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Objective: To investigate the value of CT radiomics in the differentiation of

mycoplasma pneumoniae pneumonia (MPP) from streptococcus pneumoniae

pneumonia (SPP) with similar CT manifestations in children under 5 years.

Methods: A total of 102 children with MPP (n = 52) or SPP (n = 50) with

similar consolidation and surrounding halo on CT images in Qilu Hospital

and Qilu Children’s Hospital between January 2017 and March 2022 were

enrolled in the retrospective study. Radiomic features of the both lesions

on plain CT images were extracted including the consolidation part of the

pneumonia or both consolidation and surrounding halo area which were

respectively delineated at region of interest (ROI) areas on the maximum

axial image. The training cohort (n = 71) and the validation cohort (n = 31)

were established by stratified random sampling at a ratio of 7:3. By means

of variance threshold, the effective radiomics features, SelectKBest and least

absolute shrinkage and selection operator (LASSO) regression method were

employed for feature selection and combined to calculate the radiomics

score (Rad-score). Six classifiers, including k-nearest neighbor (KNN), support

vector machine (SVM), extreme gradient boosting (XGBoost), random forest

(RF), logistic regression (LR), and decision tree (DT) were used to construct

the models based on radiomic features. The diagnostic performance of these

models and the radiomic nomogram was estimated and compared using the

area under the receiver operating characteristic (ROC) curve (AUC), and the

decision curve analysis (DCA) was used to evaluate which model achieved the

most net benefit.
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Results: RF outperformed other classifiers and was selected as the backbone

in the classifier with the consolidation + the surrounding halo was taken as

ROI to differentiate MPP from SPP in validation cohort. The AUC value of MPP

in validation cohort was 0.822, the sensitivity and specificity were 0.81 and

0.81, respectively.

Conclusion: The RF model has the best classification efficiency in the

identification of MPP from SPP in children, and the ROI with both

consolidation and surrounding halo is most suitable for the delineation.

KEYWORDS

pneumonia, mycoplasma pneumoniae pneumonia, streptococcus pneumoniae
pneumonia, nomogram, CT radiomics

Introduction

Pneumonia is the leading cause of death among children
under 5 years of age worldwide (1–3). Mycoplasma pneumoniae
pneumonia (MPP) and Streptococcus pneumoniae pneumonia
(SPP) are common types of pneumonia in children (4,
5). Consolidation and lung abscesses caused by pulmonary
pathogens can present as poor efficacy of antimicrobial
therapy in the acute stage, and relate with complications
including pleural effusion, necrotizing pneumonia, and even
higher mortality. Early identification of the etiology and
corresponding treatment can significantly reduce the mortality
rate, however, reliable samples of the biological causes of
childhood pneumonia are difficult to obtain in clinical
practice (6). In addition, the colonization of pathogenic
microorganisms in upper respiratory tract samples (7), nasal
wipes, oropharyngeal wipes or sputum detection cannot
accurately reflect the infection of the lower respiratory tract
(8, 9). At the same time, invasive lung puncture biospy,
bronchoalveolar lavage, and other techniques cannot be used
as routine detection methods in children. Currently, common
pathogen detection methods have many defects such as
long detection cycle time, false positive, and false negative
results (10–13), which are greatly limited in practical clinical
applications. Meanwhile, the imaging manifestations of MPP
and SPP in most cases are similar in practical clinical situation,
leading to difficulties in the differential diagnosis. Thus the
timely and effective treatment requires accurate etiological
details (14).

In recent years, the radiomics analysis based on massive data
and artificial intelligence has shown significant advantages in
judging disease types, predicting risk, and guiding treatment
(15–17). Radiomics converts medical images into high-
dimensional images and mines effective data features through
quantitative high-throughput extraction for data analysis, so
various information that cannot be identified by the naked

eye of radiologists, such as texture features, can be extracted,
which is helpful for the diagnosis and treatment of diseases
(18). At the same time, this technology is simple and quick,
and has a potential to solve the identification problems between
both the pneumonias. It is especially suitable for the patients
who cannot obtain the results of pathogen detection in a short
period of time, but are in critical condition and need accurate
medication urgently.

