
immunophenotyping and immunoglobulin tests could influence the model, two
corresponding data columns were removed. Missing values were predominantly found in
the ESR and B,-microglobulin features, which were handled using mean imputation—
replacing missing values with the feature’s average. For categorical features, mode
imputation was applied. In addition to these imputation techniques, attention-based deep
learning algorithms were used to encode different features. Missing values were labeled as
exceptional and masked to enable distinct feature encoding, preserving more information
compared to conventional imputation methods.

Categorical feature processing

Machine learning and deep learning models require numerical input features. Therefore,
categorical variables were converted into numerical formats. A direct numerical
assignment approach was avoided for immunofixation electrophoresis, as this could
introduce misleading intensity information. Instead, one-hot encoding (Zhu, Qiu & Fu,
2024) was applied, breaking immunofixation electrophoresis into five binary columns: G,
A, M, k, and \. Each column was represented as a binary value, where 0 indicated a
negative result and one indicated a positive one, converting immunofixation
electrophoresis data into a 5-dimensional binary vector.

Variable selection

To develop a robust classification system and identify key laboratory variables specific to
plasma cell dyscrasias, a systematic analysis was conducted, comparing data between
plasma cell dyscrasias and non-plasma cell dyscrasias. The Kruskal-Wallis (K-W) test or
Wilcoxon rank-sum test, along with multiple logistic regression, were employed to
evaluate the differential expression of laboratory variables between the two groups. Forest
plots were used for visual comparison. Through final dimensionality reduction, nine
critical variables were identified for the diagnostic model: HGB, age, serum creatinine,
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Table 1 Univariate analysis of 13 feature variables in the diagnostic model for plasma cell dyscrasias. Values follow a normal distribution, and
descriptive statistics are expressed as “Median and Standard deviation.” When skewed values, descriptive statistics use “Median and Interquartile
Range.” The chart shows that the p-values for sex (P = 0.562) and serum calcium (P = 0.11) are all >0.05. This indicates no statistically significant
differences in sex and serum calcium levels when predicting between the plasma and non-plasma cell dyscrasias groups.

Variables Plasma cell dyscrasias Non-plasma cell dyscrasias p

(n = 609) (n =579)
Sex (female/male) 223/386 (37%/63%) 235/344 (41%/59%) p=0562
Age (year) 69 (60, 76) 59 (48, 71) P < 0.0001
Hemoglobin (g/L) 97.82 (25.82) 120 (105, 140) P < 0.0001
Serum calcium (mmol/L) 2.22 (2.08, 2.34) 2.23 (2.11, 2.34) p=011
Serum creatinine (umol/L) 87.30 (67.70, 135.5) 99.10 (73.80, 180.20) P < 0.0001
ESR (mm/h) 40 (25, 67) 17 (10, 30) P < 0.0001
Light chain /A ratio 2.67 (0.20, 8.70) 1.50 (0.92, 1.93) P < 0.0001
Light chain x (g/L) 60.10 (11.10, 420.00) 14.50 (9.30, 37.05) P < 0.0001
Light chain A (g/L) 35.00 (7.00, 300.00) 11.35 (5.40, 30.50) P < 0.0001
Albumin/globulin ratio 1.01 (0.61, 1.48) 1.31 (1.11, 1.53) P < 0.0001
Albumin (g/L) 33.25 (28.00, 37.60) 36.80 (31.60, 40.48) P < 0.0001
Globulin (g/L) 32.60 (24.38, 51.80) 27.50 (23.90, 31.18) P < 0.0001
B2-macroglobulin (mg/L) 4.50 (3.01, 7.48) 1.90 (0.39, 4.50) P < 0.0001

ESR, /A light chain ratio, k light chain, A light chain, globulin, and ,-microglobulin. All
statistical tests were considered significant at p < 0.05 (two-tailed).

Patient characteristics

This study focuses on classifying plasma cell dyscrasias and non-plasma cell dyscrasias to
develop predictive diagnostic models. A comparative analysis of clinical features and
outcomes between individuals with plasma cell dyscrasias and non-plasma cell dyscrasias
in the derived cohort is presented in Table 1. Over the study period, 1,188 patients were
divided into training and internal validation sets, while an external group of 64 patients
was used for validation.

