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Abstract. The Saccharomyces cerevisiae KRE1 gene 
encodes a Ser/Thr-rich protein, that is directed into 
the yeast secretory pathway, where it is highly 
modified, probably through addition of O-linked man- 
nose residues. Gene disruption of the KRE1 locus 
leads to a 40% reduced level of cell wall (l~6)-/~- 
glucan. Structural analysis of the (1---6)-/~-glucan frac- 

tion, isolated from a strain with a krel disruption mu- 
tation, showed that it had an altered structure with a 
smaller average polymer size. Mutations in two other 
loci, KRE5 and KRE6 also lead to a defect in cell wall 
(1-*6)-~-glucan production and appear to be epistatic 
to KRE/. These findings outline a possible pathway of 
assembly of yeast cell wall (l~6)-fl-glucan. 

~ -G LUCA~S, homopolymers of glucose, are an abundant 
class of polysaccharides that includes cellulose, and 
appears to serve structural, functional, and morpho- 

logical roles at the cell surface of fungi, bacteria, and plants 
(Fleet and Phaff, 1981; Sharp et al., 1984; Inon de Iannino 
and Ugalde, 1989; Kato, 1981). Despite their widespread oc- 
currence, there has been surprisingly little work to address 
the basis of cell wall glucan biosynthesis at the genetic and 
molecular level in eukaryotes. In vitro enzymatic reactions 
resulting in glucan synthesis have been defined and partially 
characterized for several systems (Kang and Cabib, 1986; 
Aloni et al., 1982), although components of the synthetic 
machinery have eluded purification. The isolation of mutants 
defective in the production of cell wall glucan should define 
genes that encode biosynthetic enzymes as well as other 
products, for example those that regulate glucan synthesis or 
generate glucan precursors. A mutant approach has been 
valuable in understanding the synthesis of such other cell 
wall polysaccharides, as mannan (Ballou, 1982) and chitin 
(Silverman et al., 1988; Bulawa et al., 1986). 

Mixed linked /3-D-glucans consisting of glucopyranosyl 
residues joined through (1-.3) and (1-*6)-linkages are com- 
mon to fungi belonging to the Ascomycetes, Basidomycetes, 
and Oomycetes (Wessels and Sietsma, 1981). Fractionation 
studies of the Saccharomyces cerevisiae cell wall demon- 
strated the presence of several glucan subclasses, which 
could be structurally distinguished by polymer length and 
the ratio of (1-.3) to (1-*6)-/3-D-linkages (Fleet and Man- 
ners, 1976). Much of the yeast cell wall glucan is isolated 
from whole cells as an alkali insoluble fraction that was 
found to contain two distinct types of polymers. The most 
abundant alkali insoluble glucan consists predominantly of 
repeating units of linear (l~3)-/~-linked residues, 3% of 
which are branched through a (l~6)-/~-linkage (Manners et 
al., 1973a). This gluean has a degree of polymerization esti- 

mated to be 1,500 and has been proposed to determine the 
shape and stability of the yeast cell wall (Zlotnik et al., 
1984). The other alkali-insoluble glucan has a degree of po- 
lymerization estimated to be 140 and contains residues that 
are predominantly connected through linear (1-*6)-/~-link- 
ages (Manners et al., 1973b). This glucan will be referred 
to as (l~6)-/3-glucan, although in addition to linear (1-*6)- 
linked units it is composed of some linear (l-*3)-linked 
residues and a relatively high proportion of (1-'3, 1-~6) - 
linked branched residues (14%). Yeast (1-*6)-/~-glucan ac- 
counts for ,x,20 % of the alkali insoluble glucan or 3 % of the 
total cellular dry weight. 

The K1 killer toxin of S. cerevisiae provides a selection 
scheme for the isolation of mutants defective in (I~6)-/~-D - 
glucan production. This toxin is a protein secreted by killer 
yeast strains which kills sensitive (nonkiller) strains. K1 
toxin displays a lectin-like affinity for linear (I~6)-/~-D - 
glucan and must bind to the wall of sensitive yeast in order 
to initiate the killing process (Bussey et al., 1979). Muta- 
tions in the KRE/gene result in killer toxin resistance and 
are associated with an abnormal production of the cell wall 
(1-*6)-/3-glucan (Hutchins and Bussey, 1983). 

We describe here that the KRE/gene encodes a protein 
directed into the yeast secretory pathway. The (1~6)-/~ - 
glucan fraction which remained in a krel mutant yeast strain 
had an altered structure with a smaller average polymer size 
and suggests that (l~6)-/3-glucan is synthesized in a stepwise 
manner. We address this possibility through the isolation of 
additional killer resistant mutants, some of which are re- 
quired for (1-*6)-/~-glucan biosynthesis and appear to be 
epistatic to KRE/. Gene products required for fungal cell 
wall biosynthesis have been recognized as potential targets 
for specific antifungal antibiotics and the KRE genes are dis- 
cussed in this context. 
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Materials and Methods 

Yeast Strains and Procedures 

$484, $486 and $442 are isogenic strains ofS. cerevisiae derived from $331 
as previously described (Ridley et at., 1984). $484 has a genotype MATc~ 
ural metl3 canl cyh2 mktl [HOK] [NEX], whereas $486 is similar but lacks 
[HOK] [NEX]. The genotype of $442 is MATa lys2 cyh2 can1 mktl [HOK] 
[NEX]. The killer-resistant strains were isolated by selecting for mutants 
of $484 or $486. Once obtained, the resistant mutants were characterized 
through crosses with $442 followed by tetrad analysis. The strains presented 
in Table HI result from spore progeny obtained from crosses of mutants with 
$442. Each strain in Table HI is MATa lys2 cyh2 canl mktl [HOK] [NEX]; 
in addition, $706 and $731 are met 13. 

TA405, MATa/MATct his3/his3 leu2/leu2 card/canl, is an isogenic 
diploid strain (Whiteway and Szostak, 1985). The strains 463-1A, 463-1B, 
463-1C, and 463-1D presented in Table I were obtained as the spore progeny 
from a TA405 diploid made heterozygous for a krel disruption mutation 
(KREI/kreI::H1S3). The genotype of strains 463-1A and 463-1B is MATu 
leu2 his3 krel::H1S3, whereas the geuotype of strains 463-1C and 463-1D 
is MATa leu2 his3. Some of the other strains used throughout this work and 
their corresponding genotypes are as follows: IlA MATa krel-1 ura3; 
TI58C/S14a MATa/MATc~ his4c-864/H1S4 ade2-5/ADE2 [KIL-K1] (Bussey 
et al., 1979); HABI50-1 MATa/MATc~ krel-3/krel::HlS3 his3/HIS3 leu2/ 
LEU2 tys2/LYS2; 7B MATa glcl his3 ura3. 

Growth conditions and media (YEPD, complete and Halvorson's) were 
as described previously by Bussey et al. (1982) and Wickner (1978). Stan- 
dard techniques were used for diploid construction and sporulation (Sher- 
man et at., 1982). Transformation was performed using the lithium acetate 
technique of Ito et al. (1983). 

(1--.6)-~l-Glucan Quantification 
Yeast cells were grown as 5-10-ml cultures in YEPD or minimal media (if 
plasmid selection was required) until stationary phase. Ceils were har- 
vested, washed once with distilled water, and then extracted three times with 
0.5 ml of 3% NaOH at 75"C (1 h per extraction). After alkali extraction, 
the cells were washed once with 1 ml of 100 mM Tris-HC1, pH 7.5, and 
once with 1 ml of 10 mM Tris-HCt, pH 7.5. The washed cells were then 
digested for 16 h at 37°C, with 1 mg of Zymolyase 100,000 (ICN Biomedi- 
cals, Inc., Costa Mesa, CA), in 1 ml of 10 mM Tris-HC1, pH 7.5. Approxi- 
mately 90% of the glucose-containing carbohydrate was released into the 
supernatant by this digestion. Zymolyase does not contain a (1--,6)-#-gluc- 
anase activity (Hutchins and Bussey, 1983). The insoluble pellet that re- 
mains after Zymolyase digestion was removed by centrifugation, and the su- 
pernatant was dialyzed against distilled water, using Spectra/por tubing with 
a 6,000-8,000-D pore size (Spectrum Medical Industries, Inc., Los An- 
geles, CA), for 16 h. The total yield of glucan was determined by the sum 
of the carbohydrate content of both the Zymolyase-insoluble pellet and the 
solubilized supernatant before dialysis. Analysis of the carbohydrate content 
of the retained fraction after dialysis determined the proportion of (1-"6)-8- 
glucan. Total carbohydrate, of each fraction, was measured as hexose by 
the borosulfuric acid method (Badin et at., 1953). 