We speculated that radiomics may be able to find more
information that is not visible to the naked eye and may facilitate
the differentiation of these two types of diseases. In this study,
we collected a group of pediatric MPP and SPP patients with
similar CT manifestations and difficulty in visual differentiation
to investigate the value of CT radiomics in the differentiation
of MPP and SPP. To the best of our knowledge, this is the
first study to investigate the identification of pneumonia in
children by radiomics.

Materials and methods

Study design

This study was a retrospective cohort study.

Data source and collection

This study was approved by the Ethics Committee of Qilu
Hospital of Shandong University and Qilu Children’s Hospital.
Children with MPP and SPP who were admitted to Qilu
Hospital of Shandong University or Qilu Children’s Hospital
on January 1, 2017 and July 3, 2022 were collected. All cases
were diagnosed by clinical features and nucleic acid detection
from bronchoalveolar lavage fluid. The chest CT images of the
enrolled children were retrospectively analyzed. All the children
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were consistent with the clinical manifestations of pneumonia,
such as fever, cough, and the presence of corresponding imaging
findings. Then, 102 cases of pediatric pneumonia patients
enrolled in the study were stratified and randomly sampled in
a ratio of 7:3. All patients were divided into the training cohort
(71 cases) and the validation cohort (31 cases).

Inclusion criteria: (1) Bronchoscopy was collected for
alveolar lavage fluid for multiplex polymerase chain tests
reaction (mPCR) detection in all cases. Mycoplasma infection
and Streptococcus pneumoniae infection were confirmed, and
the corresponding treatment was effective. (2) Mycoplasma
detection by a particle agglutination test, where the single MP-
IgM antibody titer was ≥1:160, or the MP-IgM antibody titer
in the recovery and acute phases was four or more times
higher than initial results. (3) Streptococcus diagnosed by the
culture of sputum. (4) CT images showed predominantly solid
lesions on the lung window. (5) Two experienced associate
professors in chest imaging diagnosis were unable to identify
the nature of pneumonia. Exclusion criteria: (1) CT images
have motion artifacts, poor image quality, large differences in
scanning conditions, and inconsistent slice thickness; (2) There
is clinical suspicion of mixed infection.

Sampling procedures

A pediatric flexible fiberoptic bronchoscope was inserted
through the mouth to avoid nasal contamination. Aliquots of
saline solution (0.9%) were dripped into the diseased lobar or
segmental bronchus (maximum volume, 3 mL/kg body weight).
The first bronchial lavage fraction was discarded. The same
amount of 4% NaOH was added, and the mixture was fully
stirred and liquefied at 37◦C for 30 min. Fifty to hundred
microliter nucleic acid extract was added to perform respiratory
mPCR with the DNA and Viral Nucleic Acid Volume kit
according to manufacturer’s instructions. All subjects were
sedated with intravenous midazolam, atropinesulphate, and
tramadol hydrochloride. Percutaneous monitoring of oxygen
saturation and heart rate; during the operation, oxygen was
provided as needed.

Induced sputum specimens were collected from
individuals aged ≥3 months. If induced sputum collection
was contraindicated or was not advised by the attending
clinician and a patient was able to expectorate, expectorated
sputum was collected. Serological tests were performed by the
complement fixation technique.

CT scanning method

Non-inspection parts are coated with lead to reduce the
radiation damage to children. SOMATOM Definition AS 64-
slice spiral CT scanner was used to perform conventional

chest scanning with the range from lung tip to the upper
abdomen level of 5 cm below the diaphragmatic dome. The
scanning parametric were as follows: tube voltage 120 KV,
tube current 250∼400 mA/s (using automatic tube current
modulation), FOV: 18∼35 cm, matrix 512 × 512, slice thickness
5 mm, slice spacing 5 mm, scanning time 1.0 s. Patients
who did not coordinate with the examination were routinely
given sedative drugs.

