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A B S T R A C T   

Early detection of chronic diseases such as cardiovascular disease (CVD) and diabetes can make the difference between life and death. Previous studies have 
demonstrated the feasibility of disease diagnosis and prediction using machine learning and disease-indicating biomarkers. The aim of this study is to develop a 
method to detect the risk of future disease even when disease-indicating biomarker readings are in the normal range. Data from the US Centers for Disease Control 
and Prevention (CDC) National Health and Nutrition Examination Surveys (NHANES) are used for this study. A two-stage semi-supervised K-Means (SSK-Means) 
clustering approach was developed to identify the underlying risk of each individual and categorize them into high or low-risk groups for CVD and diabetes. Our 
developed method of classification can identify groups as high risk or low risk, even if they would have been considered normal using traditional biomarker threshold 
criteria. For CVD, the SSK-Means clustering results showed that individuals over 30 years of age in the high-risk group were almost twice as likely to develop CVD as 
individuals in the low-risk group. For diabetes, the SSK-Means clustering results showed that individuals over 50 years in the high-risk group have at least two times 
the risk of developing diabetes compared with individuals in the low-risk group.   

1. Introduction 

Cardiovascular disease (CVD) was the leading cause of death in the 
United States in 2019, accounting for over 650,000 deaths (Kochanek 
et al., 2020). In 2010, the American Heart Association (AHA) proposed a 
definition of ideal cardiovascular health behaviors and health factors in 
attempts to reduce CVD mortality and improve cardiovascular health 
(Lloyd-Jones et al., 2010). Diabetes can lead to diabetic retinopathy, 
which is the most common cause of new cases of blindness in adults aged 
20–74 years (Fong, 2004). Early detection of these diseases can be life- 
saving. 

2. Related works 

2.1. Lsimitations of disease-indicating biomarkers 

Several previous studies have demonstrated the feasibility of disease 
diagnosis and prediction using machine learning techniques and 
disease-indicating biomarkers (Pasha et al., 2020; Zriqat et al., 2017; 
Ashiquzzaman et al., 2017; Soltani and Jafarian, 2016). Disease- 
indicating biomarkers, such as cholesterol level for CVD (Pekkanen 
et al., 1990) and glycohemoglobin for diabetes (Krishnamurti and 
Steffes, 2001), are powerful in diagnosing the current condition of the 

human body. However, a normal value in a disease-indicating 
biomarker does not necessarily mean that the risk of future disease 
development is low, as disease development may still be at an early 
stage. Relying solely on these biomarkers could lead to false-negative 
detections. 

2.2. Lsimitations of current disease risk factor analysis. 

Analysis of disease risk factors is essential for disease prevention and 
control. It is widely accepted that lifestyle habits (McBride, 1992) and 
obesity (Krauss et al., 1998) are risk factors for cardiovascular disease, 
but their association with the disease are often assumed independently 
and may not consider correlations with other parameters. Machine 
learning methods (Park et al., 2019) can analyze multiple risk factors, 
but they typically require labeled data from low-risk and diseased in-
dividuals. However, defining low-risk individuals can be ambiguous, so 
“not diseased” is often used as a proxy. This approach may lead to 
contaminated training data and lower performance in disease risk 
assessment because currently healthy individuals may be at high risk of 
developing disease in the future. 
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3. Overview of approach 

The aim of this study is to improve conventional models of disease 
risk factors, even for individuals whose disease-indicating biomarker 
levels are within the normal range. As shown in Fig. 1, our approach 
consists of two steps: First, an initial clustering AI with disease- 
indicating biomarkers is used to divide subjects into high- and low- 
risk groups. This ensures that subjects whose disease-indicating 
biomarker levels are in the abnormal range are identified as high-risk 
subjects. Next, for the subjects in the low-risk group selected by the 
first clustering AI, a second clustering AI without disease-indicating 
biomarkers is used to further identify the high- and low-risk subjects. 
By excluding disease-indicating biomarkers from the analysis, this step 
can capture subjects whose disease-indicating biomarker values are 
within the normal range but who have other measurements similar to 
those of a diseased patient. 

