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Abstract

occurred via p53 signaling pathway inactivation.

Background: New mechanistic insights into the self-renewal ability and multipotent properties of neural stem cells
(NSCs) are currently under active investigation for potential use in the treatment of neurological diseases. In this
study, NSCs were isolated from the forebrain of fetal rats and cultured to induce NSC differentiation, which was
associated with low expression of the non-coding RNA microRNA-335-3p (miR-335-3p).

Methods: Loss- and gain-of-function experiments were performed in NSCs after induction of differentiation.

Results: Overexpression of miR-335-3p or FoxM1 and inhibition of the Fmr1 or p53 signaling pathways facilitated
neurosphere formation, enhanced proliferation and cell cycle entry of NSCs, but restricted NSC differentiation.
Mechanistically, FoxM1 positively regulated miR-335-3p by binding to its promoter region, while miR-335-3p
targeted and negatively regulated Fmr1. Additionally, the promotive effect of miR-335-3p on NSC self-renewal

Conclusion: Taken together, miR-335-3p activated by FoxM1 could suppress NSC differentiation and promote NSC
self-renewal by inactivating the p53 signaling pathway via Fmr1.
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Background

Neural stem cells (NSCs) play a crucial role in the devel-
opment of the central nervous system, since they can
differentiate into astrocytes, neurons, and oligodendro-
cytes, which are the three major cell types in the central
nervous system. NSCs have the ability to continuously
self-renew and produce a large number of neuronal and
glial lineages [1]. The NSC differentiation capability can
potentially restore neurons lost following central ner-
vous system trauma or in neurodegenerative diseases [2].
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However, the aberrant differentiation of NSCs may cause
central nervous system dysfunction and give rise to cer-
tain tumors [3].

Transcriptional factors are highlighted to regulate NSCs
biological functions. For instance, PR domain-containing
16 is responsible for NSC maintenance and differentiation
[4]. As revealed in previous work, there are as many as 57
transcription-related genes enriched in NSCs, among
which forkhead box M1 (FoxM1) is prominent and likely
to be essential in the process of NSC differentiation [5].
FoxM1 is a transcriptional factor with a strong involve-
ment in cell proliferation, thus acting as a regulator of dif-
ferentiation in neuroblastoma cells [6].

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13287-021-02191-2&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:jiangyugang123@csu.edu.cn

Jia et al. Stem Cell Research & Therapy (2021) 12:169

MicroRNAs (miRNAs) have been implicated in a gene
regulatory network involving neural induction, neuron
differentiation, and cell fate specification [7]. Encoded at
the genomic region 7q32.2, miR-335 is relevant to the
development of various tumors, including human glioma
[8], in which miR-335 acts as a pivotal determinant of
cell fate [9]. In addition, another study also identified
that miR-335 was associated with several malignant tu-
mors of the central nervous system, including glioma
and astrocytoma [8, 10]. Although the involvement of a
FoxM1-miRNA regulation network in NSCs has been
documented [11], it remains unknown how FoxM1 in-
teracts with miR-335-3p to exert effects on NSCs.

Moreover, a prior study elaborated that miR-335 tar-
geted FMRP translational regulator 1 (Fmr1) [12]. Based
on previous work, Fmrl can regulate neuronal migration
in developing mouse cortex [13]. Furthermore, there is
evidence revealing the diminished p53 expression in
Fmrl-knockout adult NSCs [14], whereas activation of
the p53 signaling pathway is involved in the self-renewal
of mouse NSCs [15]. In our study, we investigated the
association between FoxMIl-mediated miR-335-3p ex-
pression and NSC self-renewal via the p53 signaling
pathway under regulation by Fmrl, thus aiming to ob-
tain new insight into the regulatory pathways for differ-
entiation of NSCs.

Materials and methods

Ethical statement

The study was conducted with the approval of the Ani-
mal Ethics Committee of The Second Xiangya Hospital
of Central South University. All the animal experiments
were performed in strict accordance with the Guidelines
for the Care and Use of Laboratory Animals published
by the USA National Institutes of Health.

Isolation, characterization, and culture of rat NSCs

The primary NSCs were isolated from the forebrains of
fetal rats from pregnant Wistar rats (E14.5; Shanghai
Jiesijie Laboratory Animal Co., Ltd., Shanghai, China),
following procedures described in a previous study [16].
Under sterile conditions, the cerebral cortex of fetal rats
of appropriate gestational age was separated, with careful
stripping of the meninges and superficial blood vessels.
The cerebral cortex was rinsed 3 times with PBS, and
then transferred to 1.5 mL sterile D-Hank solution con-
taining penicillin. Next, the cerebral cortex was cut into
blocks (0.5 mm?®), which were triturated and then
allowed to stand for 2min in a centrifuge tube. The
supernatant was gently pipetted into the culture flask,
and trypan blue staining was used to count the number
of viable cells. NSCs were immersed in NSC basal
medium supplemented with NeuroCult proliferation
supplement (Stem Cell Technologies, Vancouver,
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Canada), 1% nitrogen (N2) (Gibco, Rockville, MD, USA),
20 ng/mL basic fibroblast growth factor (BGF; R&D Sys-
tems, Minneapolis, MN, USA), 20ng/mL epidermal
growth factor (EGF), and 1% penicillin-streptomycin
(Sigma, St. Louis, MO, USA) [17]. The cell density was
adjusted to 5 x 10° mL and seeded at 37 °C in an incuba-
tor with 5% CO,. These cultures were maintained for 3
weeks, and medium of half volume was renewed every
week. Spheres that formed during this incubation period
were separated by centrifugation at 700 rpm for 30s.
After disaggregation of NSCs by addition of StemPro
Accutase cell separation reagent (Gibco), the cells were
seeded into uncoated tissue culture plastic dishes at a
density of 1 x 10° cells/cm? Neuronal differentiation was
induced by culturing the NSCs in NeuroCult™ differenti-
ation medium (Stem Cell Technologies, Vancouver,
Canada). The expression of Nestin and SOX2Tuj-1 in
cells was assayed by immunofluorescence staining. The
proliferation of NSCs was assessed by 5-bromo-2-deox-
yuridine (BrdU) assay, and the cellular morphology was
observed under an inverted microscope.