Diagnostic model development

Given the model’s diagnostic and classification capabilities, gradient boosting decision
trees (GBDT) are recognized as a highly effective ensemble learning method (Hastie et al.,
2009). As a commonly used algorithm in ensemble learning, GBDT was implemented to
predict whether patients are affected by plasma cell disorders. GBDT is a boosting-based
technique designed for tabular prediction tasks, and it operates as an additive model
consisting of multiple CART decision regression trees. The model works by iteratively
constructing decision trees, where k represents the number of trees, and T(x, 6;) denotes
the output of the i-th regression tree. In binary classification, fy is selected based on the
mean squared error (MSE) between fy and the labels as the loss function L. The negative
gradient of the total loss J is calculated to fit each successive regression tree Ty (x), and these
trees are ultimately combined to generate the final prediction.
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(2)

The maximum number of regression trees was set to 100, with a minimum leaf size of 2

and a learning rate of 0.1. Preprocessing steps included data imputation, cleaning, and
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encoding of categorical features. Parameter tuning was performed using 5-fold cross-
validation. For external validation, 30 newly diagnosed plasma cell dyscrasias cases and 34
non-plasma cell dyscrasias cases were selected. The GBDT classifier, trained on the original
dataset, demonstrated strong generalization, proving both clinically practical and
applicable. The full training pipeline is illustrated in Fig. 1.

Performance evaluations were also conducted by comparing the GBDT model with
support vector machines (SVM) (Rabbani et al., 2022), deep neural networks (DNN)

(Li et al., 2020), and decision trees (DT). The SVM model was designed to identify the
hyperplane that maximizes the margin in feature space. A penalty coefficient of one was
selected, and the Gaussian kernel function was applied, with the kernel coefficient set to the
reciprocal of the feature dimension.

For the DNN model, a deep learning architecture incorporating attention mechanisms
was utilized. Details on the structure and benefits of this model will be discussed in
subsequent sections. The predictive models were constructed and fine-tuned using 5-fold
cross-validation on internal data, followed by external validation to further assess model
performance.

Establishment of a subtype classification model

Deep learning models excel at learning data representations across multiple levels of
abstraction through several processing layers (Zhu, Qiu ¢» Fu, 2024). Leveraging the
backpropagation algorithm, these models process large datasets to identify complex
patterns and optimize internal parameters. These parameters are essential for calculating
representations in each layer, building on those from the previous layer. In the context of
GBDT, each iteration constructs a new decision tree, Ty (x), by fitting the model to
residuals, effectively reducing bias and improving the model’s generalization capabilities.
GBDT remains the state-of-the-art (SOTA) approach for tabular prediction tasks due to its
aptitude for handling tabular data with non-smooth decision boundaries (Hastie et al,
2009). However, its performance depends heavily on selecting parameters like the number
and depth of decision trees, and it is less suited for high-dimensional sparse datasets.

Self-Attention and Intersample Attention Transformer (SAINT) represents an
advanced deep learning approach specifically designed for tabular data, outperforming
traditional gradient-boosting methods by integrating sophisticated attention mechanisms
and contrastive self-supervised pre-training techniques (Somepalli et al., 2021). SAINT
leverages sample-level attention mechanisms to deepen the model’s understanding of
feature interactions, enhancing its learning efficiency in the presence of limited labeled
data, which leads to significantly improved classification accuracy.

In this study, the task involves handling various data features, such as continuous
variables (e.g., creatinine and calcium ions) and categorical variables (e.g., CD markers and
immunofixation electrophoresis). Traditional machine learning algorithms typically
convert these features into numerical values via one-hot encoding or direct mapping, often
failing to capture the latent information within categorical variables. To address this, word
embedding techniques commonly used in natural language processing are employed to
project categorical features into high-dimensional vector spaces within the embedding
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layer. For continuous features, mapping into a distinct high-dimensional space is
accomplished through two fully connected layers and ReLU activation functions.