Image delineation

The flow-chart depicting image of feature extraction and
selection and model construction is presented in Figure 1. The
ROIs of the lesions on all lung window CT images were assessed
and delineated in a double-blind manner by two radiologists
with 5 and 10 years of experience, respectively, and following
review was performed by a senior physician. If the difference was
≥5%, the latter would determine the boundary and redraw it.
Two different kinds of ROI delineation of the lesion were made
(Figures 2A–D): the first included the single consolidation part
of the lesion (Figures 2B,D, blue line) and the second included
the consolidation and surrounding halo area (Figures 2B,D,
orange line). Meanwhile, the mediastinal window images was
also used for the judgment of consolidation part of the lesion
as the reference. The cavity, necrosis, hemorrhage or ground
glassin oppacities in lesion were also included in the ROI. At
the same time, the adjacent mediastinum, thickening pleura,
and pleural effusion were avoided to draw by referring to these
structures on mediastinal window CT. Grayscale normalization
was then performed to reduce the impact of contrast and
brightness changes. Ultimately, 102 ROIs were segmented from
CT images of 102 patients and used for subject analysis.

Feature extraction and selection

A total of 1,409 quantitative image features were extracted
from CT images using a RadCloud platform.1 These properties
were divided into three groups. The first group (first order
statistics) consisted of 126 descriptors that could quantitatively
describe the distribution of voxel intensities on CT images
through commonly used basic indicators. The second group
(shape- and size-based features) reflecting the shape and size
of the region. According to the operation length of gray
level and the calculation of gray level co-occurrence texture
matrix, 525 texture features that could quantify regional
heterogeneity differences were classified into three categories
(texture features). Texture features then characterized the
recurrent local patterns on the image with their arrangement
rules, including 75 features Gray Level Co-occurrence Matrix

1 http://radcloud.cn/
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FIGURE 1

Flowchart of the whole radiomics study.

(GLCM), Gray Level Run Length Matrix (GLRLM) and Gray
Level Size Zone Matrix (GLSZM). In addition, the texture
was multi-resolution represented by filtering the image using
14 filters including index, logarithm, gradient, square value,
square root, lbp-2D and wavelet (Wavelet-LHL, Wavelet-
LHH, Wavelet-HLL, Wavelet-LLH, Wavelet-HLH, Wavelet-
HHH, Wavelet-HHL, and Wavelet-LLL) to analyze the texture
on a finer scale.

For intra-observer and inter-observer variation, intra-
observer and inter-observer consistency of each feature was
quantified by intra-class correlation (ICC) between calculated
feature pairs, features with low reproducibility were excluded
from subsequent analysis, and any feature with an ICC less
than 0.8 was discarded. Redundant features could be reduced
by reducing and selecting features to obtain the best results.
The feature selection method used variance threshold (variance
threshold = 0.8), SelectKBest and LASSO models. For the
variance threshold method, the threshold was 0.8, so that the
eight values of the variance smaller than 0.8 were removed. The
SelectKBest method belonged to the univariate feature selection
method, which used p-values to analyze the relationship
between features and classification results, and all features with

p-values less than 0.05 would be used. For the LASSO model,
the L1 regularizer was used as the cost function, the error
value of cross-validation was 5, and the maximum number of
iterations was 1,000.

Radiomics model construction

Based on the clinical data and the follow-up imaging
analysis, the training and validation cohorts were stratified
and randomly sampled at a ratio of 7:3 to establish the
training cohort (n = 71) and the validation cohort (n = 31),
and the number of random seeds was 734. Six classifiers,
including KNN, SVM, XGBoost, RF, LR, and DT, were used
to construct an Radiomics-based machine learning model to
model MPP with SPP.

Statistical analysis

R software (v. 3.5.1) and SPSS26.0 were used to perform
statistical analysis of the data. Age difference in both diseases
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FIGURE 2

Manual delineation on lung window CT images in a 25-month female patient with mycoplasma pneumoniae pneumonia (A,B) and a 21-month
male patient with streptococcus pneumoniae pneumonia (C,D). CT shows the similar appearances with consolidation and surrounding halo in
middle lobe of right lung (A,C), and two ROIs (blue line and orange line) are delineated in each patient.

was tested by independent sample t-test. Chi square test was
used to analyze the differences in gender and inflammatory
site. The linear combination of the selected features and
the product of the corresponding weighting coefficients
was used to form the radiomics label for each patient.
The nomogram construction and calibration plotting were
used by the “rms” package. The decision curve analysis
(DCA) curve plots were performed using the “rmda”
package. ROC analysis was used to evaluate the diagnostic
performances of the classifiers, and the accuracy (score)
matrix was established to compare and evaluate different
radiomics models. P < 0.05 was considered to indicate
statistical significance.