Experimental protocols

NSCs were transfected with different plasmids, including
overexpression (oe)-FoxM1, siRNA (si)-FoxM1, miR-
335-3p-mimic, miR-335-3p-inhibitor, oe-Fmrl, and si-
Fmrl, alone or in combination. Meanwhile, cells were
also treated with the inhibitor of p53 signaling pathway
(PFT-a; ab120478; Abcam Inc., Cambridge, UK) or di-
methyl sulfoxide (DMSO) as control.

The oe-FoxM1 and oe-Fmrl plasmids were con-
structed in the pcDNA3.1 vector (Invitrogen, Carlsbad,
CA) by Sangon (Shanghai, China). The siRNA expres-
sion vector was obtained from the Sigma Mission RNAi
shRNA library. In brief, 24 h before the transfection,
NSCs were seeded into a 6-well plate (2 x 10° cells/well)
and transfected using Lipofectamine 2000 reagent (Invi-
trogen, Carlsbad, CA) along with 20 nM miRNA, 40 nM
siRNA, or 200ng pcDNA plasmid. At 48 h after this
transfection, the cells were collected for subsequent
study.

RNA isolation and quantification

The total RNA was extracted from tissues and cells
following the manufacturer’s protocol provided in the
TRIzol reagent (15596-018, Beijing Solarbio Science &
Technology Co., Ltd., Beijing, China), and its concentra-
tion was determined. Then, the total RNA was reversely
transcribed into complementary DNA (cDNA; 50 ng/uL)
following the instructions of the miRNA reverse tran-
scription kit (D1801; HaiGene, Harbin, China) and the
c¢DNA reverse transcription kit (K1622; Reanta, Beijing,
China). The subsequent PCR reaction was performed in
a real-time PCR instrument (ViiA 7; Life Technologies,
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USA). The primers were synthesized by Takara (Liao-
ning, China) as shown in Table 1. The relative transcrip-
tion levels were measured using the 2°°°“* method, with
U6 and GAPDH as internal references.

Western blot analysis

The total protein was extracted from cells following the
instructions accompanying the RIPA lysis buffer (R0010;
Solarbio, Beijing, China). After extraction of the super-
natant, the protein concentration in each sample was
detected using a bicinchoninic acid kit (20201ES76; Yea-
sen, Shanghai, China). Then, the protein was separated
by sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis and transferred onto the polyvinylidene fluoride
membrane, which was blocked with 5% bovine serum al-
bumin at room temperature for 1 h. The membrane was
then incubated with diluted primary rabbit antibodies
(Abcam Inc., Cambridge, UK): FoxM1 (1:500; ab180710),
Fmrl-coded FmrR (1 pg/mL; ab17722), Msil (1 ug/mL;
ab21628), Hesl (1:500; ab108937), Bmil (1 pg/mL;
ab38295), Nf-M (1:1000; ab7794), Nestin (1 pug/mL;
ab6142), Tuj-1 (1 ug/mL; ab18207), Glial fibrillary acidic
protein (GFAP; 1:10000; ab7260), CNPase (5pg/mL;
ab6319), p53 (5 pg/mL; ab26), phosphorylated p53 (1:
500; ab1431), p21 (1:1000; ab109199), Fas (ab419, 1:
1000), FasL (ab186671, 0.1pug/mL), and GAPDH
(ab9485, 1:500) overnight at 4 °C. Being washed by Tris-
Buffered Saline Tween-20 three times (each for 5 min),
the membrane was incubated with horseradish
peroxidase-conjugated goat anti-rabbit immunoglobulin
G antibody (1:20,000; ab205718; Abcam Inc., Cambridge,
UK) and developed. The quantitative analysis of protein
was conducted using Image] 1.48u software (National
Institutes of Health, Bethesda, MD, USA) and the rela-
tive level was expressed as the ratio of gray value of tar-
get band to that of GAPDH band.