At the feature extraction stage, the model introduces attention modules, normalization,
and feature mapping layers. The attention mechanism calculates the similarity between the
Query and Key across different features, predicting the Query’s value based on the Key’s
values. This approach improves the model’s ability to identify correlations between
features of varying dimensions. Layer normalization is used to normalize batch outputs,
ensuring equal access to all Keys. Additionally, skip connections are incorporated to
mitigate the vanishing gradient problem, thereby enhancing both model stability and

performance.
Attention(Q, K, V) = Softmax <QKT> Vv (3)
o Vi)

At diagnosis, bio-clinical parameters for each patient were assessed, including
biomarkers associated with the CRAB criteria. The DNN model processed several indices,
such as immunoglobulin, hemoglobin (HGB), serum creatinine, /X light chain ratio,
light chain, A light chain, globulin, and immunofixation electrophoresis typing (IGA, G, M,
K, A), along with CD markers (CD27, CD117, CD38, CD19, CD138). The
mechanism-driven learning framework of the deep learning model is illustrated in Fig. 2.
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Improved loss function

In multi-class classification tasks, deep learning models commonly utilize the
cross-entropy loss function to evaluate predictive performance. This function ensures that
the model’s outputs f, remain within the range of 0 to 1. During optimization, gradient
descent is employed to minimize the cross-entropy loss, guiding the model towards its
optimal parameter configuration fy(x).

efy(x)

Iy, f(x)) = —logm = log[l + ZY’#Y elfr@-H)] (4)
y'ElL]

In predicting MM, the dataset contains a disproportionately higher number of MM
cases. To enhance the model’s accuracy for rarer conditions, such as MGUS, a Logit
adjustment was applied to the loss function (Menon et al,, 2020). In this adjustment,
represents the frequency of each class, f, denotes the model’s output, 7 is a weighting
factor, and f,(x) + tlogm, ensures that the model’s output distribution more closely
aligns with the true data distribution. As shown in the formula, Logit adjustment
proportionally modifies the spatial distribution of e(fy =) hased on the ratio of %,
thereby increasing the margin between f; and f; and assigning greater weight to '
underrepresented data.

oy (x)+logm,

l(y,f(x)) = —lOg ) +tlogm.!
Zy’E[L] efy’( )+logm,

— log [1 DI <n—y) : e(fy’("”y("))] - (5)

Ty

Building on this foundation, the deep learning model was configured with a learning
rate of 0.0001 and a batch size of 128. This setup ultimately enabled the successful
classification and differentiation among a-MM, light chain MM, MGUS, and LPL within a
dataset characterized by well-defined features.

Performance evaluation
1. Evaluation Indexes of a Diagnostic Model

Precision, recall, and F1 scores are standard metrics used to evaluate the performance of
machine learning algorithms. These metrics are defined by the following equations.

TP
Precisi P) = — —
recision(P) TP £ TP (6)
TP
RecallR) = —— 7
ecall(R) = 757N @
2xP xR
Flscore = ———. (8)
P+ R

Precision (P) measures the accuracy of correctly identifying plasma cell dyscrasias, while
recall (R) reflects the proportion of true cases successfully detected. The F1 score balances
precision and recall, with higher values indicating superior model performance. True
positives (TP) represent correct classifications of plasma cell dyscrasias, false positives (FP)
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refer to instances mistakenly classified as dyscrasias, and false negatives (FN) are actual
cases that were missed by the model. These metrics apply similarly to non-plasma cell
dyscrasias.
2. Evaluation indexes of the subtype classification model

Performance evaluation utilized sensitivity (Se), specificity (Sp), positive predictive
value (PPV), and negative predictive value (NPV), all calculated from the standard
confusion matrix.

