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Abstract

Background: Dimensionality reduction and visualization play vital roles in single-cell RNA sequencing (scRNA-seq) data
analysis. While they have been extensively studied, state-of-the-art dimensionality reduction algorithms are often unable
to preserve the global structures underlying data. Elastic embedding (EE), a nonlinear dimensionality reduction method,
has shown promise in revealing low-dimensional intrinsic local and global data structure. However, the current
implementation of the EE algorithm lacks scalability to large-scale scRNA-seq data. Results: We present a distributed
optimization implementation of the EE algorithm, termed distributed elastic embedding (D-EE). D-EE reveals the
low-dimensional intrinsic structures of data with accuracy equal to that of elastic embedding, and it is scalable to
large-scale scRNA-seq data. It leverages distributed storage and distributed computation, achieving memory efficiency and
high-performance computing simultaneously. In addition, an extended version of D-EE, termed distributed optimization
implementation of time-series elastic embedding (D-TSEE), enables the user to visualize large-scale time-series scRNA-seq
data by incorporating experimentally temporal information. Results with large-scale scRNA-seq data indicate that D-TSEE
can uncover oscillatory gene expression patterns by using experimentally temporal information. Conclusions: D-EE is a
distributed dimensionality reduction and visualization tool. Its distributed storage and distributed computation technique
allow us to efficiently analyze large-scale single-cell data at the cost of constant time speedup. The source code for D-EE
algorithm based on C and MPI tailored to a high-performance computing cluster is available at
https://github.com/ShaokunAn/D-EE.
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Background

The advent of single-cell sequencing provides high-dimensional
profiles of cellular states at single-cell resolutions (e.g., single-
cell RNA sequencing [scRNA-seq] of transcriptomes), offering
the opportunity to unveil intrinsic biological processes and
mechanisms. Dimensionality reduction and visualization meth-
ods have been extensively studied because they play vital roles
in revealing the intrinsic structures underlying scRNA-seq high-

dimensional data [1]. Nonetheless, it is still challenging for
these state-of-the-art methods of dimensionality reduction and
visualization to preserve both local and global structures of
data in low-dimensional space. For example, the celebrated t-
distributed stochastic neighbor embedding (t-SNE) algorithm [2]
is widely used in the single-cell community [3]. It emphasizes
the preservation of local structures, but it often distorts global
structures [4–6]. As a solution, the Uniform Manifold Approxi-
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mation and Projection (UMAP) algorithm [7] was developed, with
the aim to preserve global structures, drawing increasing atten-
tion in the single-cell data analysis community [8]. However, a
recent study showed that UMAP does not improve upon t-SNE
in this regard when using the same initialization [9], making the
validity of UMAP debatable.

In contrast, elastic embedding (EE), a nonlinear dimensional-
ity reduction method, attempts to preserve both local and global
structures underlying the data [4]. To achieve this goal, EE penal-
izes the placement of latent points in close proximity away from
dissimilar data points in high-dimensional space, thus resolving
the difficulty of global structure preservation (see [4], or Methods
for details). EE has attracted increasing interest among statisti-
cal researchers [10]. It has also shown remarkable performance
on visualizing the intrinsic structures of scRNA-seq data [1, 5,
11]. However, the current implementations of the EE algorithm
are not scalable to sample size N (e.g., number of cells). Thus, it
cannot be used for large-scale scRNA-seq datasets. For example,
the storage of the attractive and the repulsive weight matrices
of the EE algorithm is O(N2).

Therefore, we present a distributed optimization implemen-
tation of EE, termed D-EE. D-EE not only reveals the low-
dimensional intrinsic structures of data with the same accuracy
as EE but also is scalable to large-scale scRNA-seq data. It lever-
ages distributed storage and distributed computation, achieving
memory efficiency and high-performance computing simulta-
neously (Fig. 1). In addition, a distributed optimization imple-
mentation of the time-series EE (TSEE) algorithm [11], termed
D-TSEE, is also provided for visualizing large-scale time-series
scRNA-seq data. In this study, we demonstrate the power of D-EE
and D-TSEE on both simulated and real datasets. Both D-EE and
D-TSEE (1) achieve the same accuracy as EE and TSEE, respec-
tively; and (2) gain high strong scaling performance on large-
scale datasets.