Table 1 Primer sequences for RT-gPCR

Genes
miR-335-3p

Primer sequence (5'-3')

Forward: GTTTTTCATTATTGCTCCTGACCA
Reverse: CGTGCATCTAGACCGTCATAGA
ué Forward: ATGACGTCTGCCTTGGAGAAC
Reverse: TCAGTGTGCTACGGAGTTCAG
Forward: GGCTCCCGCAGCATCAA
Reverse: TGTTCCGGCGGAGCTCTA

Frr1 Forward: ATCCCTGCAGAGCACCTCCA
Reverse: TTCACCTCATGCCCGTGCC
Forward: CTGACATGCCGCCTGGAGA
Reverse: ATGTAGGCCATGAGGTCCAC

FoxM1

GAPDH

RT-gPCR, reverse transcription quantitative polymerase chain reaction; miR-335-
3p, microRNA-335-3p; FoxM1, forkhead box M1; Fmr1, FMRP translational
regulator 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase
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Immunofluorescence staining

The primary NSCs and the differentiated NSCs were
fixed by 4% paraformaldehyde for 20 min and penetrated
by phosphate buffer saline (PBS)-diluted 0.3% Triton X-
100 for 1h. After being blocked with 10% goat serum,
the NSCs were incubated with primary antibodies
against Nestin, Tuj-1, and GFAP at 4°C overnight and
then cultured with secondary antibodies for 1 h. The nu-
clei were counterstained with 1 pg/mL 4’'-6-diamidino-
2-phenylindole (DAPI). The cells were observed under a
Zeiss AX10 microscope (Carl Zeiss, Tornwood, NY,
USA) and analyzed using Image] (National Institutes of
Health, Bethesda, MD, USA).

BrdU assay

NSC proliferation was determined using the BrdU
method following the instructions provided in the
commercial kit (Millipore Inc., Bedford, MA, USA). The
images were captured using a Zeiss AX10 microscope
(Carl Zeiss, Tornwood, NY, USA) and analyzed by
Image] software.

Cell Counting Kit-8 (CCK-8)

The sorted cells of each group were seeded into a 96-
well culture plate at a density of 1 x 10° cells/well along
with 100 uL of a medium containing 10% EBS. The cells
were then cultured for 1-5 days and the number of cells
was assayed by the CCK-8 kit (Dojindo Laboratories,
Kumamoto, Japan) according to the manufacturer’s in-
structions. In brief, 10 uL. CCK-8 solution was added to
each well of the plate and incubated for 1 h. The optical
density (OD) was measured at 450 nm using a micro-
plate reader.

Neurosphere formation assay

Neurospheres grown in NSC selective medium were dis-
sociated into single cells by addition of dissociating solu-
tion non-enzymatic buffer (C5789, Sigma, St. Louis,
MO, USA). The cells were then re-plated at the density
of 1-2 cells/mm in a 96-well plate containing stem cell-
selective medium. After 6-8 days, the newly formed neu-
rospheres were counted under the microscope, and their
size measured (x 200).

Chromatin immunoprecipitation (ChIP) assay

NSCs were cross-linked with formaldehyde for 10 min
and then broken into chromatin fragments (200—1000
bp) using 15 cycles of ultrasonic treatments. Next, the
supernatant was incubated with mouse IgG (1:20; 5873S;
Cell Signaling Technology, Danvers, MA, USA) as a
negative control (NC) and FoxM1 antibody respectively
overnight at 4°C. Subsequently, the protein-DNA com-
plex was precipitated by Pierce protein A/G Magnetic
Beads (88803; Thermo Fisher Scientific, Waltham, MA,
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USA) and de-crosslinked overnight at 65°C. The DNA
was extracted and purified by phenol/chloroform. The
primers containing site2 of miR-335-3p promoter which
could bind with FoxM1 were designed with the follow-
ing sequences (5'-3"): Forward: CTCCTGGTCTCTCC
CCTCAA and Reverse: GCTGAAACCTACACGACC
CA. Meanwhile, the other pair of primers, which could
amplify the sequence distal the promoter region of miR-
335-3p, was designed to serve as NC, using the following
sequences (5'-3"): Forward: CCTGCTCTGCACTC
ATGGAA and Reverse: TGAAACCTACACGACCCA
CG. qPCR was then performed with the purified DNA
fragments as the amplification template, and with site2
primers and NC primers, respectively, to verify that the
site2 of miR-335-3p was indeed the binding site of
FoxM1.

RNA pull-down assay

The binding relationship between miR-335-3p and Fmrl
was examined using a Magnetic RNA-Protein Pull-
Down kit (20164; Pierce, Rockford, IL, USA). NSCs were
collected and lysed in RIP lysis buffer. Next, the cell lys-
ate was incubated with the biotinylated miR-335-3p,
miR-335-3p NC, and streptavidin-conjugated beads at
4°C overnight. Finally, the RNA was extracted using
TRIzol reagent and RT-qPCR was performed to measure
the level of Fmrl mRNA.