Se = P 9)
*T TPYEN
TN
Sp= —— 10
P= TN ¥ rp (10)
PPV = P (11)
TP + FP
NPV = N (12)
TN + FN’

True positive, false positive, false negative, and true negative are represented as TP, FP,
FN, and TN, respectively. In subtype classification models, these metrics are employed to
evaluate various dimensions of model performance, offering insights into accuracy,
precision, and effectiveness across different categories. By collectively considering these
indices—sensitivity, specificity, PPV, and NPV—a comprehensive understanding of the
model’s overall performance and suitability can be achieved. These metrics are essential for
assessing the effectiveness of subtype classification models, providing valuable information
on the model’s performance under different conditions.
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Table 2 Characteristic variables involved in the final diagnostic model by multivariate analysis.
presents the results of a multifactorial logistic regression analysis used to analyze the regression rela-
tionship between characteristic variables and the diagnosis of plasma cell dyscrasias. Finally, variables
with a P-value less than 0.05 were selected as the final differential variables to serve as modeling variables
for the diagnostic model.

Multivariate analysis

Variables HR 95% CI, L 95% CI, H P-value
HGB (g/L) 0.938 0.925 0.952 0.001
Serum creatinine (| mol/L) 0.996 0.994 0.997 0.001
ESR (mm/h) 1.025 1.017 1.034 0.001
Light chain /A ratio 1.235 1.136 1.342 0.001
Light chain x (g/L) 1.004 1.002 1.006 0.001
Light chain A (g/L) 1.004 1.002 1.006 0.001
Albumin/globulin ratio 2.631 0.996 6.951 0.051
Albumin (g/L) 0.984 0.937 1.033 0.512
Globulin (g/L) 1.033 1.014 1.052 0.001
(2-microglobulin (mg/L) 0.968 0.939 0.997 0.029
Age (year) 1.017 1.004 1.031 0.01

Table 3 Comparison of demographic and clinical characteristics among the training, internal validation, and external validation cohorts.

Variables Training Internal validation External validation
(n = 950) (n = 238) (n = 64)

Sex (Male/Female) 590/360 (62%/38%) 140/98 (59%/41%) 34/30 (53%/47%)

Age (years) 65 (54, 74) 66 (56, 75) 63 (53, 72)

HGB (g/L)

Serum creatinine (Lmol/L)

ESR (mm/h)

Light chain /A ratio
Light chain k (g/L)
Light chain A (g/L)
Globulin (g/L)

B2-microglobulin (mg/L)

110 (88, 129)

93.10 (69.70, 151.80)
26 (14, 50)

1.68 (0.71, 3.36)
24.35 (10.43, 99.00)
19.0 (5.6, 77.8)
28.70 (24.00, 36.65)
3.1 (1.4, 6.5)

108.5 (89.75, 129.3)
90.50 (68.9, 138.9)
30.00 (15.75, 58.00)
1.60 (0.54, 3.46)
22.8 (10.0, 115.0)
20.5 (6.5, 80.3)
28.80 (23.40, 36.55)
3.5 (1.8, 5.8)

110 (87.75, 118.3)
91.90 (70.50, 151.3)
15 (10, 39)

1.68 (1.14, 3.61)
8.91 (6.60, 56.15)
6.34 (4.35, 23.50)
30.95 (22.15, 48.93)
4.45 (3.05, 7.58)

All experiments referenced in this paper were conducted using Python version 3.10. The
SVM and decision tree models were implemented through the scikit-learn library, while
deep learning algorithms were developed using the PyTorch framework. The
computational hardware used included an Intel i5-11400 CPU and an NVIDIA GeForce
RTX 3060 GPU.

RESULTS

1. Variable determination: To identify specific laboratory variables relevant to modeling
plasma cell dyscrasias, a systematic comparison of 609 plasma cell dyscrasia patients and
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dyscrasias” groups. Full-size K&l DOT: 10.7717/peerj.18391/fig-4
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Figure 5 Cluster-heatmap in plasma and non-plasma cell dyscrasias using 13 laboratory variables
paired with the heatmap package. The color gradient reflects the difference in the variables between
the two groups, namely HGB, age, serum creatinine, ESR, light chain /A ratio, light chainx, light chain},
globulin, and ESR were the different variables. Full-size Ea] DOT: 10.7717/peerj.18391/fig-5