Results

Study population

A total of 102 children were enrolled in this study, including
52 children with mycoplasma infection, with an average age
of 33.06 ± 14.34 months. The mean age of 50 patients with
Streptococcus pneumoniae was 30.9 ± 15.4 months. There were
no significant differences in age and gender between MPP and
SPP patients (P > 0.05), as shown in Table 1.

Feature extraction and screening
results

In this study, we firstly select 451 features from 1,409
features using variance threshold method (Figure 3A), then 151
features were screened out by SelectKBest methods (Figure 3B),
and finally 12 optimal features were screened out by LASSO
algorithm (Figures 3C–E). RF outperformed other classifiers
and was selected as the backbone in the classifier with the
consolidation + the surrounding halo was taken as ROI
to differentiate MPP from SPP in validation cohort. The
radiomics analysis report with ROI in the consolidation part and
surrounding halo area was shown in Supplementary material 1.
The radiomics analysis report with ROI of the consolidation
region was shown in Supplementary material 2.

The radiology score (Rad-score) formula was constructed
based on these seven features and their regression coefficients
(Table 2), and the formula was: Rad-score = wavelet-
HHH_firstorder_Energy ∗

−0.09673 + gradient_firstorder_
Skewness∗−0.09053 + wavelet-HLL_firstorder_Maximum∗

−0.04688 + wavelet-HHH_glrlm_LongRunLowGrayLevel
Emphasis∗−0.0139 + lbp-2D_firstorder_Median∗

−0.02388 +
original_glszm_SizeZoneNonUniformity∗

−0.0102 + wavelet-
LLL_firstorder_Skewness∗0.00864 + original_firstorder_
Maximum∗

−0.02489 + lbp-2D_firstorder_RobustMean
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TABLE 1 Comparison of patients’ general information.

Characteristics Training cohort P Validation cohort P

MPP (n = 36) SPP (n = 35) MPP (n = 16) SPP (n = 15)

Age (month) 35.3333 ± 14.25683 0.268 27.9375 ± 14.99986 0.794

31.4857 ± 14.74762 29.4667 ± 17.21240

Gender, n (%) 0.111 0.289

Male 42 (59.2%) 16 (51.6%)

Female 29 (40.8%) 15 (48.4%)

FIGURE 3

Workflow model construction and radiomics analysis. (A) A variance threshold on feature select. The blue bar represents the number of all the
extracted radiomics features, and the pink bar represents the number of radiomics features screened by variance threshold method. The vertical
axis is 15 kinds of filtering methods (variance threshold = 0.8). (B) SelectKBest on feature select. The abscissa is the P-value of the feature, and
the ordinate is the feature whose P value < 0.05 is screened by SelectKBest method. (C–E) Schematic diagram of feature screening by Lasso
method: (C) Lasso path, where the abscissa is the log value of α, and the ordinate is the coefficient of the feature. (D) The abscissa of the MSE
path is the log value of α, and the ordinate is the mean square error. (E) Regression coefficient of Lasso model, where the abscissa represents
the regression coefficient and the ordinate represents the selected features. (F) ROC curve of the RF model. Yellow curve is MPP cohort, blue
curve is SPP cohort.
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AbsoluteDeviation∗
−0.00281 + original_glrlm_RunLengthNon

Uniformity∗
−0.0554 + logarithm_glrlm_RunLengthNon

Uniformity∗
−0.00001 + wavelet-HLL_glszm_SizeZoneNon

Uniformity∗
−0.01856.

Differential efficacy of radiomics
models

The analysis results of accuracy (score) matrix in validation
cohort of six models with two kinds of ROI is shown in Table 3.

TABLE 2 Radiomics features and their categories, filters and
regression coefficients selected with ROI in the consolidation cohort
and surrounding halo area.