Methods
Elastic embedding algorithm

EE was proposed by Carreira-Perpiñán [4]. It optimizes an energy
function containing the attractive and repulsive terms.

Given N samples Y = {y1, y2, . . . , yN}, where yi ∈ RD represents
its high-dimensional coordinates, the goal of EE is to map the
data from high-dimensional space onto a low-dimensional rep-
resentation X = {x1, x2, . . . , xN} with xi ∈ Rd and d � D by mini-
mizing an energy function

E (X, λ) =
∑N

m,n=1
w+

nm‖xn − xm‖2 + λ
∑N

m,n=1
w−

nm exp(−‖xn − xm‖2),

where w+
nm = exp

[−(1/2)‖yn − ym‖2/σ 2
n

]
and w−

nm = ‖yn − ym‖2. The
first term acts as an attractive force to preserve local distances,
while the second term acts as a repulsive force to preserve global
structures or to separate latent points. The parameter λ ∈ R+

trades off the 2 terms, and a larger value implies that preser-
vation of global structures is more important. In single-cell data
analysis, with λ = 10, EE can achieve robust performance with
high accuracy [5]. Therefore, we set the default value of λ as 10
for D-EE.

The σm in w+
mn is a sample-specific scaling parameter. It is

estimated adaptively by solving a sample-specific root-finding
problem, such that the sample-specific distribution over its
neighbors has a desired perplexity (see [12] for details). We set
a default value of perplexity as 20 in this study. It is worth not-

ing that a newly proposed combinational perplexity has been
applied to t-SNE [3], which greatly enhances the performance
of t-SNE in preservation of global structures. The combinational
perplexity can be also adopted by D-EE in a future update.

An extension of EE, TSEE [11], was recently proposed to
handle the dimensionality reduction problems of time-series
scRNA-seq data. It works by minimizing

E (X, λ) =
∑N

m,n=1
w+

nm‖xn − xm‖2

+ λ
∑N

m,n=1
(w−

nm + βtnm) exp(−‖xn − xm‖2),

where tnm represents the dissimilarity of time of pairwise points,
and β trades off the weights between dissimilarities of time
stages and expression space.

Numerical optimization of EE

Because the optimization solution of TSEE is basically the same
as that of EE, we only give the numerical solution of EE. First, we
denote WP = {w+

nm} and WN = {w−
nm}. Owing to the existence of

parameters {σ n}, WP is not a symmetrical matrix but we make
it symmetric by taking WP := WP + WP

T . Next, the diagonal el-
ements of WP and WN are set to zero. Finally, each element is
normalized by being divided by the sum of all elements in the
matrix.

To solve the optimization problem, the classic quasi-Newton
methods update Xk+1 according to Xk+1 = Xk + αkPk in the kth it-
eration, where αk is the step length determined by a line search
procedure and Pk is the search direction obtained by solving
the Jacobian system BkPk = −Gk. In this equation, Bk is positive-
definite to guarantee the decrease of the objective function.
Gk = LkXk is the gradient of the objective function in the kth iter-
ation, where Lk is the Laplacian of Wk = {w(k)

mn} with w
(k)
mn = w+

mn −
λw−

mn exp (−‖x(k)
n − x(k)

m ‖2). These procedures are repeated until a
certain termination criterion is satisfied. During the iteration,
Bk generally needs to be updated in each iteration as well.

To solve the EE-like optimization problems, a technique
termed ”partial-Hessian optimization strategies” has been pro-
posed to use partial information of the Hessian LP [13], which
is the Laplacian of WP and is invariant in each iteration. This
invariance makes it possible to utilize some precondition ap-
proaches, e.g., lower–upper (LU) decomposition, to improve cal-
culation efficiency. The effectiveness of the determined direc-
tion, called ”spectral direction”, has been validated experimen-
tally in previous work [13].