Plasmids 

Vector YCp50 and the yeast genomic library constructed by M. Rose were 
provided by B. Futcher (Cold Spring Harbor Laboratory). Plasmid, pFL44, 
was obtained from E Lacroute (Centre Nationale de la Recherche Scien- 
tifique, Gif stir Yvette, France) and is a yeast 2-#m based, multicopy, shuttle 
vector with URA3 and Apr markers, which contains the pUCI9 polylinker. 
The plasmid pFIA4 was used for subcloning DNA fragments of YCp50:KREI. 
Bluescript+ and Bluescript- vectors (Strategene Corp., La Jolla, CA) were 
used for various recombinant DNA constructions and for production of sin- 
gle stranded DNA. The yeast expression vector, PVT100U, contains the fl 
origin of replication, also allowing the production of single-stranded DNA, 
and was provided by T. Vernet et al. (1987). Plasmid PBSK:HIS3 was created 
by ligating a 1.7-kb Barn HI fragment containing the HIS3 gene (Struhl, 1985) 
into Bluescript+. Another Bluescript+ based plasmid, p486, contains the 
0.5-kb ECO RV-Hinc II fragment of KREI (Fig. 1) ligated into these same 
restriction sites of the Bluescript polylinker. Plasmid p492 contains the 0.4 
kb Spe I-Nsi I fragment which spans the end of the KRE/open reading 
frame, ligated into the Spe 1 and Pst 1 sites of the Bluescript+ polylinker. 
Plasmid pl43 was constructed from Bluescript- through ligation of the 
2-kb Nhe l-Pst I fragment of the KRE1 locus into the Spe 1-Pst 1 digested 
vector. Plasmid p339 was derived from PUCI9, and contains a modified 

Barn HI-Sat I fragment (containing the prepro-ot factor structural gene) 
from pJK6 (Kurjan and Herskowitz, 1982) ligated into the polylinker. The 
modification concerns the insertion of a Bgl II restriction site (5'-AGATCT- 
3') six nucleotides before the initiation codon of prepro-et factor (Kurjan and 
Herskowitz, 1982). 

DNA Purification and Recombinant DNA Techniques 
Plasmid DNA was purified from E,~cherichia coil as described by Maniatis 
et al. (1982). Yeast DNA was isolated according to Davis et al. (1980). Re- 
striction endonucleases, T4 DNA polymarase, T4 DNA ligase and Klenow 
fragment were purchased from either Bethesda Research Laboratories, Inc. 
(Gaithersburg, MD) or New England Laboratories, Inc. (Beverly, MA) and 
were used as recommended by the suppliers. Southern blot hybridization 
and nick translations were carded out as described by Dmochowska et al. 
(1987). Oligonucleotide-directed mutagenesis was carried out according to 
Kunkel (1985). 

Cloning the Yeast KREI Gene 

Strain 11A was transformed with a YCp50-based yeast genomic library 
(Rose et al., 1987) and uracil prototrophs were selected. Transformants 
were replica-plated to minimal media, Halvorson's IX pH 4.7 agar, which 
had been seeded with 75/~l/liter of a stationary culture of the diploid killer 
strain TI58C/SI4a and contained 0.002% of the vital stain methylene blue. 
After replica plating, the methylene blue plates were incubated at 18°C for 
3-4 d; at the end of this period the Kre+ transformants had stained a dark 
blue color, whereas kre-  colonies remained white. Individual cells were 
isolated from the blue staining colonies and these were later grown for plus- 
mid recovery. 

DNA Sequencing 

Subclones oftbe KRE/yeast genomic DNA were made in Bhiescript vectors 
or in PVT100U. Plasmids containing subclones were transformed into the 
bacterial strain, U'P380, and single-stranded DNA was made using MI3KO7 
helper phage (Vernet et al., 1987). Sequencing was by the dideoxy method 
(Sanger et al., 1977) and was determined for both strands, using the Se- 
quenase Kit (US Biochemicals, Cleveland, OH) with [ot-35S]dATP (Amer- 
sham Canada Limited, Oakville, Ontario, Canada) as a substrate. DNA 
primers were either Bluescript-specific primers or synthesized to be com- 
plementary to parts of the KREI DNA sequence. 

KRE1 Disruption 

To create a krel::HlS3 disruption construct, a HIS3 containing fragment 
was ligated into the Spe I and Kpn I sites, situated within the KREI coding 
sequence (Fig. l) as described below. The KRE/Barn HI-Pst l fragment 
was introduced into an altered PUC19 plasmid, in which the Kpn I site of 
the polylinker had been removed, to create 1>411. Plasmid p411 was di- 
gested with Asp718 (an isoschizomer of Kpn I), made blunt ended with 
Klenow fragment, and then ligated with a nonphosphorylated Xho I linker 
(5'-CCCCTCGAGC~G-Y), to generate p458. The HIS3 gene could be iso- 
lated from PBSK:HIS3 as a Spe I-Xho I fragment and ligated into p458 also 
digested with Spe I and Xho I. The ligation product of this last reaction was 
called p463, digestion of p463 with Nco I and Sph I, which cut within the 
KRE2 portion of the insert but not the HIS3 portion, allowed disruption of 
the KRE1 locus upon transformation. 

Mapping KRE1 

A Southern blot of chromosomes separated by pulse-field electrophoresis 
(Carle and Olson, 1985) was probed with KRE/DNA. The KRE/sequence 
hybridized to chromosome XIV (data not shown). Tetrad analysis provided 
the following linkage for KREI: the krel-pha2 map distance is 8 cM (41 pa- 
rental ditypes [PD], 0 nonparental ditypes [NPD], and 8 tetratypes [TT]), 
the krel-raet2 map distance is 34 cM (34 PD, 1 NPD, and 56 1"1"), the krel- 
pet2 map distance is 48 cM (12 PD, 2 NPD, and 27 TT). Of seven tetrads 
examined where krel was recombinant with pha2, five tetrads were also 
recombinant for krel with met2 and pet2, suggesting the order krel pha2 
met2 pet2. The map distances were calculated according to Mortimer and 
Schild (1985). 

Electron Microscopy 
The conditions presented below represent a modified version of the proce- 
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dure published by Zlotnik et ai. (1984). Cells were grown in minimal media 
1× Halvorson's salts to stationary phase, harvested and washed with dis- 
tilled water. Cell pellets were fixed in a solution containing 3 % glutaralde- 
hyde in 0.1 M sodium phosphate buffer (pH 7.2) for 70 rain. After fixation, 
cell pellets were rinsed in buffer, then postfixed for 1 h in 1% OsO4 in 
0.1 M sodium phosphate buffer (pH 7.2) and then rinsed again. Cell pellets 
were subsequently dehydrated through a graded ethanol series, infiltrated 
and embedded in Spurr's epoxy resin (Spun', 1969). Gold- and silver- 
colored sections were mounted on formvar-coated grids and sections were 
stained with 2% aqueous uranyl acetate followed by Reynold's lead citrate 
(Reynold, 1963). Sections were viewed on a Philips EM410 electron micro- 
scope at an operating voltage of 80 kV. 