Dual-luciferase reporter assay

The targeting relationship between miR-335-3p and
Fmrl as well as FoxM1 and miR-335-3p was predicted
according to biological websites (http://www.targetscan.
org; https://cm jefferson.edu/rna22/Interactive), which
was confirmed by dual-luciferase reporter assay. Based
on the sequence of miR-335-3p binding to Fmr1, we de-
signed Fmrl WT and MUT sequences. The 3'UTR gene
fragments of Fmrl WT (vector expressing wild-type
Fmrl) and Fmrl MUT (vector expressing mutant Fmr1)
were artificially synthesized and introduced into the
PGLO-control vector (Promega, USA) using the Xhol
and BamH I endonuclease sites. After restriction endo-
nuclease digestion, we used T4 DNA ligase to insert the
target fragments into the PGLO-control vector to con-
struct the desired Fmrl WT and Fmrl MUT plasmids.
These reporter plasmids were then co-transfected with
miR-335-3p mimic and NC mimic plasmids into 293T
cells. Twenty-four hours after transfection, cells were
lysed and centrifuged at 12,000 rpm for 1 min, followed
by the collection of supernatant. Next, the luciferase ac-
tivity was measured by the Dual-Luciferase® Reporter
Assay System (E1910; Promega, Madison, WI, USA).
The relative luciferase activity was expressed as the ratio
of Firefly luciferase to Renilla luciferase.
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Three sites by which FoxM1 was most likely to bind
to the miR-335-3p promoter were predicted based on
the UCSC (http://genome.ucsc.edu) and JASPAR (http://
jaspar.genereg.net) websites: Position 45-51 of FOXM1
three-prime untranslated region (3'UTR): GUCCAC
CAUCCCGGGCAGGGCAA; Position 56—62 of FOXM1
3'UTR: CUGGCACUUGUGUGGCGUUAGGU; Pos-
ition 819-825 of FOXM1 3'UTR: UACAAGCUACAG
AACAACGGAAC. Next, the recombinant WT and
MUT luciferase reporter plasmids were constructed and
co-transfected with FoxM1 into 293T cells, to verify the
binding relationship between FoxM1 and miR-335-3p
promoter. The dual-luciferase reporter assay was carried
out following the same procedures as described above.

Flow cytometry

The cell cycle was analyzed using flow cytometry. NSCs
were seeded into 100-mm culture dishes with the dens-
ity of 1x10° cells/mL, and cultured at 37°C with 5%
CO,. After 36-48h, cells were collected and then
washed with PBS for 2—3 times and then resuspended in
PBS at a density of 1x10° cells/mL. Next, cells were
fixed by addition of 0.5 mL of pre-cooled 70% ethyl alco-
hol overnight at -20°C and stored on ice for 1h,
followed by 2-min centrifugation at 4000 rpm. Subse-
quently, cells were precipitated, resuspended in 0.5mL
PBS containing 0.25% Triton X-100, and then incubated
on ice for 15 min, and centrifuged at 4000 rpm for 2
min. After discarding the supernatant, cells were resus-
pended in 0.5mL PBS containing 10 pg/mL RNase A
and 20 pg/mL PI stock solution (P4170; Sigma-Aldrich,
St. Louis, MO, USA), and incubated at room
temperature in dark for 30 min. Finally, the centrifuged
cells were filtered through a 300-uM nylon net filter into
Eppendorf tubes containing PBS. The cell cycle of the
filtered cells was analyzed using the FACS Aria III sys-
tem (BD Biosciences, San Jose, CA, USA).

Statistical analysis

The experimental data in this study were processed
using SPSS 21.0 statistical software (IBM Corp.,
Armonk, NY, USA) and presented as mean + standard
deviation. The number of neurospheres was calculated
under light microscopy in 15 randomly-selected, non-
overlapping fields. If data were normally distributed with
homogeneity of variance, comparison between two
groups was analyzed by unpaired ¢ test, differences
among multiple groups were analyzed by one-way ana-
lysis of variance (ANOVA) or repeated measures
ANOVA, and the pairwise comparison within group was
conducted using post hoc test. Otherwise, the data were
analyzed using rank-sum test. When the p value was less
than 0.05, the difference was considered statistically
significant.
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Results

miR-335-3p was downregulated during NSC
differentiation

To establish the expression rate of miR-335-3p in NSCs,
primary NSCs were first isolated from the forebrains of
fetal rats delivered from pregnant Wistar rats. After 3
days of subculture in vitro, NSCs stably grew as neuro-
spheres, while NSC medium maintained dry. After 15
days, we found that the neurospheres were enlarged, but
without cell adherence and protrusions (Fig. 1a). Mean-
while, immunofluorescence assay revealed that the ex-
pression of Nestin and SOX2 was positive in these
neurospheres (Fig. 1b). According to BrdU and CCK-8
assays, the separated NSCs possessed strong proliferative
ability (Fig. 1c, d). Therefore, NSCs were successfully
separated.

To verify the differentiation ability of the isolated
NSCs, in vitro differentiation of NSCs was obtained
by culturing in NeuroCult differentiation medium. As
displayed in Fig. le, the NSCs were spherical with a
clear boundary and high refractive index, and their
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surface was smooth, without protuberances. After
3 days of culture in the differentiation medium, the
neurospheres started to differentiate, and 7 days later,
neurites had appeared and synaptic connections
formed between the cells, indicating that the NSCs
had differentiated.