Semi-supervised K-Means (SSK-Means) clustering is a multivariate 
analysis method that has the advantage of not requiring labeled data for 
each class type. In the context of risk factor analysis, only “diseased” 
labeled data is needed and there is no need to use “not diseased” as a 
proxy for “low risk”. Because of these advantages, SSK-Means is chosen 
as the machine learning model for this analysis. 

4. Data 

Data used in this study are from the Centers for Disease Control and 
Prevention (CDC) National Health and Nutrition Examination Surveys 
(NHANES). Results from the 2013–2014 NHANES (Centers for Disease 
Control and Prevention, 2013) were used for training and development 
of the risk assessment algorithm. Results from a separate 2011–2012 
NHANES survey (Centers for Disease Control and Prevention, 2012) are 
used for validation. This study was based on a publicly available ano-
nymized databases, and thus exempt from ethical compliance. 

4.1. Preprocessing 

Each NHANES study contains over 100 files of different measure-
ments. However, many of these measurements have very few partici-
pants or change from survey to survey. To ensure sufficient study 
statistics for both the training and validation data sets, the following 19 
data files will be selected for study: demographic variables and sample 
weights, blood pressure, body measurements, urinary albumin and 
creatinine levels, complete blood count with 5-part differential, HDL 
cholesterol, total cholesterol, folate, glycohemoglobin, hepatitis A, 
hepatitis B: Core antibody, s-surface antigen and hepatitis D antibody, 
vitamin D, vitamin B12, diabetes disease, kidney disease, food security, 
medical conditions, smoking habits, and sleep disorders. Each data file 
contains a different number of examinations, and the total number of 
individual measurements from the 20 data files is 48. 

4.2. Measurements filtering 

Measurements are filtered through two stages to remove disease- 
indicating biomarkers (for clustering AI #2 only) and improve risk 
separation performance. 

In the first filtering stage, for each target disease type, the corre-
sponding medical conditions (which serve as ground truth) and disease- 
indicating biomarkers (for clustering AI #2 only) are removed. In this 
work, two disease types are studied: CVD and diabetes. Measurements 
that are filtered out for each target disease type are summarized in 
Table 1. 

The second stage filter is used to remove measurements that are 
highly correlated with other measurements, irrelevant to the target 
disease or that, such as age, may lead to undesirable results. Age is a 
highly correlated factor to many diseases. As age increases, the likeli-
hood of developing a disease naturally increases. Thus, if age is used as 
one of the input parameters, a risk assessment algorithm will simply 

Fig. 1. Overview workflow.  

Table 1 
Measurements removed by the first filter.  

Target 
Disease Type 

Filtered Measurements 

Ground Truth Related Disease Indicating 
Biomarkers 

CVD Presence of cardio-vasculature 
disease is true if any of the following 
inspection items is true: 
Ever told had congestive heart 
failure? 
Ever told you had coronary heart 
disease? 
Ever told you had angina/angina 
pectoris? 
Ever told you had heart attack?  

• High-density lipoprotein 
cholesterol. 

Total cholesterol. 

Diabetes Presence of diabetes is true if the 
following inspection items is true: 
Doctor told you have diabetes.  

• Glycohemoglobin.  

Table 2 
Measurements removed by the second filter.  

Target 
Disease Type 

Filtered Measurements 

highly correlated with other 
measurements 

Irrelevant By design 

CVD  • epi-25-hydroxyvitamin 
D3  

• BMI  
• Food didn’t last?  

• Segmented 
neutrophils percent  

• Age  
• Gender 

Diabetes  • BMI  • Red blood cell 
folate  

• Couldn’t afford 
balanced meals?  

• Worried run out of 
food?  

• Age  
• Gender  
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classify young people as low risk. This risk assessment algorithm can 
determine the emerging risks, but it cannot predict the future risks. 
While age and gender are not included as clustering terms, they are 
utilized in the subsequent risk prediction. 

Measurements filtered out by the second filter for each target disease 
type are summarized in Table 2. 

After the second filter, a subject is removed from the study if there is 
missing data in any of the remaining measurements. This process 
reduced the dataset size from 10,907 to 8238 for the CVD analysis and 
8264 for the diabetes analysis. During data collection, some measure-
ments may have been erroneously recorded. To exclude such data 
points, outlier data points are removed if the value of an measurement 
(excluding questionnaires) is greater than the 99th percentile. This 
process reduced the dataset size to 7508 for the CVD analysis and 5389 
for the diabetes analysis. The number of measurements after all filtering 
steps are: 36 for the CVD analysis and 40 for the diabetes analysis. 