Radiomic feature Radiomic class Filter Coefficient

Energy firstorder wavelet-HHH −0.09673

Skewness firstorder Gradient −0.09053

Maximum firstorder wavelet-HLL −0.04688

LongRunLowGrayLevelEmphasis glrlm wavelet-HHH −0.01390

Median firstorder lbp-2D −0.02388

SizeZoneNonUniformity glszm Original −0.01020

Skewness firstorder wavelet-LLL 0.00864

Maximum firstorder Original −0.02489

RobustMeanAbsoluteDeviation firstorder lbp-2D −0.00281

RunLengthNonUniformity glrlm Original −0.05540

RunLengthNonUniformity glrlm Logarithm −0.00001

SizeZoneNonUniformity glszm wavelet-HLL −0.01856

TABLE 3 Accuracy (score) matrix in validation cohort of six models
with two kinds of ROI.

Validation_score of
the consolidation area

Validation_score of the
consolidation + surrounding

halo

KNN 0.610 0.630

SVM 0.610 0.720

XGBoost 0.650 0.720

RF 0.610 0.810

LR 0.580 0.720

DT 0.520 0.690

TABLE 4 ROC curve analysis results in validation cohort with ROI of
the consolidation region.

Classifiers AUC 95% CI Sensitivity Specificity

KNN 0.581 0.404–0.758 0.600 0.630

SVM 0.533 0.356–0.710 0.530 0.690

XGBoost 0.563 0.395–0.731 0.470 0.690

RF 0.498 0.326–0.670 0.530 0.630

LR 0.575 0.406–0.744 0.400 0.690

DT 0.544 0.378–0.710 0.400 0.690

All classifiers in consolidation region are shown in Table 4.
After the ROI contained surrounding halo area, the matrix
scores of all classifiers were significantly improved. The ROC
curve analysis results of all classifier in validation cohort are
shown in Table 5 and the RF classifier get the best matrix
score. When this classifier was used for validation cohort, the
AUC of MPP was 0.822 [95% confident interval (CI): 0.684–
0.960, sensitivity = 0.81, specificity = 0.81] (Figure 3F). The four
indicators of the classifier (accuracy, recall rate, F1 score, and
support) are shown in Table 6.

Development and performance of the
radiomic nomogram

The rad-score was identified as independent predictors
for discriminating between MPP and SPP and then a
radiomic nomogram was developed. The overall number of
points for each patient was computed using the nomogram
and was associated with the likelihood of MPP. Details
of the performance of radiomic nomogram are shown in
Figures 4A,B. Finally, a DCA was performed to evaluate
whether this nomogram would assist in differentiating between
MPP from SPP (Figure 4C).

Discussion

In this retrospective study, we established six classifiers to
evaluated the performance for discriminating MPP from SPP
with two kinds of ROI. We found that the radiomics classifier
demonstrated low performance for differentiation using the ROI

TABLE 5 ROC curve analysis results in validation cohort with ROI of
both the consolidation cohort and surrounding halo area.

Classifiers AUC 95% CI Sensitivity Specificity

KNN 0.727 0.556–0.898 0.690 0.560

SVM 0.797 0.639–0.955 0.750 0.690

XGBoost 0.785 0.622–0.948 0.440 0.750

RF 0.822 0.684–0.960 0.810 0.810

LR 0.734 0.574–0.894 0.690 0.750

DT 0.688 0.538–0.838 0.500 0.880

TABLE 6 Evaluation results of the four indicators of the both diseases
in validation cohort with ROI of both the consolidation cohort and
surrounding halo area.

Indicators KNN SVM XGBoost RF LR DT

Precision 0.610 0.710 0.640 0.810 0.730 0.800

Sensitivity 0.690 0.750 0.440 0.810 0.690 0.500

F1-score 0.650 0.730 0.520 0.810 0.710 0.620

Support 16 16 16 16 16 16
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FIGURE 4

(A) The radiomic nomogram was built on the training group with the rad-score. (B) The calibration curve in the training cohort. (C) The decision
curve analysis (DCA) curve of the radiomic nomogram in the training cohort.

of consolidation region. After the ROI contained surrounding
halo area, every classifiers performed better and demonstrated
high performance. Our preliminary results revealed that
classifiers trained with ROI of both the consolidation part and
surrounding halo area achieved better diagnostic performance
for discrimination between MPP and SPP, with significantly
higher AUC than the ROI of consolidation region in the
validation cohort and in all patients.