pVT: KRE1 
To create the pVT:KRE1 insert, blunt-end restriction sites were introduced 
into subclones of the KRE/locus and the resultant constructs reassembled 
to form an uninterrupted open reading frame. Single-stranded DNA was 
prepared from p486 and in combination with oligo lib (5'-CAATCAAA- 
AAACCCGGGAAAATGATC-Y), an Sma I restriction site was introduced 
three nucleotides before the ATO of the KREI open reading frame, resulting 
in plasmid p567. Plasmid p567 was then digested with Sma I and religated 
so that most of the 5'-untranslated region of KRE/was removed and the in- 
troduced Sma I site was situated next to a Barn HI site of the Bluescript poly- 
linker (p585). Single-stranded DNA was also prepared from p492 and used 
in combination with oligo 3B (5'-GTTCTTATAAAGGCCTAITrTTATTC- 
3') to insert a Stu I restriction site just after the KRE/open reading frame 
resulting in p563. The 0.4-kh Spe 1-Hind III fragment of p563 was isolated 
and ligated into Spe I, Hind III digested p143 to create p580. Plasmid p580 
was digested with Sal I and followed by Hinc II and the resultant 0.8-kb frag- 
ment was purified. This fragment was ligated into p585 after digestion with 
Xho I and Hinc II to give p596. Plasmid p607 was made when p596 was 
digested with Stu I and Eco RV, and the vector fragment (containing KRE/) 
religated. This procedure situated the Hind III site of the Bluescript poly- 
linker just after the KRE/open reading frame. The KRE/containing 1-kb 
(Bam HI-Hind III) fragment of p607 was purified and ligated into Barn HI 
and Hind III digested pVT100U, to generate pVT:KRE1. 

pVT:A24/KRE1 
Single-stranded DNA from p486 was used for oligonucleotide specific 
mutagenesis with oligo 6B ( 5 ' - G C T C ~ G G T C G T T A A C A ~ G C T - 3 ' )  to 
form p647. Oligo 6B directs the introduction ofa  Hpa I site just before Met 
25 of Krelp. The plasmid p647 was digested with Hpa I and Sma I, and 
religated, so as to remove the KREI leader encoding DNA (p676). This pro- 
cess also situates the 5' end of the leader deleted KRE/fragment next to a 
Barn HI restriction site in the Bluescript polylinker. The Sst I-Hinc II (0.25 
kb) fragment of p676 was ligated into the plasmid p607, which had also been 
digested with Sst I and Hinc II, creating p688. The leader deleted KRE/con- 
struct of p688 was isolated via Barn HI and Hind IIl digestion, then ligated 
into similarly digested pVT100U to generate pVT:A24/KREI. 

pVT:KRE1/SP and pVT:A24/KRE1/SP 
Plasmids p607 and p688 were digested with Sna BI and Hind III, and the 
vector containing fragment isolated for each digestion. These fragments 
were ligated with the complementary otigonucleotides 15B (5'-GACTCG- 
CAGTTCTTCGGCCTCATGTAA-3') and 16B (5'-AC-CTTTACATGAGG- 
CCGAAGAACTGCGAGTC-3'), to create KREl-substance P epitope fusion 
constructs p715 and p718. The oligos (15B and 16B) basepair to form a small 
segment of DNA encoding the peptide DSQFFGLM followed by a stop 
codon, the last six amino acids are part of the neuropeptide, substance P. 
Plasmids p715 and p718 were digested with Bam HI and Hind HI and the 
KRE/substance P fusion fragments were introduced into pVT100U to cre- 
ate pVT:KRE1/SP and pVT:A24/KREI/SP, respectively. 

pVT:a20/KREI 
Single-stranded DNA was prepared from pVT:KRE1 and oligonucleotide 
6B (see above) was used for directed mutagenesis to insert a Hpa I site just 
before the codon encoding Met 25 of Krelp. The newly created plasmid was 
designated p758. The 0.9-kb Hpa I-Hind HI (KRE1 fragment without the 
leader) was isolated and ligated into Hinc H-Hind HI digested p339 vector 
fragment to give p771. A segment of DNA with the prepro-a factor leader 
spliced in frame with a deleted KRE/gene fragment can be removed from 

p771 as a 1.0-kb Bgl H-Hind IH fragment. Ligation of this Bgl H-Hind III 
fragment into Barn HI-Hind IH digested pVTI00U generated pVT:~x20/ 
KRE1. 

Seeded Plate Assay for Killer Resistance 
Yeast strains were grown to stationary phase in liquid media (under plas- 
mid-selective conditions if necessary) and 30/~1 of this culture ~ used to 
inoculate 10 mi of minimal media, 1% agar, 1× Halvorson's, pH 4.7. Con- 
centrated toxin (7 #1 of 1,000x concentrated media from SI4a/T158C; Bus- 
sey et al., 1983) was introduced onto the solidified agar and the plates in- 
cubated at 18"C overnight, followed by a 30-°C incubation for 24 h. 

Western Analysis of Substance P Hybrid Proteins 
Approximately 1 × 107 transformed yeast cells (grown in minimal media 
under plasmid selection) were harvested in log phase and the cellular con- 
tents prepared for electrophoresis as described by Segev et al. (1988). Elec- 
trophoretic transfer blots were analyzed with anti-substance P antibody 
(NC1/34 HL; Accurate Chemical & Scientific, Westbury, NY) as described 
by Munro and Pelham (1984), in combination with an alkaline phosphatase 
immunoblot detection kit (Bio-Rad Laboratories, Richmond, CA). 

Large-Scale (1--,6)-{3-Glucan Preparation 
Yeast (l~6)-/~-glucan was isolated from a 2-liter culture of wildtype cells 
(strain 7B) or a 5-liter culture of krel mutant cells (strain 3), each grown 
to stationary phase in YEPD, Ix  Halvorson's salts. The cells were har- 
vested, (strain 3 cells were split into two samples each treated as given be- 
low) washed with distilled water, and stored at -70°C. Mannoprotein and 
alkali soluble glucan was removed via five 100-ml extractions with 3% 
NaOH, each for 1 h at 70°C. After alkali extraction the cell walls were neu- 
tralized (with phosphate buffer, pH 6.8), and digested with 33 nag of Zymo- 
lyase 100,000 in 10 mM sodium phosphate buffer pH 6.8 (with a 40-ml final 
volume containing 0.01% sodium azide) for 16 h at 37"C. After this diges- 
tion, insoluble material was removed by centrifugation (12,000 rpm) and 
the supernatant treated with 20 td amylase (10 mg/ml, Boehringer Mann- 
heim Canada Ltd., Dorval, Quebec) for 2 h at room temperature. After 
amylase treatment the glucan containing solution was extracted twice with 
5-ml portions of phenol. Several 10-ml ether extractions removed residual 
phenol. The aqueous phase was collected and dialyzed against distilled wa- 
ter in Spectra/por tubing with a pore size of 6,000-8,000 D (Spectrum Medi- 
cal Industries, Inc.) for 5 h, then freeze-dried. The freeze-dried material 
was solubilized in 5 ml of distilled water and further dialyzed in Spectra/por 
tubing with a 2000 D pore size for 30 h before a second freeze drying. The 
water-soluble material, which remains after this procedure was used for 
structural analysis. 2 liter of a culture of wild-type cells yielded 40-50 mg 
of (1 ~6)-/~-glucan and 5 liter of a culture of krel mutant cells produced an 
equivalent amount. 

[IJC]Nuclear Magnetic Resonance (NMR) ~ 
Spectroscopy 
[13C]NMR spectra were obtained using 10-mm-diam tubes, with 40 mg of 
glucan dissolved in 3 ml D20. Data were collected under conditions of 
proton decoupling, using a Brnker spectrometer (model WH 400; Bruker 
Instruments, Billerica, MA) operated in the Fourier-transform mode, at 
100.62 MHz, with a sweep width of 6493.5 Hz and an acquisition time of 
0.631 s. The pulse angle was 73* and the pulse interval was 4.0 s, during 
which the decoupler was gated off. The probe temperature was maintained 
at 19°C. Each spectrum was recorded several times, from independent glu- 
can samples, with "o10,000 scans. The reference for the chemical shift 
values was external Dioxane at 67.4 ppm. 

Gel Filtration Chromatography 
A Sepharose CL-6B (Pharmacia Fine Chemicals, Piscataway, NJ) column 
of dimensions 110.0 x 1.0 cm was used at a flow rate of 16 ml/h. The eluent 
was 0.1 M NaOH and 0.4-ml fractions were collected. Calibration of the 
column was carried out using dextran blue (Pharmacia Fine Chemicals) to 
indicate the void volume and several dextrans of known molecular weights 
(Sigma Chemical Co., St. Louis, MO; Fig. 6). Determination of the carbo- 
hydrate content of each fraction was carried out by the phenol-sulfuric acid 
method (Dubois et al., 1956). 