4.3. Input parameter gender-age-dependency removal 

In cross-sectional studies, the basic assumption for predicting future 
disease risk is that the individual’s measures will not change signifi-
cantly if they maintain their current lifestyle. However, some bio-
markers are inherently gender and age-dependent and change with age. 

To remove the age dependence of the different parameters, we first 
estimate the normative age dependence of each parameter, using only 

healthy subjects. As shown in Fig. 2, the median value for each age point 
is represented as dots. Red for female and blue for male. For each 
gender-age-dependent parameter, the median value is fitted against the 
age distribution using a quartic polynomial and shown as the red and 
blue lines. 

Next, gender-age-adjusted parameters are calculated for each indi-
vidual by subtracting the nominal value at their age calculated with the 
corresponding fitted polynomial from their unadjusted parameter 
values. 

4.4. Standardization 

By its very nature, the measurement range of each measurement can 
vary widely. These differences in range will cause issues for the clus-
tering algorithm which is based on distance computation. The final step 
of preprocessing is a standardization process in which each continuous 
input is adjusted for mean and scaled to unit variance. The standardized 
z based on the input x is defined as: 

zi = xi − x
σ , where xi is input x of subject i, x = 1

N
∑N

i=0xi is the average 
value of x of all subjects, σ2 = 1

N
∑N

i=0(xi − x)2 is the variance of x of all 
subjects. 

Fig. 2. Polynomial fitting for age-dependent parameters. (a): the distribution of red blood cell count. (b): the distribution of diastolic blood pressure. (c) the dis-
tribution of systolic blood pressure. The median value for each age point is represented as dots. Red for female and blue for male. The fitted quartic polynomial are 
shown as red and blue lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Training procedure.  
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5. Method 

5.1. Semi-supervised K-Means clustering 

K-Means cluster (Lloyd, 1982 Mar) analysis is a method used to 
group data into subgroups based on similarity. K, the desired number of 
clusters, is set to 2 in our study, which refers to the high and low-risk 
groups. The procedure of K-Means clustering can be summarized as 
follows: 

In the hyperdimensional space of input variables:  

1) Initialize the position of 2 centroids.  
2) Assign each data point to its nearest centroid.  
3) For each centroid, calculate the location of the center of the data 

points assigned to it. Then move the centroid to the central position.  
4) Repeat steps 2) and 3) until termination conditions are met, e.g. after 

a fixed number of iterations or when the centroids stop moving. 

K-Means clustering can divide people into two groups, but it has no 
inherent meaning for centroids and cannot control how the data is 
divided. To improve K-Means, we can use semi-supervised K-Means 
(SSK-Means) (Arthur and Vassilvitskii, 2006), which initializes centroids 
with labeled data and allows reassignment of labeled data points to 
different centroids. 

In SSK-Means, centroids are initialized with labeled data and the 
average position of data points belonging to the same label is used to 
define the initial centroids. This allows the clustering algorithm to focus 
on relevant features and gives inherent meaning to the centroids. For 
example, if a centroid location is initialized by diabetics, that centroid is 
automatically given the meaning “high risk of diabetes”. 

During training, it is possible to reassign labeled data points to 
different centroids. However, in this study, we do not allow reassign-
ment of labeled data because we assume there is not a significant 
amount of mislabeled data. 

The goal of this study is to divide people into high and low- risk 
groups. While it is clear to assign people who are already ill to the high- 
risk group, it is more difficult to determine who should be assigned to 
the low-risk group. Healthy people are not necessarily at low risk of 
getting sick. 

An advantage of SSK-Means is that it uses mainly labeled data in the 
initialization phase, using the average value of the labeled data to 
determine the initial positions of the centroids. Since the input variables 
have been standardized to an average value of 0, the low-risk centroid is 
set as the reflection of the high-risk centroid around the origin. 

The training procedure is summarized in Fig. 3. First, a small fraction 
of the diseased subjects is randomly selected as labeled data and used to 
set the initial positions of the high-risk and low-risk centroids. The 
labeled and unlabeled data, along with the centroid initial positions, are 
then sent to the SSK-Means system for training. 