D-EE algorithm

We provide a distributed optimization implementation of EE,
termed D-EE. The overview of the newly proposed D-EE algo-
rithm is given in Fig. 1. During whole optimization implemen-
tation, multiple processes are used for computation and storage
of data. In Fig. 1, 2 processes, P0 and P1, are taken as an exam-
ple. To achieve high performance in computing and memory ef-
ficiency simultaneously, our proposed distributed algorithm di-
vides data (WP, WN, and Gk) by rows for the multiple processes
assigned. To avoid frequent communication, the whole original
high-dimensional dataset Y is read and stored in each process,
and the low-dimensional embedding X is established in each
process as well because the storage consumed by Y and X is
much less when compared to other N × N matrices used during
computation. It is worth noting that, because most of the com-
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Figure 1 Overview of D-EE algorithm. The D-EE algorithm can be decomposed into 5 parts. Part A: the computation of matrices D and WP. To obtain WP, the parameters
{σ n} are determined by solving a series of root-finding problems. Part B: the symmetry and normalization of the matrix WP. Part C: the computation and normalization

of WN. Part D: the computation of the Laplacian matrix LP together with LU decomposition. Part E: the computation of Xk+1 by solving an optimization problem with
the classic Quasi-Newton methods iteratively. In the kth iteration, Lk is computed on the basis of WP, WN, and Xk , which are used to obtain the gradient Gk = LkXk .
The descent direction Pk is then determined by solving a linear system LPPk = −Gk . Finally, Xk+1 is updated according to Xk+1 = Xk+αkPk , where the step size αk is
calculated by a line search method.

putation of each row in 1 matrix generally merely depends on
the same row of other matrices (see the approximated compu-
tational complexity of D-EE in the following section for details),
the partition procedure that we design in the D-EE algorithm is
an almost optimal partition in parallel computing as a result of
the optimal leverage of computation and communication. On
the one hand, the total computational cost of the D-EE algorithm
is almost the same as that of the centralized algorithm of EE.
On the other hand, most procedures in the D-EE algorithm are
communication-free, as indicated in Fig. 1 by the black arrows.
Even though some procedures still exist with communication,
as shown in Fig. 1 by blue arrows, the communication volume is
on a much lower order than the cost of computation.

Computation of matrices D, WP, WN

As mentioned before, the matrices WP, WN depend on the high-
dimensional data Y and {σn}N

n=1. Because each σ n is obtained
by solving a root-finding problem from the nth row of the dis-
tance matrix D, each matrix is equally, or almost equally, par-
titioned into multiple nonoverlapping parts by rows and stored
in multiple processes, as shown in Fig. 1A. Let us denote D =
[D1, · · · , DP ], where submatrix Di with size of Mi × N is stored
in the ith process and P is the number of processes we used.
The [···] represents a column vector. Similar notations are used
for the other N × N matrices. It is clear that each row of matri-
ces D, WP, WN depends on all original high-dimensional data Y.

A

B

Figure 2 D-EE and EE achieve the same results on 2 datasets when using the same
initializations. A: The 2-D mapping of HSPC data obtained by the 2 algorithms.

B: The 2-D mapping of PHATE data obtained by the 2 algorithms.

Therefore, we load a copy of Y into each process to avoid fre-
quent communication.

In the centralized implementation of EE, the parameters σ n,
n = 1, . . . , N, are calculated by iteratively solving a sequence of
root-finding problems. The iteration method for the root-finding
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A A C

Figure 3 Strong scaling results and parallel efficiency of the D-EE algorithm on an LSSC-IV supercomputer. We apply D-EE on the iPSC dataset by using 500, 1,000, 2,000,
and 4,000 processes, respectively. A: The strong speedup ratio increases with increase in the number of processes.The green line represents the ideal speedup ratio

and the blue line represents the speedup ratio obtained by D-EE. B: The parallel efficiency decreases at an acceptable rate with the increase in number of processes. C:
Computational times consumed for 10,000, 50,000, 100,000 samples under 500, 1,000 and 2,000 processes, respectively.