1. Abbreviations used in this paper: NMR, nuclear magnetic resonance. 
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NheI 
G•TAG•AGTTATTTCA•TTT•ATTTACAGCATCC•TCATGTTTATTATCTTCTTTAT•TAATATAAATTAGGAACTAAATAAT -360 

~C~T~AC~GTATAAAGCGACAGTTCCGTGACGGTTACTATTATGAATATCTCAACGGAAAGAGGGCATTAAA~GATCATAATAGTTGGTACTCTCGTATTTTATATATATATATCA~T -240 

EcoRV 
ATATT•TAACACTTTTACTGCTCAATTGTGCCATA•ACTTCGCCTTATTGCGTACATTCTT•ACCTTGTATCCCCCTACCTCAGCGTGTATGGTGATATCGCGTTTTTTCATAAACTGA -120 

GAATGGGG•TTTTTCTATAA•GTGTATTATGAAAAAAAGAAAATAAAAATCAAGAATTAAGCACTTGTATATGCTACAGTAAAGACCTCTTCAACTTCTGCAAGACAATCAAAAAAAAA -1 

V * V 
ATG ATG CGT CGC ACG eTA TTA CAT TeA TTC GeT ACG CTG eTA CTT TCT TTG TCG TTG TGG TCA GCT GCG GTC ATG GCA GeT GTG ACA ACT 90 

Met Met ArG Arg Thr Leu Leu His Ser Phe Ale Thr Leu Leu Leu Ser Leu SeE Leu Trp Ser Ale Ale Val Mat Ale Ale Val Thr Thr 30 

CAG GTT ACA GTG GTA ACA /&AT GTC GCA GGG GCC CTG GTT ACG GAG ACC ACA ATA TGG GAC CCT GCC ACC GeT GCT GeT GeT GeT ACA ACT 180 

Gin Val Thr Val Val ThE Asn Val Ale Gly Ale Leu Val Thr Glu Thr Thr Ile Trp Asp Pro Ale Thr Ale Ale Ale Ale Ale Thr Thr 60 

HincII 
ACC GCT CAA ACA GGT TTC TTC ACT ACG GTA TTC ACT ACC ACT AAC GAT GTC GGA ACC ACC GTC ACT CTT ACT CAG ACA GTC AAC AGA GCC 270 

Thr Ale Gln Thr Gly Phe Phe Thr Thr Val Phe Thr ThE Thr Asn Asp Val Gly ThE Thr Val ThE Leu ThE Gin Thr Val Ash Arg Ale 90 

ACT ATG eTA CCA ACC ACG ACG ACT TCT ACC TCA TCT ACT GGT AAG ACA ACC ACC ACT GTT CCT Ace GCA ACT TCA TCG TTG TCT TCG GGA 360 

Thr Met Leu Pro Thr Thr Thr Thr SeE Thr Set Set ThE Gly Lys ThE Thr Thr Thr Val Pro Thr Ala ThE Ser Ser Leu Set Ser Gly 120 

KpnI 
CTG TAT TTA TCT ACA GTT ACC ACG ACA AAC GAT TTG GGT ACC ACA GTT ACA TTG ACT CAA ACG TTC ACA CAT TCT AGe Ace AGT GeT ACT 450 

Leu TyE Leu Ser ThE Val Thr Thr ThE ASh Asp Leu Gly Thr Thr Val Thr Leu Thr Gln Thr Phe Thr His Ser Ser Thr Ser Ale Thr 150 

TeA TCC GCC TCC TCG TCT GTG TCC TCG TCT GTA TCT TCG TCT GGT TeA TCC TCC AGT GTA AAG ACG Ace ACA TCG ACA GGG AGe GCA GTA 540 

Ser $er Ale Ser Ser Set Val Ser Ser Ser Val Ser Ser SeE Gly Set Set Set Ser Val Lys Thr Thr Thr Ser ThE Gly Set Ale Val 180 

Spe I 
GeT GAA ACA GGC ACC AGG CCA GAC CCC TCC ACA GAC TTC ACA GAA CCT CCT GTG TCT GCT GTC ACT AGT eTA TCT ATT GAC TeA TAC ATT 630 

Ale Glu Thr Gly Thr Arg Pro Asp Pro Set Thr Asp Phe Thr Glu Pro Pro Val Ser Ale Val Thr Ser Leu Ser Ile Asp Ser Tyr Ile 210 

ACC ATC ACT GAA GGT ACA ACC TCC ACT TAC ACA ACC ACA CGT GCG CCA ACG TCC ATG TGG GTC ACT GTT GTT AGA CAG GGC AAC ACT ATC 720 

ThE Ile Thr Glu Gly Thr Thr SeE Thr Tyr Thr Thr Thr Arg A1a Pro Thr SeE Met Trp Val Thr Val Val Arg Gin Gly Asn Thr Ile 240 

SnaBI 
ACT GTG CAA ACT ACT TTT GTC CAG CGT TTC TCC TCC CAG TAC GTA ACA GTC GCT TCT CCC TCC GTG GGG TCT ATT GGG ATG GGT ACT TTA 810 

Thr Vel Gln Thr Thr Phe Val Gln Arg Phe Set Set Gln Tyr Val Thr Val Ale Ser Pro Ser Val GIy Set Ile GIy Met Gly Thr Leu 270 

ACC GGT ACT GTA GGC GTT ATT AAA TCT GCA ATA AAG AAA ACA GTT TCG CAT AAT GAG GCC CAG CAT eTA GGT ATG AGT TCG TTT ACT TeA 900 

Thr Gly ThE Val Gly Val Ile Lys Ser Ale Ile Lys Lys Thr Val Ser His Asn Glu Ale Gin His Leu Gly Met Ser Set Phe Thr Ser 300 

ATT TTG GGT GGG eTA TTA ACG GTT TTA ATT TGG TTC TTA TAA ATTTTTATTCAGAAATAAACACAAACATATACATATATAAGAGTAAAAATAAAAAAATAAAAA 1005 

Ile Leu Gly Gly Leu Leu Thr Val Leu Ile Trp Phe Leu 313 

Nsi I 
AATTTTACAGGGTTAAAAATAAAGAAAACCATCACT C C TTT TCTATTTCATAATC CAT GACAAACTT GATG CAT 1079 

Figure 1. The nucleotide sequence of  an Nhe l -Ns i  1 restriction fragment, isolated from YCpS0: :KRE1, is shown, with the predicted amino 
acid sequence of KRF2 below. Both strands of the DNA sequence were obtained as described in Materials and Methods. Arrows show 
the position of  predicted signal cleavage sites determined using the rules of  von Heijne (1984). A 15-amino acid direct repeat is underlined 
by a dashed line. The carboxy-terminal hydrophobic sequence of  the KRE/gene  product is underlined by a solid line. Asterisks show the 
positions of  restriction sites inserted using site specific mutagenesis (see Materials and Methods). Various restriction sites used for recom- 
binant D N A  constructs are designated above the DNA sequence. These sequence data are available from EMBL/Genbank/DDBI under 
accession number X51729. 

Isolation of Killer-resistant Mutants 
To isolate mutants resistant to K1 killer toxin, ! x 107 cells of $486 or 
$484 were mixed with 2 x l0 s of a nonreverting, homozygous leu2 KI+ 
diploid strain and plated on complete media lacking leucine, pH 4.7. After 
8 d, colonies of resistant $486 and $484 could be seen above a lawn of ini- 
tinily plated cells. The colonies were purified and tested for resistance by 
replica plating onto methylene blue medium (0.003% methylene blue), 
which had just been inoculated with diploid KI killer cells ('~1 × 107 cells 
spread onto the agar surface and allowed to dry). After incubation for 1-2 d 
at 25 °C, resistant colonies were white or light blue (depending on the partic- 
ular mutant allele), whereas sensitive colonies were dark blue. Except for 
the initial experiment, the following was done to ensure isolation of inde- 

pendent mutants: (a) only one resistant colony was taken per killer selection 
10 cells of input $484 and $486 were derived from sin- plate and (b) each 7 

gle colonies. 