The training procedure is repeated 10 times to produce an ensemble 
of SSK-Means algorithms. The classification results of these algorithms 
are combined and averaged to make the final prediction. The effect of 
the amount of labeled data on the separation power is investigated by 
varying the percentage of labeled data from 0% to 30%. Detailed results 
can be found in the Appendix. 

For each disease, the disease label is determined by the ground truth 
information listed in Table 1. The detailed training and validation data 
split is summarized in Table 3. 

After training, parameters in the 10 SSK-Means algorithms are frozen 
for application. The validation procedure is summarized in Fig. 4. 

6. Results 

6.1. Cardiovascular risk assessment 

The results for the SKK-Means clustering are shown in Table 4. After 
clustering AI #2, an additional 15 individuals were selected as high-risk 
individuals without using cholesterol information for the assessment. 

Table 3 
Data split of training and validation data.  

Target Disease Type Training Data Validation Data 

CVD 3864 3639 
Diabetes 2765 2624  

Fig. 4. Validation procedure. Left: performance evaluation using training data. Right: performance evaluation using validation data.  

Table 4 
Number of subjects in high and low-risk groups after each clustering step in CVD 
risk assessment.   

After Clustering AI 
#1 

After Clustering AI 
#2 

Number of subjects in high-risk 
group 

1415 1430 

Number of subjects in low-risk 
group 

2224 2209  

Table 5 
The mean values and standard deviations of key biomarkers in different risk- 
groups in CVD risk assessment.  

Group 
names 

Group description HDL 
cholesterol 
[mg/dL] 

Red blood 
cell folate 
[ng/mL] 

Urine albumin- 
creatinine ratio 
[mg/g] 

High- 
risk 
group 
I 

High-risk subjects 
selected by 
clustering AI #1 

48.6 ± 13.8 490 ± 241 17.1 ± 21.7 

High- 
risk 
group 
II 

Additional high- 
risk subjects 
selected by 
clustering AI #2 

65.2 ± 11.0 514 ± 189 13.4 ± 13.0 

Low-risk 
group 

Low-risk subjects 54.9 ± 14.5 472 ± 187 7.9 ± 6.9  
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The mean values and standard deviations of key biomarkers in the 
different risk groups are shown in Table 5. As expected, lower HDL 
cholesterol levels are generally associated with a higher risk of heart 
disease, and subjects in high-risk group I have lower HDL cholesterol 
levels on average. However, the most interesting group of subjects is the 
high-risk group II. Their high HDL cholesterol levels seem to indicate 
that they are at low risk for CVD. However, a closer look at the other 
measurements reveals a significant difference between them and the 
low-risk group. For example, they appear to have the highest folate 
concentration in red blood cells within the three groups. Recent studies 
have shown that high folate concentrations in red blood cells are 
significantly associated with an increased risk of coronary heart disease 
(Peng and Wang, 2017). Also, the urine albumin-creatinine ratio, which 
is known to correlate positively with CVD risk (Gerstein et al., 2001), is 
higher in the high-risk group II than in the low-risk group. 

Although not statically significant, the difference in means seems to 
indicate that clustering AI #2 may have selected individuals at higher 
risk for CVD despite high HDL cholesterol levels. In the following text, 
the combination of high-risk group I and high-risk group II is referred to 
as the high-risk group. 

The results of SKK-Means clustering for CVD are shown in Fig. 5. 
Clustering separates data into high and low-risk groups and predicts 
future risk based on age and disease prevalence. Cardiovascular preva-
lence increases with age, but there is a significant separation between 
high and low-risk groups for those over 30 years old. This indicates that 
people in the high-risk group in their 20 s may have more than twice the 

risk of developing heart-related problems when they are in their 40 s. 
Numerical values of Fig. 5 can be found in the Appendix. 

6.2. Diabetes risk assessment 

The results for the SKK-Means clustering are shown in Table 6. After 
clustering AI #2, an additional 116 individuals were selected as high- 
risk individuals without using Glycohemoglobin information for the 
assessment. 