Next, immunofluorescence assay results showed that
with increasing duration of induced-differentiation, the
expression of Nestin decreased gradually, becoming sig-
nificantly reduced from the 3rd day of differentiation on-
ward (p <0.05) (Fig. 1f). Meanwhile, NSCs were mainly
differentiated into neuron-type cells on the 3rd day but
astrocytes on the 7th day, as reflected by the elevated
expression of Tuj-1 and GFAP (Fig. 1g). In addition,
Western blot assay showed that, compared to the ex-
pression on day 3, the cellular expression of Tuj-1 was
significantly lower and that of GFAP was significantly in-
creased on day 7 (Fig. 1h). Thus, NSCs mainly differenti-
ated into neurons in the early stage and later mainly
differentiated into glial cells. As exhibited by the above
results, we had successfully isolated NSCs from the rats,
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which showed characteristics of multilineage differenti-
ation and self-renewal capabilities under appropriate
conditions.

We next conducted Western blot analysis to detect
the cellular expression of self-renewal-related genes
(Msil, Hesl, Bmil, Nf-M) [18] and differentiation-
related genes (Nestin, Tuj-1, GFAP, CNPase) [19], as
these markers are related to neural stem cell prolifera-
tion and differentiation. With the increase of differenti-
ation time, the expression of Msil, Hesl, Bmil, and
Nestin decreased, while the expression of Nf-M and
Tuj-1, GFAP, and CNPase increased (Fig. 1i). Addition-
ally, based on previous work showing that miR-335-3p
was implicated with NSCs self-renewal [20], we detected
the expression of miR-335-3p at different time points
during NSC differentiation using RT-qPCR. Results
showed that the level of miR-335-3p was reduced during
NSC differentiation (Fig. 1j). Taken together, these
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results indicated that miR-335-3p might function as a
modulator of NSC self-renewal.

Upregulation of miR-335-3p maintained self-renewal of
NSCs

Aiming to explore the role of miR-335-3p in the self-
renewal and differentiation of NSCs, we introduced
miR-335-3p mimic and miR-335-3p inhibitor into NSCs
(Fig. 2a). After performing neurosphere formation assay,
we found that the number and size of neurosphere
formed from NSCs treated with miR-335-3p mimic were
significantly increased, whereas miR-335-3p inhibitor
had the opposite effect (Fig. 2b, c¢). Meanwhile, cell cycle
distribution of NSCs after different treatments was de-
termined using flow cytometry. As documented in Fig.
2d, miR-335-3p overexpression led to augmented viabil-
ity of NSCs, characterized by increased proportion of
cells arrested in S phase and declined proportion of
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those in Go/G; phase, whereas the opposite results were ~ was conductive to maintaining the self-renewal of NSCs
achieved in response to miR-335-3p inhibition. Fas lig- and to suppressing NSC differentiation.

and (FasL) and its receptor Fas are known membrane

surface molecules related to cell apoptosis [21]. Herein, = Transcriptional factor FoxM1 activated miR-335-3p

we conducted Western blot analysis to detect Fas and  According to prior research, FoxM1 can mediate mul-
FasL expression in an examination of the effect of miR-  tiple miRNAs such as miR-130b and miR-301a in NSCs
335-3p on neural stem cell apoptosis. We found that [11]. Moreover, FoxM1 expression was diminished dur-
transfection of miR-335-3p mimic resulted in diminished ing NSCs differentiation in mouse embryo [22]. There-
expression of Fas and FasL and reduced apoptosis of fore, we first examined the expression of FoxM1 in
NSCs, whereas miR-335-3p inhibitor transfection pro- NSCs. As revealed by RT-qPCR and Western blot
moted the expression of Fas and FasL as well as NSC  analysis, FoxM1 expression was conspicuously decreased
apoptosis (Fig. 2e). These data indicated that miR-335- in NSCs with the increasing duration of induced-
3p might enhance self-renewal of NSCs and reduce differentiation (Fig. 3a, b), which was consistent with the
apoptosis. Furthermore, miR-335-3p mimic led to upreg-  changes in miR-335-3p expression. Next, we found that
ulated expression of NSC self-renewal-promoting genes  overexpressing FoxM1 resulted in elevated miR-335-3p
including Msil, Hesl, and Bmil, and downregulated ex-  expression, while silencing FoxM1 decreased miR-335-
pression of Nf-M, which inhibited NSC self-renewal; it 3p expression. When FoxM1 expression was restored
also resulted in augmented Nestin expression as well as  after FoxM1 knockdown, miR-335-3p expression was
repressed expression of Tuj-1, GFAP, and CNPase, also accordingly increased (Fig. 3¢, d).