Resul~  

Isolation of the KREI Gene 
To identify the K R E / g e n e  product and initiate a study of its 
function, we isolated the wild-type KRE/ locus .  The krel-1 
ura3 yeast strain l l A  was transformed with a yeast genomic 
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library in the URA3-containing centromeric vector YCp50, 
and uracil prototrophs were selected (Rose et al., 1987). 
Transformants were screened for a killer-sensitive pheno- 
type (Kre+) as described in Materials and Methods. Two in- 
dependent Kre+ transformants were obtained and found to 
be unstable for both the Kre+ and Ura+ phenotypes when 
grown under nonselective conditions in YEPD. A unique 
plasmid was isolated from each of these transformants that 
could complement the krel-1 mutation. One plasmid, YCp50: 
KRE1, contained a 6.5-kb insert of yeast genomic DNA and 
restriction endonuclease mapping revealed that this DNA 
fragment was contained within a larger (11 kh) insert, of the 
other complementing plasmid. Genetic analysis showed that 
the complementing fragment contained the KRE/locus (see 
below). 

Nucleotide Sequence of  KRE1 

Subcloning of the insert of plasmid YCp50:KRE1 deter- 
mined that a 3.9-kb Barn HI-Pst I restriction fragment could 
complement the kre-, phenotype of strain 11A. However, 
subclones on either side of an internal Kpn I site failed to 
complement, suggesting that the Kpn I site is located within 
the KRE/functional region. Further subcloning experiments 
localized the complementing activity to a 1.5-kb Nhe I-Nsi I 
fragment, the DNA sequence of this fragment (Fig. 1) was 
determined using the dideoxy nucleotide method of Sanger 
et al. (1977). This sequence contains a single extended open 
reading frame that spans the Kpn I site. This open reading 
frame would encode a protein of 313 amino acids with a mo- 
lecular weight of 32,000 (Fig. 1). 

The protein, Krelp, displays a striking abundance of threo- 
nine (25 %) and serine (15 %) residues. The amino terminus 
of Krelp is hydrophobic and resembles the signal sequences 
of secreted proteins. There are two potential signal cleavage 
sites (yon Heijne, 1984) found after amino acid residues 23 
and 27 (Fig. 1). The last 21 amino acid residues of Krelp also 
form a hydrophobic sequence. No sites for N-linked glycosyl 
attachment were observed, however, the abundance of serine 
and threonine residues may provide sites for O-linked glyco- 
sylation (Tanner and Lehle, 1987). Krelp contains an inter- 
nal repeat of 15 amino acids. Comparison of both the KRE/ 
nucleotide sequence, and the deduced primary amino acid 
sequence with those from available data bases, has not re- 
vealed any sequences with significant similarities to KRE/. 

Disruption of  KREI 

A null mutation of the KRE/locus was generated by the one 
step gene disruption procedure using HIS3 as a selective 
marker (Rothstein, 1983). The krel::HIS3 disruption con- 
struct is described in Materials and Methods. The diploid 
TA405, homozygous for a his3 mutation, was transformed 
with a restriction fragment of the cloned DNA containing a 
disruption of the KRE/coding region. His + transformants 
were sporulated and subjected to tetrad analysis. Several in- 
dependent transformants gave rise to two His 4- kre -  segre- 
gants and two His-  Kre÷ segregants (18 out of 18 tetrads 
analyzed). The killer-resistant segregants consistently formed 
slightly smaller colonies upon spore germination when com- 
pared with the killer sensitive segregants, but individual cells 
were of normal size and morphology as judged by light mi- 
croscopy. The structure of the integrated krel::HIS3 deletion 

replacement was confirmed by Southern analysis of the chro- 
mosomal DNA from disrupted haploids (data not shown). 
The diploid HAB150-1 (krel-3/krel::HIS3) was sporulated 
for tetrad analysis, 22 of 23 tetrads were parental ditype for 
killer resistance and 1 was a tetratype. These results show 
that the cloned sequence is tightly linked to the KRE/locus 
and that KRF_2 is nonessential for both mitotic growth and 
meiotic spore formation. In further experiments, we have de- 
termined the location of KRE/on the yeast genetic map (see 
Materials and Methods). Closest linkage was with the PHA2 
locus (required for phenylalanine biosynthesis), analysis of 
recombinants between krel andpha2 suggests that krel is the 
distal most known marker on the left arm of chromosome XIV. 

Cell wall (1--~6)-/~-glucan can be isolated from the alkali in- 
soluble glucan fraction following acid extraction or treatment 
with an endo-(l~3)-/~-glucanase (Manners et al., 1973b). 
Yeast strains with a mutant krel-1 allele were found to display 
an ~,40% reduced level of the (1--'6)-B-glucan fraction when 
isolated by either protocol (Hutchins and Bussey, 1983), 
however, the yield was greater with the glucanase method. 
To avoid any subfractionation that may occur upon incom- 
plete acid extraction, (1 ~6)-/~-glucan was isolated using the 
endoglucanase technique (see Materials and Methods). Anal- 
ysis of the (l~6)-#-glucan levels of the spore progeny from 
a tetrad heterozygous for the krel::HIS3 disruption mutation, 
demonstrated that the level of this glucan was reduced in 
progeny with a disrupted allele and the reduction was ,u40% 
of wild-type levels (Table I). This finding suggests that the 
mutation that defines the krel-1 allele ieads to a null pheno- 
type. Consistent with this idea, krel-1 mutant yeast strains 
display a complete killer resistant phenotype, which appears 
similar to the phenotype ofkrel::HIS3 mutant strains. How- 
ever, small in-frame insertion mutations or deletions of the 
KRE/coding sequence can lead to a partial resistant pheno- 
type (see Fig. 3, below). 

Electron Microscopy of  krel Mutant  Cell Walls 

The krel::HIS3 mutant yeast cells were examined by EM and 
compared with wild-type cells. Under the conditions used, 
wild-type cells were found to have a finely delineated dark- 
staining outer layer. This layer was missing from krel mutant 
cells and the outer surface appeared rough in texture (Fig. 
2). The mutant cell wall material also stained more in- 
tensely, especially in the outer half of the wall. These struc- 

Table L (1--'6)-f3-Glucan Levels in kre l Mutant Strains 

Yeast Allele at 
strain KREI locus (l--'6)-t]-Glucan 

i~g/mg dry wt 

463-1A krel::HIS3 24.9 + 3.5 
463-1B krel::HlS3 19.3 + 2.0 
463-1C KREI+ 34.2 + 3.2 
463-1D KREI+ 34.5 + 0.6 

7B K R E I ÷  27.0 + 0.8 
3 krel::HIS3 17.2 :t: 2.2 

The levels of (i'6)-/~-glucan were analyzed for the spore progeny of a tetrad, 
from the isogenic diploid TA405 made heterozygous for a krel::HIS3 disrup- 
tion mutation, (KRE1/kre::HIS3). Strains 463-1A and 463-1B display a 
reduced level of (l'-'6)-~-glucan and carry the krel::HIS3 mutation. Disrup- 
tion of the KREI locus of the haploid strain, 7B (glcl, ura3, his3), resulted 
in strain 3 (glel, ura3, his3, krel::HIS3). Error represents 1 SD. 
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Figure 2. Cell wall electron mierographs of a krel::HIS3 mutant 
strain (463-1B) (a), and the KRE/strain (463-1C) (b). Cells were 
treated exactly as described in Materials and Methods. Bar, 0.15/~m. 

tural alterations were found to segregate 2:2 in a tetrad ob- 
tained from a TA405 diploid made heterozygous for a krel 
disruption mutation (KRE//krel::HIS3). 