Figure 4 Cells are colored by time stages in the iPSC dataset on the 2D space obtained by 4 dimensionality reduction methods, i.e., t-SNE, UMAP, D-EE, and D-TSEE.

problems is improved by reordering the computation of {σn}N
n=1

according to the distances of all samples (Y), which is also the
complete distance matrix D [12]. Then the reordered root-finding
problems are sequentially solved by taking the solution of the
previous one as the initial value of the next. Because the param-
eters are distributed in different processes, it is clear that the
sequential root-finding approach cannot be parallelized without
modifications. In the D-EE algorithm, we calculate {σn}N

n=1 in the
following parallel way. First, we decompose {σn}N

n=1 into P subsets

as �i = {σn}Mi+1
n=Mi +1 with i = 0, ···, P − 1. The elements in the ith

subset �i are computed and stored in the ith process. Similar to
the centralized algorithm of EE, we then reorder �i according to
the distance matrix Di and iteratively solve the corresponding
root-finding problems within the ith process. According to the
distributions of the initial data Y and the matrices established
before, we conclude that the D-EE algorithm calculates {σn}N

n=1

in parallel, which is communication-free. The efficiency of the
root-finding approach is also guaranteed by the local order. Be-
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Figure 5 Cells are colored by gene expression of Sox2, Sox4, and Nanog in the iPSC dataset on the 2D embeddings obtained by D-EE and D-TSEE, respectively.

cause we only change the order and initial guesses of the root-
finding problems, the solutions of the root-finding problems, as
obtained from D-EE, are almost the same as those from EE. With
the whole original high-dimensional dataset Y and the subset
�i, we can compute the following submatrices WP

i , WN
i in the

ith process. Thus, we give a parallel and communication-free ap-
proach to compute matrices D, WP, WN.

Normalization of WP and WN

After computing matrices WP, WN, each process sets the di-
agonal elements belonging to it as 0 in parallel. Then, we set
WP := WP + WP

T such that WP becomes a symmetric matrix. Let
us denote WP

T := ŴP = [Ŵ1
P, · · · , Ŵp

P ], where submatrix Ŵi
P has

the size of Mi × N. In the ith process, we first obtain the elements
of the submatrix Ŵi

P from the other P − 1 processes by communi-
cation and then compute WP

i := WP
i + Ŵi

P. Here point-to-point
communication happens, and the communication volume for
each process is O(N2/P ).

To normalize the matrices WP, WN, each element should
be divided by the sum of all elements in the matrix. The sum
of all elements in matrix WP is parallel computed as follows.
First, each process calculates the sum of all elements in the
submatrix WP

i independently. We denote the sum of all el-
ements in the submatrix WP and WP

i as S and S i , respec-
tively. Then we compute the sum of all elements in matrix WP

by S = ∑P
i=1 Si through an MPI Allgather action. Here all-to-all

communication happens, and the communication volume for
each process is O(P ). Then, we normalize matrix WP in each
process by taking WP

i = WP
i /S in parallel without communi-

cation. The normalization of matrix WN is done in a similar
way.

Computation of low-dimensional embedding X

After normalizing WP, its Laplacian LP, which is needed for the
subsequent determination of descent direction, is computed in
parallel as follows. In the ith process, we calculate the elements

of submatrix LP
i by using l+mn =

N∑
k=1

w+
mk − w+

mn, where l+mn and w+
mn

are the elements of matrices LP and WP, respectively. Because
the 2 matrices are partitioned by row in the same way, the com-
putation of LP is also communication-free.

The low-dimensional embedding X is obtained by solving
the optimization problem with the partial-Hessian optimization
strategy. During the quasi-Newton procedures, the dense linear
system LPPk = −Gk must be solved in parallel. In the D-EE algo-
rithm, we perform LU decomposition on LP. Considering that LP

is positive semi-definite but not positive definite, a small value
μ is added to the diagonal of LP in practice. During the follow-
ing sections, we still use LP to denote the adjusted matrix. LU
decomposition on LP = LU is done with PETSc, which provides
uniform and efficient access to all linear system solvers in the
package, including parallel and sequential, direct, and iterative
[14–16]. Here, L and U are the corresponding lower and upper tri-
angle matrices, respectively. With the decomposition of LU, the
dense linear system LPPk = −Gk is replaced by 2 sublinear sys-
tems LP̂k = −Gk and UPk = P̂k, which can be solved by the back-
ward substitution method.