Table 7 presents the means and standard deviations of key bio-
markers in the different risk groups. As expected, subjects in the high- 
risk group I have, on average, higher glycohemoglobin levels than 
low-risk subjects. However, subjects in high-risk group II appear to have 
lower glycohemoglobin levels, indicating that they may be at low risk 
for diabetes. Despite this, other measurements show a significant dif-
ference between high-risk group II and the low-risk group. For instance, 
they have the lowest vitamin B12 levels among the three groups, and 
recent studies have linked vitamin B12 deficiency with diabetes mellitus 
(Kibirige and Mwebaze, 2013). Additionally, the high-risk group II has a 
higher BMI level compared to the low-risk group, which is known to be a 
strong risk factor for diabetes (Narayan et al., 2007). 

The difference in means, while not statistically significant, appears to 

Fig. 5. Prevalence of CVD vs age. Red dashed line, mean value of high-risk group in the training data. Green line, mean value of low-risk group in the training data. 
Red line, mean value of high-risk group in the validation data. Red band, standard error of high-risk group in the validation data. Green line, mean value of low-risk 
group in the validation data. Green band, standard error of low-risk group in the validation data. 10% of the labeled data is used as ground truth for SKK-Means 
clustering. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 6 
Number of subjects in high and low-risk groups after each clustering step in 
diabetes risk assessment.   

After Clustering AI 
#1 

After Clustering AI 
#2 

Number of subjects in high-risk 
group 

628 744 

Number of subjects in low-risk 
group 

1996 1880  

Table 7 
The mean values and standard deviations of key biomarkers in different risk- 
groups of the diabetes analysis.  

Group 
names 

Group description Glycohemoglobin 
[%] 

Vitamin 
B12 [pmol/ 
L] 

BMI 
[kg/ 
m2] 

High-risk 
group I 

High-risk subjects 
selected by clustering 
AI #1 

6.4 ± 1.6 414 ± 197 35.5 
± 6.7 

High-risk 
group 
II 

Additional high-risk 
subjects selected by 
clustering AI #2 

5.4 ± 0.4 409 ± 199 31.3 
± 3.9 

Low-risk 
group 

Low-risk subjects 5.5 ± 0.6 432 ± 206 26.0 
± 4.0  
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indicate that clustering AI #2 may have identified individuals with a 
higher risk of diabetes despite having low glycohemoglobin levels. 

The results of prevalence versus age for diabetes are summarized in 
Fig. 6. Similar to CVD, diabetes prevalence also shows an upward trend 
with age. As shown, individuals over 30 years in the high-risk group 
have at least two times the risk of developing diabetes compared with 
individuals in the low-risk group. Numerical values of Fig. 6 can be 
found in the Appendix. 

7. Discussion 

In this study, we demonstrated the feasibility of a two-stage, semi- 
supervised clustering method for detecting future risk of cardiovascular 
disease and diabetes. The first stage was developed to use disease- 
indicating biomarkers to maximize detection sensitivity when sub-
jects’ disease-indicating biomarkers already have abnormal levels. The 
second stage was designed to further reduce false-negative results by 
intentionally ignoring the effects of disease-indicating biomarkers and 
focusing on the other biomarkers. Disease risk detection performance is 
evaluated and validated using publicly available NHANES datasets. 

To the best of our knowledge, this is the first study to incorporate 
such a multi-stage semi-supervised approach for future risk assessment. 

In this study, it was assumed that the parameters for classifying risk 
groups would not change significantly if the individual maintained his 
or her lifestyle. To ensure this, the parameters were age-gender-adjusted 
to remove any age dependence. Based on this assumption, our study 
demonstrated the feasibility of predicting future disease risk using cross- 
sectional data. 

In the future, we plan to conduct a longitudinal study to evaluate the 
effectiveness of our classification method and determine whether in-
dividuals can reduce their risk of disease by improving relevant pa-
rameters. If successful, this could benefit the health management of all 
humanity. 

8. Limitations 

This analysis is based on cross-sectional data collected by CDC. The 
limitation of cross-sectional studies is that although we can determine 
the correlation between our multivariate risk factor and the disease, the 
causality between the disease and the multivariate risk factor is un-
known. Because the data are based on self-report, subjects may misre-
port or be unaware of their disease state. To address these limitations, 
we plan to use longitudinal data labeled by medical experts in the future. 
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