The KREI Gene Encodes a Product with a 
b'hnctional Signal Peptide 

Restriction endonuclease sites were introduced three nucleo- 
tides before, and immediately after, the/(.RE/open reading 
frame using site-specific mutagenesis (Fig. 1). Introduction 
of these new sites facilitated the ligation~of the open reading 
frame, into a 2-~tm based expression vector, pVT100U, 
which contains the ADH/promoter and terminator (Vernet 
et al., 1987). Upon transformation of a krel-I mutant, the 
resultant plasmid, pVT: KRE1, fully complemented the kre- 
phenotype and led to (l~6)-~-glucan levels equivalent to 
those induced by YCp50:KRE1 (Table II). Transformation of 
a wild-type (Krel +) strain with pVT'KRE1 did not lead to 
an increased amount of (1--'6)-~-glucan. 

To determine whether the/(,RE/sequence encoded a func- 
tional signal peptide, a deletion was made of the first 72 
nucleotides of the open reading frame (predicted to encode 
24 NH2-terminal amino acids of Krelp, Fig. 1). The resul- 
tant construct was introduced into pVT100U, positioning 
Met 25 of Krelp next to the ADH/promoter. When trans- 
formed into yeast cells mutant at the KRE/locus, the leader- 
deleted construct (pVT:A24/KRE1) did not complement the 
kre- phenotype. However, if the leader deleted portion of 
the KRE/ sequence was replaced with a segment of DNA 
which encodes the first 20 amino acids of the alpha factor 
precursor (Kurjan and Hershowitz, 1982) (pVT:c~20/KRE1), 
a Kre+ phenotype was observed (Fig. 3). 

Another hybrid gene was constructed that replaced the 
DNA segment of KRE/encoding the last 59 amino acids of 
Krelp, with a sequence that codes for a six-amino acid por- 
tion of the neuropeptide substance P. This construct was in- 
troduced into pVTI00U (pVT:KRE1/SP) and allowed partial 
complementation of the krel mutant strain (Fig. 3). The sub- 

stance P portion provides an epitope that can be detected by 
an mAb (Munro and Pelham, 1984). Yeast strain llA was 
transformed with the ADH/expression vector carrying hy- 
brid constructs both with and without (pVT:A24/KRE1/SP), 
the Krelp signal peptide. Electrophoretic transferblot anal- 
ysis of total protein isolated from transformed yeast cells 
showed that the leader allowed a 50-kD modification of the 
Krel-substance P hybrid protein (Fig. 4). This sizing is ap- 
proximate because extended electrophoresis of the modified 
polypeptide resulted in smearing of the immunoreactive 
band. Similar analysis of concentrated yeast culture media 
revealed that only the modified hybrid protein was exported 
(data not shown). The leader-deleted Krel-substance P hy- 
brid protein has a predicted molecular weight of • 25,000, 
while the apparent size as determined by SDS-PAGE was 
found to be 30 kD (Fig. 4). A similar discrepancy has been 
observed for other serine- and threonine-rich proteins, sug- 
gesting that it is associated with a high content of hydroxy- 
amino acids (Early et al., 1988). The observed modification 
of the Krel-substance P hybrid protein is probably the result 
of O-linked mannose addition. Evidence to support this con- 
jecture comes from immunoprecipitation experiments, using 
other fusion constructs, where the modification was found to 
be endoglucosaminidase H resistant (data not shown). 

Structural Analysis of  (l~6)-[3-Glucan from a 
krel Mutant 

To facilitate [~3C]NMR analysis of the (l'-*6)-/~-glucan frac- 
tion isolated from akrel::HIS3 disruption strain (mutant glu- 
can), a large-scale procedure for the purification of ~50 mg 
of Zymolyase-resistant glucan was designed (see Materials 
and Methods). The yeast strain 7B (his3 ura3 glcl) used for 
wild-type glucan purification carried the glcl mutation to 
minimize glycogen contamination (Tkacz, 1984); disruption 
of the KRE/locus in this strain created a krel null mutant, 
(strain 3), with a reduced amount of (1--'6)-/~-glucan (Table 1). 

The proton decoupled ['3C]NMR spectrum of glucan 
purified from the wild-type strain (7B), is presented in Fig. 
5 A. The data for this spectrum were obtained under condi- 
tions where the signal area reflects relative amounts of the 
constituent carbon atom(s) (Shimamura, 1989). The wild- 

Table II. Plasmid-dependent Maturation of 
Cell Wall (1-*6)-13-Glucan 

Yeast strain 
(allele at KRE1 locus) Transformation plasmid (l-*6)-/~-Glucan 

/zg/mg dry wt 

11A (krel-1) YCp50 15.7 + 1.4 
11A (krel-l) YCp50:KREI 41.4 + 4.7 
I IA  (krel-1) pVTI00U 17.5 + 1.1 
11A (krel-l) pVT:KRE1 42.6 ± 4.1 

7B (KRE1) pVTI00U 38.9 ± 3.9 
7B (KRE1) pVT:KRE1 45.2 ± 6.4 

Yeast (l~6)-D-glucan levels were analyzed for various 11A (krel-l, ura3) 
transformants. Plasmid YCPSO:KREI contains a yeast genomic insert that 
complements the krel-1 mutation ligated into the centromeric (single copy) 
vector YCpSO: Plasmid pVT:KREI contains the KRE1 open reading frame 
ligated into the 2-ttm derived (multicopy) expression vector pVTI00U. Tran- 
scription of the KREI from pVT:KREI occurs via the ADHI promotor. Yeast 
(l~6)-B-glucan levels were also analyzed for transformants of strain 7B (ura3, 
his3, glcl ). Error represents 1 SD. 
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Figure 3. Leader-dependent function of the KRE/gene product. Inserts of various pVT:100U-derived vectors are designated by the plasmid 
name and drawn schematically, indicating structural features as described in the text. The amino acid sequence of the Krelp leader is com- 
pared with the sequence of the prepro-u factor leader. The signal cleavage site of the prepro-ct factor leader and a site predicted for Krelp 
are indicated. Examples of the seeded plate assay used to assess complementation of the killer-resistant phenotype of transformants, of 
strain IIA (krel-1, ura3) are also shown (see Materials and Methods). Plasmids, pVT:KRE1 and pVT:u20/KRE1, completely complement 
the kre- phenotype. Plasmid pVT:KREI/SP can only partially complement and pVT:A24/KRE1 does not complement the kre- phenotype. 

type glucan showed predominant signals at 103.8, 76.4, 75.7, 
73.8, 70.3, and 69.6 ppm (Fig. 5 A; C-I, C-3, C-5, C-2, C-4, 
and C-6 linked, respectively). These chemical shifts are 
characteristic of linear (1--'6)-#-glucan (Gopal et al., 1984; 
Bassieux et al., 1977; Saito et al., 1977). Several minor sig- 
nals can be ascribed to the presence of linear (1--*3)-linked, 
branched (1"--'3, l~6)-linked and terminal B-glucopyranosyl 
residues in the polymer. For example, the signal with a 
chemical shift of 61.5 ppm is the result of residues unsub- 
stituted at C-6 (Fig. 5 A; C-6), as found for terminal/~-glu- 
copyranosyl residues or those which have a linear (1--'3)- 
linked structure, other assignments are presented in Fig. 5. 
Integration analysis suggests that 82% of the residues are 
O-substituted at the C-6 position. 

The proton decoupled [~3C]NMR spectrum of glucan 
purified from the krel mutant strain (3), is presented in Fig. 
5 B. Each of the signals of this spectrum was found to have 
a signal of equivalent chemical shift present in the spectrum 

of wild type glucan (cf. Fig. 5, A with B). Therefore, each 
glucan contains a similar set of linked residues. A noticeable 
difference between the two spectra is the relative ratio of sig- 
nals within a given spectrum. The spectrum of the mutant 
glucan contains a higher proportion of signals corresponding 
to linear (1--'3)-linked, branched and terminal/3-glucopy- 
ranosyl residues than the wildtype. Integration analysis pre- 
dicts that 64% of the residues are O-substituted at C-6. 

Hence both the mutant and wild-type glucans give rise to 
['3C]NMR spectra consistent with a branched (1--'6)-/3- 
glucan structure. The mutant glucan differs from the wild 
type in having fewer residues O-substituted at C-6. These 
results were confirmed by methylation analysis, which also 
indicated that the reduction of C-6, O-substituted residues 
was due to fewer linear (l"-'6)-linked glucopyranosyl units 
(data not shown). 