whereas miR-335-3p interference led to the opposite re- The above phenomena illustrate that FoxM1 positively
sults (Fig. 2f, g). To sum up, upregulating miR-335-3p  regulates miR-335-3p expression. Therefore, we
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Fig. 3 The expression of miR-335-3p was activated by FoxM1. a FoxM1 mRNA level in NSCs after induced differentiation detected using RT-gPCR
on days 0, 3, and 7. b FoxM1 protein level in NSCs after induced differentiation determined by Western blot analysis on days 0, 3, and 7. ¢ FoxM1
and miR-335-3p expression in NSCs after alteration of FoxM1 examined using RT-gPCR. d FoxM1 protein level in NSCs after alteration of FoxM1
measured by Western blot analysis. e 3 sites by which FoxM1 was most likely to bind to miR-335-3p promoter region predicted by online
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hypothesized that FoxM1 might be able to bind to the
miR-335-3p promoter region. To test our prediction, we
first predicted from bioinformatics that FoxM1 was
likely to bind to 3 sites of the miR-335-3p promoter re-
gion, according to the UCSC (http://genome.ucsc.edu)
and JASPAR (http://jaspar.genereg.net) websites (Fig.
3e). Next, we performed the dual-luciferase reporter
assay (Fig. 3f, g), which showed that site2 was the spe-
cific binding site of FoxM1 protein on the miR-335-3p
promoter region. Then, we substantiated through ChIP
assay that FoxM1 bound to miR-335-3p promoter region
at site2 (Fig. 3h). Specifically, the primers covering site2
could amplify more DNA expression when using chro-
matin fragments precipitated by FoxM1 antibody as the
template, relative to control results with IgG antibody
(p <0.05). Besides, there was no significant difference in
the amounts of amplification products of the two primer
pairs in the IgG antibody group (p > 0.05). These results
concurred in suggesting that the site2 was indeed the
binding site of the transcriptional factor FoxM1 in miR-
335-3p promoter region.

FoxM1 inhibited NSC differentiation and induced NSC
self-renewal by activating miR-335-3p

Since FoxM1 was found to activate the expression of
miR-335-3p, in the next step, we attempted to verify
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whether FoxM1 could modulate NSC self-renewal and
differentiation via miR-335-3p. According to RT-qPCR
results, overexpressing FoxM1 activated miR-335-3p in
NSCs, which was blocked by co-treatment of miR-335-3p
inhibitor (Fig. 4a). Then, as shown by the neurosphere for-
mation assay, the number and size of neurosphere in
NSCs were increased by overexpressing FoxM1, which
was reversed by treatment with miR-335-3p inhibitor.
However, the number and size of neurosphere from cells
treated with si-FoxM1 were reduced (Fig. 4b). Meanwhile,
based on the flow cytometry results, overexpressing
FoxM1 increased the proportion of cells at the S phase
but decreased cells at Go/G; phase, which was abrogated
by the simultaneous transfection of both oe-FoxM1 and
miR-335-3p inhibitor. Instead, silencing FoxM1 reduced
the abundance of cells at the S phase, but elevated cells at
the Go/G; phase (Fig. 4c).

Furthermore, expression of self-renewal-related and
differentiation-related genes was measured by RT-qPCR.
An obvious elevation in the expression of Nestin, Msil,
Hesl, and Bmil as well as a decrease in that of Nf-M,
Tuj-1, GFAP, and CNPase were observed in the pres-
ence of FoxM1 overexpression, the effects of which were
then abrogated by miR-335-3p inhibition. In contrast, si-
lencing FoxM1 resulted in the opposite tendency of
these genes (Fig. 4d). Collectively, the above results
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suggested that FoxM1 could maintain NSC self-renewal
and inhibit NSC differentiation through miR-335-3p.

miR-335-3p overexpression repressed NSC differentiation
and promoted NSC self-renewal by inhibiting p53
signaling pathway via Fmr1

We furthermore explored the downstream target gene of
miR-335-3p and the mechanism by which miR-335-3p
promotes NSC self-renewal. It has been reported previ-
ously [23] that FMR1 is related to the differentiation of
neural stem cells. The bioinformatics website (http://
www.targetscan.org) predicted that Fmrl was one of the
target genes of miR-335-3p (Fig. 5a). Therefore, we as-
sumed that miR-335-3p could target Fmr1 to affect NSC
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self-renewal. In an attempt to verify this prediction, RT-
qPCR and Western blot analysis documented that Fmr1
indeed had high expression during NSCs differentiation
(Fig. 5b). Besides, when miR-335-3p mimic was intro-
duced into NSCs, Fmrl expression was reduced, which
was opposite to the results upon treatment of miR-335-
3p inhibitor (Fig. 5c). Next, the targeting relationship
between miR-335-3p and Fmrl was verified through
dual-luciferase reporter assays. As depicted in Fig. 5d,
the luciferase activity of Fmrl WT was distinctly inhib-
ited by miR-335-3p mimic, while the luciferase activity
of Fmrl MUT was unchanged. Meanwhile, we con-
ducted RNA pull-down assay where the biotinylated
RNA probe was incubated with RNA-protein complex,
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which bound to the magnetic beads. Results clearly
showed that the miR-335-3p probe specifically enriched
the expression of Fmrl mRNA (Fig. 5e), indicating that
miR-335-3p could target to Fmrl 3'-UTR. RT-qPCR
results demonstrated that, relative to the treatment
with oe-Fmrl + NC-mimic, Fmrl expression was di-
minished after treatment of oe-Fmrl + miR-335-3p-
mimic (p <0.05; Fig. 5f).