As shown in Fig. 1D, the partitions of LP, L, and U are the
same as WP. Let us denote Pk = [Pk

1, · · · , Pk
P ], where submatrix

Pk
i with size of Mi × d is stored in the ith process, and a simi-

lar partition is performed on Gk. Based on the partitions of LP,
L, U , Pk, and Gk, the computational complexities per process
of LU decomposition and backward substitution are O(N3/P )
and O(N2/P ), with corresponding communication volumes of
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O(N2/P ) and O(N/P ), respectively. According to the analysis, LU
decomposition is only done in the first iteration of the quasi-
Newton method, and matrices L and U are stored and reused
during the whole quasi-Newton procedure.

The gradient Gk on the right-hand side of the linear system
LPPk = −Gk is calculated by Gk = LkXk, where the N × N matrix
Lk depends on matrices WP, WN, and Ker. Here the elements
of matrix Ker are defined as kermn = exp (−‖xm − xn‖2), and the
elements of matrix Lk are defined as l (k)

mn = w+
mn − λw−

mn ker(k)
mn. As

shown in Fig. 1E, the partitions of matrices Lk and Ker are the
same as those of WP. In D-EE, we store all elements of Xk in each
process, which is the same as the original high-dimensional
data Y. Thus, we can parallel-compute matrices Lk and Ker in
the same way with the matrix WN, which means the procedure
is also communication-free.

After solving the linear system, we obtain the search direc-
tion Pk. Then, we update Xk+1 according to Xk+1 = Xk + αkPk,
where αk is determined by a line search approach. As mentioned
before, the low-dimensional embedding Xk is stored sequen-
tially, but Pk is distributed stored. Thus, we first compute the
elements of submatrix Pk+1

i in the ith process and then gather
all elements of Pk in each process by the all-gather function in
MPI. Here all-to-all communication happens, and the order of
communication volume for each process is O(Nd). In line search
steps, we need to calculate the energy function E (X, λ) several
times, which is computed in parallel according to the following
formula:

E (X, λ) =
∑P

i=1

{ ∑Mi+1

m=Mi +1

∑N

n=1

[
w+

mn‖xn − xm‖2

+ λw−
mn exp(−‖xn − xm‖2)

]}
.

The summation included in the curly braces is calculated in each
process simultaneously and then gathered by the MPI all-gather
function. Here all-to-all communication happens, and the com-
munication volume for each process is O(P ).

Results
Data description

We test the accuracy and scalability of D-EE on 3 datasets.
The first simulated dataset [17], named PHATE data for conve-
nience, consists of 1,440 samples and 60 features. It is a com-
plex tree structure that simulates a cellular developmental pro-
cess, namely, progressions, branch or split in progressions, and
end state of progression, composed of 10 branches in total. We
first perform principal component analysis (PCA) on the original
data, reserving a 1,440 samples × 7 features matrix.

The second dataset characterizes the process of mouse
hematopoietic stem and progenitor cells (HSPC) bifurcating
to myeloid and erythroid precursors [18], consisting of 4,423
samples. The obtained single-cell read count dataset is pre-
processed by the Seurat package (version 3.2.1) [19, 20]. First, we
normalize the gene expression in each sample as follows: we di-
vide each gene read count by the total read counts for each cell
and then multiply by a scale factor of 104 and add 1, followed
by taking a logarithmic transformation. Second, we select the
top 2,000 variable genes using the default “vst” method of the
Seurat package, i.e., variance-stabilizing transformation [21]. Fi-
nally, we conduct PCA on the processed data and select the top

50 largest principal components, resulting in a 4,423 samples ×
50 features matrix as input of EE and D-EE.