Gel filtration chromatography of mutant and wild-type 
glucans over a Sepharose CL-6B column demonstrated that 
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Figure 4. Western blot analysis of the products of Krel-substance 
P fusion constructs was carried out as described in Materials and 
Methods. Plasmids pVT:KREI/SP and pVT:A24/KRE1/SP contain 
similar DNA inserts, encoding Krel-substance P fusion proteins 
(with the substance P epitope replacing the last 59 amino acids of 
Krelp), except that the insert of pVT:A24/KREI/SP is deleted for 
DNA encoding the predicted leader of Krelp. Strain 11A trans- 
formed with pVT:KRE1/SP (see Fig. 3) produces an immunoreac- 
tive band that migrates with a molecular mass of 80 kD (lane 3). 
Strain IIA transformed with pVT:A24/KRE1/SP leads to an im- 
munoreactive band which migrates with a predicted molecular 
mass of 30 kD (lane 2). Strain 11A transformed with the expression 
vector pVTI00U provided a control that did not give rise to an im- 
munoreactive band (lane 1). 

the mutant glucan had a smaller average degree of polymer- 
ization than the wild type (Fig. 6). The wild-type glucan dis- 
played a range of  different-sized material, with an average 
predicted molecular mass of  40 kD. The mutant glucan dis- 
played a range of material with smaller predicted molecular 
masses and an average of 20 kD. These results suggest that 
the average degree of  polymerization of  the wild-type glucan 
was "~200, whereas that of the mutant glucan was 100. 

Killer-resistant Mutants Identify a Group of  Genes 
Required for Cell Wall (1--6)-[3-Glucan Production 

The observation that krel::HIS3 mutant yeast strains pro- 
duced an altered form of cell wall (1->6)-/3-glucan with a 
smaller average polymer size, suggests that KRE1 could be 
required for the stepwise synthesis of  the mature polymer. 
Additional genes required for the production of  cell wall 
(1--'6)-fl-glucan were identified through further selection of  
mutants resistant to killer toxin (see Materials and Methods). 
44 resistant mutants were characterized by performing ge- 
netic analysis in an isogenic background. Six complementa- 
tion groups were defined by recessive mutations, each of  
which segregated as a defect in a single gene. Two of  the 
complementation groups were found to be equivalent to KRE/ 
and KRE2 described by AI-Aidroos and Bussey (1978). The 
other complementation groups designated KRE4, KRE5, 

KRE6, and KRE8 are novel. Segregation analysis indicated 
that the kreI, 2, and 5 mutations identify three separate loci, 
and that KRE5 and KRE6 are not allelic. The mutants that 
define the KRE4 and KRE8 complementation groups proved 
to be only weakly resistant, and will not be considered fur- 
ther here. 

Mutants in three complementation groups were found to 
have reduced levels of cell wall (l~6)-/3-glucan (Table IU). 
The level in strain $708 that harbors the krel-3 allele was re- 
duced 40 % in agreement with the previous observations for 
mutants containing krel-1 or a krel:HIS3 disruption muta- 
tion. Strains $726 and $731 carrying mutations at the KRE5 
and KRE6 loci respectively showed a significant reduction in 
(l~6)-~/-glucan and demonstrated a slow growth phenotype 
which cosegregated with the killer resistance when com- 
pared with wild-type strains or the krel mutant, $708. The 
level of (l~6)-fl-glucan was not altered in the kre2 strain 
$706 (Table III). 

Double mutants were constructed for the strains that 
showed a reduced level of  cell wall (l'--'6)-/3-glucan. The 
level of (1-->6)-~-glucan in double mutants of  krel with kre5 
or kre6 was not significantly lower than that found in kre5 
or kre6 single mutants. This result suggests that mutations 
at both the kre5 and kre6 loci lead to killer toxin resistance 
because they are epistatic to KRE/. In contrast, kre5 and kre6 
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Figure 5. (A) [13C]NMR spectrum of (1--'6)-~3-glucan purified 
from a wild type (Kre÷) yeast strain. The predominant signals (A; 
C-I, C-3, C-5, C-2, C-4, and C-6 linked) have chemical shifts that 
are characteristic of linear (1--~6)-13-glucan as described in the text. 
Presently, there are insufficient reference data to assign identities 
to each of the minor signals; however, some can be assigned as 
presented below. The signal at 85 ppm (A; C-3 linked) corresponds 
to O-substituted at C-3 found in branched and linear (1-->3)-linked 
residues (Yoshioka et al., 1985). The signal at 68.8 ppm can be as- 
signed to C-4 of residues O-substituted at C-3 and the signal at 61.5 
ppm results from residues unsubstituted at C-6, the latter are found 
in linear (l~3)-linked and terminal fl-glucopyranosyl residues 
(Bruneteau et al., 1988). Some of the expected minor signals coin- 
cide with a major signal. For example, the signal with a chemical 
shift of 69.6 ppm is the result of residues O-substituted at C-6 (Fig. 
5A; C-6 linked), as found for those which have a linear 0-"6)- 
linked or branched structure. Assignment of the signal at 69.6 and 
61.5 ppm as the result of a CH2 group was confirmed by a DEPT 
NMR pulse sequence (Doddrell et al., 1982). The area of the as- 
signed minor signals was similar predicting that the relative propor- 
tion of branched and terminal/3-glucopyranosyl residues was ap- 
proximately equal, as expected. (B) [13C]NMR spectrum of the 
(l~6)-fl-glucan fraction purified from a krel mutant. 
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Figure 6. Gel filtration chromatography of purified (l~6)-/3-glucan 
isolated from the krel mutant strain 3, (~); or the KRE/strain 7B 
(n) on Sepharose CL-6B. The dextran standards and chromatogra- 
phy conditions used are described in Materials and Methods. 

double mutants displayed a further reduction in the cell wall 
(1--'6)-/3-glucan level (reduced by ,v80% over wild type), 
and are associated with a severe growth impairment. 

Discussion 
We have cloned the KRE/gene from S. cerevisiae and shown 
that a disruption of the KRE/ locus results in an "o40% 
reduction of cell wall (l~6)-/~-glucan. Haploid yeast strains 
with a disrupted krel allele grow somewhat more slowly than 
wild type and were found to have an unusual cell wall ultra- 
structure. Yeast cell wall (1--'6)-/~-glucan is a highly branched 
glucose polymer composed mostly of linear (l~6)-linked 
residues as well as some linear (l~3)-linked residues. Branch- 
ing occurs through triply linked (1~3, 1--~)-fl-glucopyranosyl 
residues. Structural analysis of the (l~6)-~-glucan, which 
remains in a krel mutant (mutant glucan) when compared 
with the glucan purified from isogenic wild type ceils, showed 
that each glucan was composed of a similar set of linked 
residues. However, the mutant glucan contained fewer (1--'6)- 
linked residues, which were incorporated into a polymer of 
smaller average size. It is possible that the KRE/gene product 
is required for the addition of extended chains, composed pre- 
dominantly of linear (1--'6)-fl-glucan, onto a highly branched 
acceptor glucan. 

We favor this interpretation because krel mutants are com- 
pletely resistant to the K1 killer toxin of S. cerevisiae. The 
killer toxin displays a lectin-like affinity for linear (1--'6)-fl- 
glucan chains and unlike the cell walls of wild type yeast 
strains, krel mutant cell walls lack a component with similar 
toxin affinity (Bussey et al., 1979). 

A potential pathway of gene products necessary for yeast 
(1--*6)-fl-glucan biosynthesis is implicated by the finding that 

other mutants are resistant to killer toxin. Mutations at ei- 
ther the KRE5 or KRE6 loci result in killer resistance and 
a reduced amount of cell wall (1--'6)-/~-glucan. This reduc- 
tion is not affected by a krel mutant allele, suggesting that 
mutations at the KRE5 or KRE6 loci are epistatic to KRE/. 
Mechanistically it seems reasonable that the KRE5 and 
KRE6 gene products could be required for the production of 
an acceptor glucan, which is defined by the (1--'6)-~-glucan 
fraction that remains in a krel mutant (Fig. 7). This interpre- 
tation implies that the mutant kre5-1 or kre6-1 alleles lead to 
the production of an altered acceptor glucan, which cannot 
be extended in a KRE/-dependent fashion and therefore result 
in killer toxin resistance. Recent experiments have shown 
that disruption of the KRE5 locus leads to a yeast strain 
which is not impaired for (1--'3)-/3-glucan biosynthesis, but 
has an extremely slow growth rate, and appears to lack cell 
wall (l~6)-B-glucan (Meaden, P., unpublished results). The 
lack of (l~6)-/~-glucan in yeast strains carrying a kre5 null 
mutation further indicates that mutations at the KRE5 locus 
are epistatic to KRE/. 