To investigate the effect of miR-335-3p/Fmrl on NSC
self-renewal and differentiation, we carried out neuro-
sphere formation assay. According to the results, the
number and size of neurosphere and NSC proliferation
were increased in response to miR-335-3p overexpres-
sion, the effects of which could be abolished by Fmrl
overexpression. However, the number and size of neuro-
spheres and NSC proliferation rate were enhanced when
Fmrl was silenced (Fig. 5g, h). Next, expression of self-
renewal-related, differentiation-related, and p53 signal-
ing pathway-related genes (p53 and p21) was measured
using RT-qPCR and Western blot analysis. Results
showed that miR-335-3p overexpression resulted in
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increased expression of Nestin, Msil, Hesl, and Bmil
expression and decreased expression of Nf-M, Tuj-1,
GFAP, CNPase, p21, and phosphorylated p53, which
were completely opposite to corresponding findings after
silencing Fmr1. Besides, the alteration in the expression
of these genes caused by Fmr1 overexpression alone was
reversed in response to the combination of Fmrl and
miR-335-3p overexpression (Fig. 5i, j). It could thus be
concluded that miR-335-3p downregulated Fmrl,
thereby repressing NSC differentiation and promoting
NSC self-renewal as well as inactivating p53 signaling
pathway.

FoxM1-activated miR-335-3p suppressed p53 signaling
pathway by inhibiting Fmr1 to maintain NSC self-renewal
and repress NSC differentiation

Since the aforementioned experiments have elucidated
the upstream and downstream regulatory network of
miR-335-3p, our next step was to explore the combined
effect of FoxM1/miR-335-3p/Fmrl on NSC self-renewal
and differentiation. Results from RT-qPCR and Western
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blot analysis demonstrated that the p53 signaling path-
way was inhibited by treatment with PFT-a, an inhibitor
of p53 [24], but that Fmrl expression was hardly af-
fected, indicating that p53 might act downstream of
Fmrl (p > 0.05). However, when NSCs were treated with
oe-FoxM1 + oe-NC, miR-335-3p mimic + oe-NC, Fmrl
expression was distinctly reduced, which was then re-
versed by the transfection of oe-FoxM1+ oe-Fmrl or
miR-335-3p mimic + oe-Fmrl, but was further pro-
moted by treatment of miR-335-3p mimic + oe-FoxM1
(Fig. 6a). Meanwhile, RT-qPCR and Western blot ana-
lysis were conducted for determining the expression of
p53 signaling pathway-related genes. Compared with
DMSO vehicle, PFT-a significantly suppressed the p53
signaling pathway, as demonstrated by diminished ex-
pression of p21 and phosphorylated p53. Surprisingly,
overexpression of FoxM1 or transfection of miR-335-
mimic also inactivated the p53 signaling pathway, while
the combination of miR-335-3p mimic and oe-FoxM1 or
PFT-a exerted a greater inhibitory effect on p53 expres-
sion in NSCs. The addition of oe-Fmrl reversed the ef-
fect of oe-FoxM1 or miR-335-3p mimic, thus activating
p53 signaling pathway and increasing expression of p21
and phosphorylated p53 (p <0.05; Fig. 6B). These lines
of evidence revealed that FoxM1 inhibits p53 signaling
pathway through activation of miR-335-3p to decrease
Fmrl expression.

Moreover, NSC self-renewal and differentiation were
observed in the absence or presence of oe-FoxM1, miR-
335-3p mimic, or oe-Fmrl. Based on neurosphere forma-
tion assay and flow cytometry results, PFT-a treatment in-
creased the number and size of neurosphere and cell
proliferation, but opposite effects were seen upon treat-
ment with oe-FoxM1 + oe-Fmrl or miR-335-3p mimic +
oe-Fmrl in comparison to oe-FoxM1 + oe-NC or miR-
335-3p mimic + oe-NC, respectively (p <0.05). Further-
more, the number and size of neurospheres and cell pro-
liferation rate were increased to a much greater extent
after the transfection of miR-335-3p mimic + oe-FoxM1
than after treatment of miR-335-3p mimic + oe-NC (p <
0.05; Fig. 6¢, d). Then, RT-qPCR results presented that
Nestin expression was elevated while Tuj-1, GFAP, and
CNPase expression was reduced after PFT-a treatment,
and the opposite effects were found to be exerted by the
overexpression of FoxM1 or Fmr1 alone or their combin-
ation, or the combination of miR-335-3p and Fmrl over-
expression. Besides, the alteration in the expression of
these genes was more conspicuous in response to the
combination of miR-335-3p and FoxM1 overexpression as
compared with miR-335-3p overexpression alone (Fig. 6e).
Taken together, these results illustrated that FoxM1-
activated miR-335-3p decreased Fmrl expression to sup-
press NSC differentiation and stimulate NSC self-renewal
by inactivating the p53 signaling pathway.
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Discussion

There is well-documented evidence demonstrating the
regulatory role of miRNAs in NSCs, highlighting the sig-
nificance of the present investigation of the effect of
miRNAs on NSC differentiation and self-renewal. For
example, overexpressing miR-346 inhibited NSC prolif-
eration [25]. Besides, another study also showed that
downregulation of miR-302 family occurred during
neural differentiation [26]. These findings suggest that
the miRNA regulatory network may be a desirable target
for research into possible neuroprotective strategies.
Therefore, we conducted this study of the specific role
of FoxM1l-mediated effects on the miR-335-3p/Fmrl/
p53 signaling pathway in NSC self-renewal. Our key re-
sults illuminated that FoxM1-activated miR-335-3p di-
minished Fmrl expression to promote NSC self-renewal
and to inhibit NSC differentiation by blocking the p53
signaling pathway.