The third dataset is a large-scale time-series scRNA-seq
dataset containing ∼250,000 cells [22]. The data characterize re-
programming of fibroblasts to induced pluripotent stem cells
(iPSC), which were collected at half-day intervals across 18 days,
resulting in 39 time points. Because the final time point of the
iPSC status was not annotated temporally, we therefore set the
final point as 20th day for the input to D-TSEE. We pre-process
these data with the Seurat package as well. Same as the pre-
processing of the HSPC data, we first filter cells and genes to
include cells where ≥200 features are detected and to include
genes detected in ≥50 cells, obtaining 259,081 cells and 19,427
genes. After that, we perform logarithmic transformation, se-
lect variable features, and perform PCA as described in the HSPC
dataset, obtaining a 259,081 samples × 50 features matrix as in-
put for the dimensionality reduction methods.

D-EE achieves high strong scaling efficiency

We evaluate D-EE using both simulated and real scRNA-seq
datasets. The numerical tests are carried out on the LSSC-IV
supercomputer. The 400 computing nodes of LSSC-IV comprise
2 18-core Intel Xeon Gold CPUs with 192 GB local memory and
are interconnected via a proprietary high-performance network.
First, we use PHATE data and HSPC data to test the consistency
between D-EE and EE results. We use 36 processes in both D-EE
algorithms. The low dimensions are set to 2 for the convenience
of visualization for both datasets, and the parameter λ used is
set to the default value 10. We use the same initialization gen-
erated from the Gaussian distribution as that in the original EE
Matlab code.

D-EE achieves 2D embedding consistent with that of EE
(Fig. 2). To measure the consistency quantitatively, we calculate
the relative error, which is defined by

relative error = ‖A− B‖F

‖A‖F
,

where ‖ · ‖F is the Frobenius norm of the matrix and A and B
represent the output of EE and D-EE, respectively. The Frobenius
norm of a matrix A ∈ Rm×n is defined as

‖A‖F =
√√√√ m∑

i=1

n∑
j=1

|ai j |2.

Their relative errors of D-EE in the HSPC dataset and PHATE
dataset are 2.42 × 10−6 and 1.60 × 10−6, respectively, thus fur-
ther validating the consistency of results by D-EE and EE.

To test the performance of parallel efficiency of D-EE on the
large-scale dataset, we apply D-EE to the iPSC dataset (∼250,000
cells) using 500, 1,000, 2,000, and 4,000 processes, respectively,
and for each setting of number of processes we run it at least
twice. The averaged computation times of D-EE for the iPSC
dataset are 5.83, 3.19, 2.36, and 2.02 hours, when the numbers
of processes are 500, 1,000, 2,000, and 4,000, respectively. Next,
we evaluate the parallel performance of D-EE based on 2 widely
used indexes, the strong scaling speedup ratio and the parallel
efficiency. The strong speedup ratio is defined as

S = Ts

Tp
,
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where Ts and Tp are the time of computation by using a single
process and p processes, respectively. The parallel efficiency is
defined as

E = S
p

= Ts

pTp
.

The ideal strong speedup should be p, and the corresponding
parallel efficiency should be 1 when p processes are used. How-
ever, it is impossible to run the data with 250,000 samples on a
single process owing to limited memory and the low efficiency
of the EE algorithm. Thus, we take the time of computation of
500 processes as Ts with s = 500, and the parallel efficiency is
then reformulated as

E = sTs

pTp
.

When adopting the speedup ratio and parallel efficiency as the
indexes for scaling, a strong scaling performance at remarkable
speedup is observed when increasing CPUs from 500 to 4,000
processes (Fig. 3A and B).

We further evaluate the performance of D-EE on computa-
tional times in our supercomputer. Three test cases with sam-
ple sizes of 10,000, 50,000, and 100,000 are run on 500, 1,000, and
2,000 processors, respectively. It is shown that when the num-
ber of processes is held constant, it is natural that the compu-
tational time increases as total sample size increases (as shown
in Fig. 3C).

In practice, for analysis of a large-scale single-cell dataset,
a workstation with multiple CPUs and large memory is recom-
mended. Meanwhile, we also test D-EE on datasets at different
sample sizes and find that D-EE can be efficiently implemented
on a typical personal computer (e.g., 8 CPU threads, 16 GB RAM)
with a sample size of ≤12,000, while on a conventional work-
station (e.g., 40 CPU threads, 256 GB RAM) with a sample size of
≤48,000.