The KRE/gene product (Krelp) has a functional amino- 
terminal signal sequence that directs the protein into the 
yeast secretory pathway, where it is extensively modified 
probably through the addition of O-linked mannose residues. 
Yeast mating-type agglutinin proteins (Lasky and Ballou, 
1988; Watzele et al., 1988) and a large proportion of the bulk 
cell wall protein (Frevert and Ballou, 1985) are serine/threo- 
nine-rich and O-glycosylated. Therefore by analogy, Krelp 
may also be localized at the yeast cell surface. In support of 
this idea, fusion constructs which place a leader-deleted 
KRE/fragment next to the carboxy terminus of the PH05 
open reading frame (Meyhack et al., 1982), lead to a fusion 
protein that partially complements a krel mutant and directs 
acid phosphatase activity to the cell surface (data not shown). 
The 21 carboxy-terminal amino acid residues of Krelp form 
a hydrophobic sequence, which may serve as a membrane 
spanning domain or provide a signal for attachment ofa  gly- 
cosyl-phosphatidylinositol membrane anchor (Conzelmann 
et al., 1988). 

The appearance of krel mutant cells, as examined using 
EM, revealed that the outer portion of the wall was abnor- 
mal. Particularly noticeable was the lack of a finely delin- 
eated dark staining region, thought to be a surface layer of 
mannoprotein (Zlotnik et al., 1984). This alteration, although 
possibly enhanced by the fixation procedure, may have func- 
tional significance, as krel mutants are more sensitive to 

Table IlL (l~6)-f3-Glucan Levels of  kre-Strains 

Yeast strain KRE allele (I-6)-/~-Glucan 

#g/rag dry wt 

$442 KRE+ 29.4 :t: 2.0 
$484 KRE+ 30.7:1:1 .3  
$708 krel-3 16.1 :t: 3.3 
$706 kre2-2 26.3 + 2.1 
$726 kre5-1 11.6 + 1.5 
$731 kre6-1 11.9 + 0.5 

Cell wall (l'-,'6)-~-glucan levels were determined for killer-resistant mutants 
isolated in the $442 and $484 genetic background. Total alkali-insoluble glu- 
can was not significantly different for any of these strains (with an average of 
134 :l: 28 #g/mg dry wt), except for $726, which showed a modest increase 
(175.2 + 6.8 ~g/mg dry wt). Error represents 1 SD. 
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Acceptor = (1-*6)-13-Glucan Substrate? " Glucan 

Figure 7. A model for the functional role of the KRE/gene product 
is shown. It is postulated that extended chains, composed predomi- 
nantly of linear (l~6)-linked ~-glucopyranosyl residues, are at- 
tached to a highly branched acceptor glucan, in a KRE/dependent 
fashion. The acceptor glucan is defined by the (1 ~6)-/~-glucan frac- 
tion that remains in a krel mutant and cannot interact with the killer 
toxin. The acceptor glucan appears to be made in a KRES-, and 
KRE6-, dependent fashion. The acceptor glucan and the chains con- 
taining linear (l'-*6)-linked residues together make up what is re- 
ferred to in the text as yeast (l~6)-/3-glucan, which acts as a killer 
toxin receptor. 

zymolyase treatment than wild-type cells (data not shown), 
and over secrete proteins normally found in the growth me- 
dium (Bussey et al., 1983). It is likely that wild-type cells 
release a certain portion of wall-localized proteins into the 
growth medium and this process is exaggerated in krel mu- 
tant cells. However, krel mutants do not show significant 
reduction in total wall mannoprotein (Hutchins, 1982), indi- 
cating that the bulk of the mannoprotein is efficiently tar- 
geted within the wall (Valentin et al., 1987) or periplasmic 
space. In addition, the krel mutant cell walls were found to 
stain more intensely, especially in the outer half of the wall, 
leading to a bipartite appearance. This may suggest that a 
krel mutant is particularly defective in the assembly of the 
outer wall, which could be the region of (1--'6)-/3-glucan lo- 
calization (Cabib et al., 1982). 

Efficient in vitro synthesis of chitin and linear (1--*3)-/3- 
glucan has been observed with membrane preparations and 
UDP-charged substrates (Kang and Cabib, 1986; Cabib et 
al., 1982), but an analogous system for yeast (1--'6)-/3-glucan 
or branched (1---3)-/3-glucan synthesis has not yet been 
achieved. Although it is not known if Krelp functions 
directly in (l~6)-/3-glucan biosynthesis, that Krelp is tar- 
geted to the yeast secretory pathway and potentially localized 
on the cell surface supports this possibility. In accord with 
this idea, kinetic experiments after hyphal cell wall biosyn- 
thesis of SchizophyUum commune suggested that cell wall de- 
posited (l~3)-/3-glucan could be subsequently modified by 
attachment of (1--,6)-/3-1inked branches (Sietsma et al., 1985). 
Multiple copies of the KRE1 gene under the control of the 
ADH1 promoter did not lead to the overproduction of (1-"6) - 
/$-glucan, but this does not rule out the possibility ofa  glucan 
synthase or transferase function. For instance, the gene prod- 
ucts required for the synthesis of an acceptor glucan could 
be rate limiting for (l~6)-/3-glucan biosynthesis (Glazebrook 
and Walker, 1989). Indirect mechanisms may lead to the ob- 
served phenotypes of kre mutants. For example, each of the 
kre mutants could be required for preservation rather than 
synthesis of yeast (1--'6)-/3-glucan. Krelp could then function 
as an inhibitor of a putative cell wall glucanase, with an ac- 
tivity towards linear (1--'6)-/~-glucan, resulting in partial 
degradation of the polymer. Several glucanase activities have 
been reported to occur in S. cerevisiae, but their functions 
are unknown (Kuranda and Robbins, 1987). 

Cell wall (l~6)-/3-glucan has been reported to occur 
among species from taxonomically diverse genera of yeasts 
including Candida albicans (Manners et al., 1974). C. albi- 

cans is of particular interest because of its dimorphic nature 
and pathogenicity. Glucan accounts for 50-70 % of the C. al- 
bicans cell wall and appears to function as the main struc- 
tural component of both the yeast and mycelial forms (Fleet, 
1985). As was observed for S. cerevisiae most of the cell wall 
glucan was isolated from whole cells as an alkali insoluble 
fraction which was found to contain two glucan subclasses. 
One glucan subclass closely resembled the S. cerevisiae 
(1--'6)-/3-glucan and while the other was found to contain rel- 
atively more (l~3)-linked glucopyranosyl residues, both 
types of glucan appear to be highly branched and composed 
predominantly of (1--"6)-linked residues (Gopal et al., I984). 
We have recently isolated a DNA fragment from the C. albi- 
cans genome capable of complementing the k r e -  phenotype 
of an S. cerevisiae krel mutant. It is likely that C. albicans 
homologues of the S. cerevisiae KRE genes described here, 
have a similar function in the production or assembly of the 
C. albicans cell wall. However, the greater abundance of 
(1--'6)-linked residues in the total cell wall glucan of C. albi- 
cans may imply that KRE homologues are associated with 
additional structural or morphological roles in this fungus. 
Partly because of the functional similarity of gene products 
required for most eukaryotic cellular processes, it has been 
difficult to devise specific antifungal antibiotics. Identifica- 
tion of the synthetic machinery for components, like fungal 
cell wall /3-glucans, that are absent in mammalian cells, 
should reveal proteins that are excellent potential targets for 
specific antifungal inhibitors. 
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