579 control patients was performed. The distribution of clinical data is depicted in Fig. 3.
Using a threshold of P < 0.05 in univariate and multivariate regression analyses, nine key
variables were identified, as detailed in Tables 1 and 2. Demographic characteristics of the
training, internal validation, and external validation sets, along with clinical features, are
summarized in Table 3. According to the forest plot hazard ratio (Fig. 4), the nine variables
selected for the diagnostic model included HGB, age, serum creatinine, ESR, k/A light chain
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Figure 6 Principal component analysis (PCA). Two-dimensional scatter plots represent sample dis-
tributions of the first two components obtained from principal component analysis (PCA) of 400 patients
(randomly selected plasma cell dyscrasias n1 = 200, Non-plasma cell dyscrasias n2 = 200) based on
evaluable data for the 13 characteristic parameters used for the analysis. Dots represent samples, and
different colors represent different groups. The ellipse represents the core area of the grouping plus a
default 68% confidence interval. Full-size k4] DOT: 10.7717/peerj.18391/fig-6

ratio, k light chain, A light chain, globulin, and {,-microglobulin. The cluster heatmap
(Fig. 5) and principal component analysis (PCA) (Fig. 6) demonstrated significant
differences in the expression levels of these nine variables compared to the control group
(liver, kidney, and rheumatic immune system diseases). Feature importance was ranked,
and the final model was explained using the Shapley Additive Explanation (SHAP)
method, as shown in Fig. 7.

2. Diagnostic model performance: Several machine learning models, including SVM,
DNN, decision tree, and GBDT, were trained and evaluated on the same dataset using the
nine identified features: HGB, age, serum creatinine, ESR, k/A light chain ratio, k light
chain, A light chain, globulin, and ,-microglobulin. Among these techniques, the GBDT
model achieved a classification accuracy of 0.978 for non-myeloma dyscrasias and 0.935
for plasma cell dyscrasias. The GBDT model also achieved the highest recall rate (R) of
0.981 and the highest F1 score of 0.957 for plasma cell dyscrasias. Table 4 presents the P, R,
and F1 scores for the four machine learning models.

Additionally, the GBDT model recorded a false positive rate (FPR) of 1.93% and a false
negative rate (FNR) of 4.17% for a-MM, supported by a specificity of 98.07% and
sensitivity of 95.83%. These low FPR and FNR values emphasize the model’s robustness in
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Table 4 Results of internal validation group based on nine variables.

Method Class P R F1
GBDT Plasma cell dyscrasias 0.935 0.981 0.957
Non-plasma cell dyscrasias 0.978 0.926 0.951
DNN Plasma cell dyscrasias 0.913 0.949 0.931
Non-plasma cell dyscrasias 0.947 0.908 0.927
Decision Tree Plasma cell dyscrasias 0.906 0.932 0.919
Non-plasma cell dyscrasias 0.923 0.894 0.908
SVM Plasma cell dyscrasias 0.858 0.883 0.871
Non-plasma cell dyscrasias 0.868 0.840 0.854

differentiating plasma cell dyscrasias from other conditions, substantially minimizing the
risk of misdiagnosis. By analyzing the receiver operating characteristic (ROC) curve, the
area under the curve (AUC) was used to assess the classifier’s ability to distinguish between
classes. A higher AUC indicates superior classification performance. Figure 8 shows the

AUC performance of the four algorithms, with the GBDT classifier achieving an AUC of
0.987, outperforming the other models. The 95% confidence interval for the GBDT model
was 0.984-0.993. AUC values for all four classifiers are illustrated in Fig. 8.

3. External validation: External validation was conducted using an independent test set
to evaluate the performance of the four models. Once again, GBDT demonstrated the
highest performance, achieving 100% accuracy, 97.1% recall, and an F1 score of 98.5% for
plasma cell dyscrasias (as shown in Table 5). The GBDT classifier also recorded the highest
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Figure 8 The ROC comparison of four algorithms based on nine variables (HGB, age, serum
creatinine, ESR, light chain x/A ratio, light chaink, light chainA, globulin, 2 microglobulin). The
classifier with GBDT obtains an AUC of 0.987 (95% confidence interval (CI): [0.984-0.993]) and per-
forms best when compared with the other three algorithms. ROC, Receiver Operating Characteristic;

GBDT, Gradient Boosting Decision Tree; SVM support vector machine; DT, Decision Tree; DNN, Deep

Neural Networks. Full-size K] DOTI: 10.7717/peerj.18391/fig-8

Table 5 Results of the external testing group based on nine variables.