Many transcription factors play important roles during
adult neurogenesis, but essential differences exist in the
biological responses of neural precursors [27]. Changes
in transcription factor expression are also a way of
modulating the response and consequent generation,
dependent on non-coding RNAs (ncRNAs), mainly the
miRNAs [28]. Some miRNAs are involved in determin-
ing the fate of NSCs, cell survival and maturation of
dentate gyrus neurons, and other miRNAs in neurons/
glia in the adult hippocampus [29]. Our present findings
showed that transcription factor FoxM1 expression was
diminished during NSC differentiation, while overex-
pressing FoxM1 could maintain NSC self-renewal and
suppress NSC differentiation by activating miR-335-3p.
A prior study presented findings of upregulation of
FoxM1 in NSCs [22]. Besides, FoxM1 has been indicated
to promote other miRNAs, including miR-130b, miR-
301a, and the miR-15-16 and miR-17-92 clusters, and
the interaction of FoxM1-miRNA participates in the
regulation of NSC self-renewal [11]. During tumorigen-
esis, FoxM1 expression increases as cells differentiate from
neural progenitor cells to pretumorigenic progenitors, and
then to glioma stem-like cells [30]. Moreover, FoxM1 is
involved in brain development as well as self-renewal of
glioma stem cells [31]. It seems that FoxM1 suppresses
NSC differentiation and promotes self-renewal by upregu-
lation of miRNAs, and also participates in glioma, such
that its effects on specific neurological and oncological
conditions merit further investigation. The effect of
FoxM1 on NSCs may be not direct, but could depend on
its regulation of miR-335-3p expression and related signal-
ing pathways.

Furthermore, our study pointed out the expression of
miR-335-3p was downregulated during NSC differenti-
ation. Previous evidence has uncovered that miR-335-3p
participated in the process of neurological deficits and
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Fig. 7 The mechanism graph of the regulatory network and function of FoxM1-mediated miR-335-3p in NSC self-renewal. miR-335-3p activated
by FoxM1 could suppress NSC differentiation but promote NSC self-renewal by inactivating p53 signaling pathway via binding to Fmr1

neuronal injury [32], and identified its diminished ex-
pression during the period of NSCs differentiation,
which matches with our present results. Subsequently,
we altered miR-335-3p expression to see how this influ-
enced NSC differentiation and self-renewal. Based on
prior work, we expected that miRNAs could influence
NSC differentiation or self-renewal [33]. In the present
study, we proved that ectopic expression of miR-335-3p
repressed NSC differentiation but enhanced NSC self-
renewal. Moreover, another study also identified that the
canonical Wnt signaling pathway enhanced miR-335 ex-
pression in human mesenchymal stem cells, which was a
positive regulator of MSC self-renewal [34].

Another interesting result of our study was that miR-
335-3p stimulated NSC self-renewal and repressed NSC
differentiation by inactivating the p53 signaling pathway
via Fmrl. According to the previous literature, miR-
130b targeting Fmrl mediated the proliferation and dif-
ferentiation of embryonic neural progenitor cells [35]. A
study conducted by Gong et al. indicated that Fmrl was
a direct target gene of miR-335-5p [12]. In mouse NSCs,
Fmrl knockdown led to significantly diminished content
of p53 [14]. Our study revealed that the p53 signaling
pathway was positively regulated by Fmr1. Previously, an
interaction between p53 and Fmrl was implicated in the
defective p53 signaling and dysregulated cell cycle con-
trol in Fragile X syndrome induced by silencing of Fmrl
[36]. Inhibiting p53 in Fmrl knockout cultures restores
the synchronization of neural network activity and

partially corrects the homeostatic reductions of neural
network integrity [37]. Meanwhile, Hou et al. also ob-
served that the activation of p53-p21 signaling pathway
could inhibit the self-renewal of mouse NSCs [15]. A re-
cent study also revealed that the self-renewal of normal
mouse NSCs was repressed by stimulating the activation
of Lkbl-p53-p21 signaling pathway [15]. Besides, our
data revealed that FoxM1 overexpression could enhance
the inhibitory effect of miR-335-3p overexpression on
p53 expression. In relation to this, accumulating evi-
dence has illuminated that FoxM1 may inactivate the
p53 signaling pathway by regulating microRNAs-
mediated Fmrl [11, 35] or other downstream targets of
p53 signaling pathway such as Trp53inpl [35, 38].
Taken together, NSC self-renewal and differentiation
were affected by FoxMI1-driven miR-335-3p/Fmrl/p53
signaling pathway.

Conclusions

Overall, the obtained data from our study provide new
evidence about the mechanism of FoxMIl-mediated
miR-335-3p expression in maintaining the self-renewal
and inhibiting the differentiation of NSCs by inactivation
of the p53 signaling pathway via Fmrl (Fig. 7). Our
study may provide a potential strategy for controlling
the fate of NSCs, which might eventually have thera-
peutic potential. However, there remains much to be
learned about the regulatory mechanisms of the manipu-
lation of miR-335-3p activation in NSCs.
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