The differentiation between MPP and SPP in children
is pivotal, as treatment approaches are quite different (19).

Accurate and early etiological diagnosis can guide clinicians in
rational drug using (20), reducing the total mortality rate by
27% and the pneumonia-specific mortality rate by 42% (21).
At the same time, it can also reduce the abuse of antibiotics
and improve bacterial drug resistance. Therefore, the accurate
diagnosis and identification is helpful in guiding treatment.

In radiomics, there are a variety of machine learning
methods that can be used to build classification models, which
have their own advantages for different tasks. In this study, six
commonly used classifier models (KNN, SVM, XGBoost, RF,
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LR, and DT) and 1,409 features for each patient were extracted,
and then seven features were screened out by LASSO algorithm
finally. Among the 12 significant radiomics features, we found
the mean intensity of MPP was different from SPP. This might
reflect different diffuse opacities or greater degree of fluid or
debris affecting the airspaces leading to the diversity in airspace
disease phenotypes (consolidation, ground-glass opacities, etc.)
that combine varying degrees of edema and vascular and
interlobular septal thickening (22, 23), so the MPP showed
different irregular intensity changes, heterogeneous intensities,
and range in textures from SPP. When the inflammation
progresses, extensive exudation of lung tissue leads to solid
pneumonia, and the early specific imaging findings of two
types of inflammation were obscurated. This might also explain
why the consolidation part of the pneumonia was limited in
differentiation.

To date, very few studies have addressed the problem
of pneumonia differentiation using radiomics. Mei et al.
(24) used artificial intelligence algorithms to integrate chest
CT findings with clinical symptoms, exposure history and
laboratory validation to diagnose COVID-19. Wang et al.
(25) combined deep learning-radiomics model to differentiate
COVID-19 from non-COVID-19 viral pneumonia. These
studies demonstrate the feasibility of using radiomics to identify
lung inflammation. However, their study analysis showed only
one kinds of pneumonia, and they did not find a significant
effect of different ROI delineation methods on the results.
Our approach is more pragmatic, as using only one kinds of
pneumonia may introduce a selection bias and overestimate
the classification accuracy. Yu et al. (26) implemented multiple
network architectures to subclassify NSCLC and achieved
an AUC of 0.864, which was 0.042 higher than our result.
Furthermore, Wang et al. (27) conducted a similar classification
task their CNN-AvgFea-Norm3-based RF method achieved
an AUC of 0.856 and an accuracy of 0.820, which was
0.034 higher in AUC and 0.010 higher in accuracy compared
with our classifier.

RF radiomics classifier is used widely by scientists for
solving real world scale problems with limited resources (28–
30). The building model and following validation results
proved that RF radiomics classifier showed a good value in
differentiation of mycoplasma from pneumococcal pneumonia
in children, consistent with their different pathological basis.
The type of pathogens in pneumonia are associated with
different lymphocytes and monocytes response during the
initiation (31) and hinted that radiomic model could be
used as the identification method for multiple kinds of
pneumonia. This provides clinicians with additional diagnostic
information and promote the development of personalized
precision therapy.

Although we found high diagnostic performance of
radiomics model, the study still has some limitations. First,
the number of patients is not large enough, external validation

cannot be done due to insufficient data and the diagnostic
accuracy might be overestimated. Hence, large multicenter
studies are warranted to confirm the current findings. Second,
the “hand-crafted” features, such as shape and texture, may
not capture the full range of information contained within
the images and are limited by low reproducibility. Deep
learning extracts deeper and more comprehensive information
directly from raw images, and has important clinical potential
in disease diagnosis. Third, the study only performed two-
dimensional analysis of the largest section, it may lead to
inaccurate evaluation due to the influence of acquisition
parameters on feature stability. Finally, the study only discuss
two comment types of pneumonia in children and the others
were not included.

Conclusion

In conclusion, The RF radiomics classifier with the ROI
delineation including both consolidation and surrounding halo
may show potential for the differentiation of MPP and SPP,
which may provide accurate differentiational diagnosis for the
early and appropriate treatment.
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