Method Class P R F1
GBDT Plasma cell dyscrasias 1.000 0.971 0.985
Non-plasma cell dyscrasias 0.968 1.000 0.984
DNN Plasma cell dyscrasias 0.941 0.865 0.901
Non-plasma cell dyscrasias 0.833 0.926 0.877
Decision Tree Plasma cell dyscrasias 0.969 0.912 0.939
Non-plasma cell dyscrasias 0.906 0.967 0.935
SVM Plasma cell dyscrasias 0.762 0.941 0.842
Non-plasma cell dyscrasias 0.906 0.667 0.769
15/23
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Figure 9 ROC Validation: ROC comparison of four algorithms based on nine variables for the
external test set. The external test classifier with GBDT has an AUC of 0.99 and performs best com-
pared to the other three algorithms. Full-size Kal DOL: 10.7717/peerj.18391/fig-9

Table 6 Matrix of deep neural networks (DNN) prediction on the testing cohort. ER, the error rate
based on misclassifications; MGUS, Monoclonal Gammopathy of Undetermined Significance; a-MM,
active Multiple Myeloma; LPL/WM, Lymphoplasmacytic Lymphoma/Waldenstr6m’s Macroglobulinemia.

Pathology
Prediction MGUS MM Light chain MM LPL/WM ER, %
(n=21) (n=24) (n=16) (n=15)
MGUS, n 19 1 1 0 9.52
a-MM, n 0 23 0 1 4.17
Light chain MM, n 1 0 15 0 6.25
LPL/WM, n 1 0 0 14 6.67

AUC of 99%, as illustrated in Fig. 9. These results confirm that the selected GBDT model
exhibits strong generalization and significant clinical utility.

4. Subtype model results: For subtype classification of plasma cell dyscrasias, the DNN
algorithm emerged as the optimal choice. The model’s performance in distinguishing
between different plasma cell dyscrasia subtypes is summarized as follows:
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Table 7 Matrix of deep neural networks (DNN) prediction on the testing cohort.

Pathology
Evaluation index MAGUS a-MM Light chain MM LPL/'WM
Sensitivity, % 90.48 95.83 93.75 93.33
Specificity, % 96.36 98.07 98.33 98.36
Positive predictive value (PPV), % 90.48 95.83 93.75 93.33
Negative predictive value (NPV), % 96.36 98.07 98.33 98.36

MGUS: The model achieved an error rate (ER) of 9.52%, sensitivity of 90.48%,
specificity of 96.36%, positive predictive value (PPV) of 90.48%, and negative predictive
value (NPV) of 96.36%.

a-MM: The model showed an ER of 4.17%, sensitivity of 95.83%, specificity of 98.07%,
PPV of 95.83%, and NPV of 98.07%.

Light chain MM: The DNN model achieved an ER of 6.25%, sensitivity of 93.75%,
specificity of 98.33%, PPV of 93.75%, and NPV of 98.33%.

LPL: The model yielded an ER of 6.67%, sensitivity of 93.33%, specificity of 98.36%,
PPV of 93.33%, and NPV of 98.36%. These results are detailed in Tables 6 and 7.

DISCUSSION

Plasma cell disorders are a common type of hematologic malignancy, presenting
significant diagnostic challenges due to the limited involvement of peripheral blood,
making routine blood tests less effective for accurate diagnosis. Bone marrow morphology
is widely regarded as the gold standard for diagnosing hematologic malignancies.
However, as van de Donk et al. (2016) pointed out, in cases such as monoclonal
gammopathy of undetermined significance (MGUS), bone marrow plasma cells may be
absent, thus reducing the diagnostic accuracy of traditional morphological techniques.
This highlights the need for more sensitive diagnostic tools capable of detecting early or
occult diseases.

In recent years, Al has gained substantial attention in the medical field, with numerous
studies demonstrating its potential in diagnosing hematologic malignancies. For instance,
Clichet et al. (2022) developed a decision algorithm combining AI with multiparametric
flow cytometry, achieving over 95% accuracy in distinguishing between plasma cell
disorders such as MGUS, smoldering multiple myeloma (SMM), and MM. The AI
algorithms used in this study, including GBDT and DNN, utilize advanced analytical
methods to differentiate plasma cell disorders from similar conditions by examining
specific hematologic and biochemical markers. Compared to traditional diagnostic
methods, these AI models offer superior sensitivity and specificity, especially in scenarios
with limited sample sizes or complex clinical presentations, where accuracy is significantly
enhanced.

The lower false positive and false negative rates observed in this study further
demonstrate the effectiveness of Al-based algorithms in diagnosing plasma cell disorders.
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Traditional diagnostic methods often struggle with sensitivity and specificity, particularly
in early-stage or occult diseases. In contrast, the AI model used in this study showed
notable improvements in both areas. Reducing false positives and negatives not only
enhances diagnostic precision but also minimizes unnecessary follow-up testing and
decreases the risk of delayed diagnosis. These findings underscore the significant potential
of Al in clinical decision-making for hematologic malignancies.

A significant contribution of this study is the improved diagnostic performance
achieved through the use of masking and continuous feature encoding techniques, which
align with existing research on AI applications in high-dimensional biological data analysis
(Jain & Xu, 2023). Furthermore, SHAP was employed for feature selection, identifying the
most diagnostically relevant variables—a method validated in numerous clinical Al studies
for its interpretability (Wang et al., 2024; Yi et al., 2023; Wang et al., 2022).

Despite these advancements, certain limitations persist. The data source and sample
diversity were relatively limited, which may affect the model’s generalizability to broader
populations. Additionally, further external validation is required to assess the long-term
clinical utility of the model. As noted by Murphy et al. (2021) ethical and privacy concerns
surrounding the use of Al in healthcare must also be addressed to ensure its responsible
and sustainable integration into clinical practice (Witkowski, Okhai ¢ Neely, 2024).

To overcome the constraints of a small external validation cohort and retrospective
data, a prospective study with a larger and more diverse patient population is planned. This
approach will enable the inclusion of additional diagnostic parameters, such as radiological
data and advanced laboratory markers, strengthening the model’s robustness and
generalizability. These future efforts will help ensure that the Al-based algorithm can be
effectively applied across various clinical settings, improving both diagnostic accuracy and
patient outcomes.

In conclusion, the findings highlight AT’s potential, particularly when combined with
routine laboratory data, to significantly enhance early diagnostic capabilities for plasma
cell disorders. Future work should prioritize model optimization, increased dataset
diversity, and rigorous clinical validation to ensure long-term reliability and broad
applicability.

CONCLUSION

This study utilized expected examination results from comprehensive hospital to train
machine learning models, achieving automatic screening and precise classification of
plasma cell disorders. Early alerts were generated through extensive data systems
integrated with Al technologies. This approach holds significant potential for widespread
application in comprehensive hospitals, enhancing the accuracy of plasma cell disorder
classification while reducing the risk of missed diagnoses and misdiagnoses. Ultimately, an
Al-driven early warning system for plasma cell abnormalities was successfully established.

LIST OF ABBREVIATIONS
Al Artificial Intelligence
MGUS monoclonal gammopathy of undetermined significance
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SMM Smouldering multiple myeloma
a-MM active multiple myeloma

SPB solitary plasmacytoma

POEMS  Osteosclerotic myeloma

LPL/WM lymphoplasmacytic lymphoma/Waldenstrém’s macroglobulinemia
HGB hemoglobin

Ca** serum calcium

ESR erythrocyte sedimentation rate

GBDT Gradient Boosting Decision Trees
SVM Support Vector Machines

DNN Deep Neural Networks

DT Decision Trees

P Precision

R Recall

ROC Receiver Operating Characteristic
AUC Area under the ROC curve

ER The error rate

PPV positive predictive value

NPV negative predictive value

Se Sensitivity

Sp Specificity

FN False Negative

FP False Positive

TN True Negative

TP True Positive

ICC International Consensus Classification
IMWG International Myeloma Working Group
PC plasma cell

BM Bone marrow
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