D-EE and D-TSEE recover intrinsic low-dimensional
structures of large-scale scRNA-seq data

We illustrate the application of D-EE and D-TSEE on the large-
scale iPSC dataset. We visualize the iPSC data on the 2D space
using t-SNE, UMAP, D-EE, and D-TSEE, respectively (Fig. 4). The
same pre-processed single-cell data are used for all 4 meth-
ods. The t-SNE is conducted by the FIt-SNE method [23] with
a PCA initialization, and we choose the learning rate as 1/12 of
the sample size (according to [3]) for better preservation of the
global structures. UMAP is conducted by adjusting the number
of nearest neighbors (NNs) to balance the preservation of local
and global structures. We find that UMAP is not sensitive when
choosing the number of NNs from 30 (defaults) to 500 (square
root of the number of samples), and we thus set the number of
NNs to be 100 in our study. Both t-SNE and UMAP are imple-
mented by the Seurat software (version 3.2.1). In our implemen-
tations, both D-EE and D-TSEE are used with their default pa-
rameters.

We color the cells on the basis of time stages on their low-
dimensional embeddings obtained by the 4 dimensionality re-
duction results (Fig. 4). We find that t-SNE preserves the time
lineage structure of data in an “S” shape with small gaps (Fig. 4,
upper left panel); UMAP also shows a time lineage structure but
with a large gap occurring between time stages 5.5 and 6 (Fig. 4,
upper right panel). In contrast, both D-EE and D-TSEE preserve

continuous time lineage structures in low-dimensional space
(Fig. 4, lower panels).

We further explore the gene expression patterns of Sox2,
Sox4, and Nanog on both D-EE and D-TSEE embeddings (Fig. 5).
These genes are key regulators during stem cell differentiation
and reprogramming process [24–26]. Previous study has shown
evidence that these genes may oscillate during cell development
progression [11, 26]. These genes display oscillatory gene ex-
pression patterns in the early stage of iPSC on the D-TSEE view
(Fig. 5), providing useful information and clues for downstream
analysis.

Conclusion

In this work, we develop a novel tool, D-EE, for visualizing
large-scale scRNA-seq data. D-EE implements the distributed
storage and distributed computing techniques to a powerful
nonlinear dimensionality reduction method, EE. The optimal
distributed computational strategies implemented by D-EE al-
low it to achieve not only strong scalability on large-scale
datasets but also the exact optimization solution as original
EE by fully utilizing the whole data. Numerical experiments
validate the correctness and parallel efficiency of D-EE. Con-
sidering the emergence of time-series scRNA-seq data, our D-
TSEE tool allows us efficiently to perform dimensionality re-
duction on large-scale single-cell data by using experimen-
tally temporal information. Besides, when incorporating tem-
poral information if it is available, D-TSEE can reveal dynamic
gene expression patterns, providing insights for subsequent
analysis of molecular mechanisms and dynamic transition
progression.

We demonstrate that D-EE and D-TSEE work efficiently on
large-scale datasets at a supercomputer. However, the proposed
distributed algorithm D-EE still has disadvantages due to the
huge computational cost and storage with a relatively large
number of cells. Therefore, D-EE is limited to handling and an-
alyzing huge-scale datasets with the number of cells up to the
order of millions [27]. In comparison, the state-of-the-art accel-
erated implementations of t-SNE (e.g., FIt-SNE) and UMAP are of
close-to-linear computational complexities, showing great effi-
ciency in huge data analysis.

In a future study, to resolve the limitation of D-EE on huge-
scale data computation, we can accelerate D-EE by adopting ei-
ther the fast Fourier transform as used in FIt-SNE, or adopting
the state-of-the-art neural network framework used by net-SNE
[28]. On the other hand, because a huge-scale single-cell dataset
can be highly redundant, we can also select a subset of informa-
tive samples using an advanced geometric sketching tool [29]
prior to application of D-EE.

Availability of Source Code and Requirements

• Project name: D-EE
• Project home page: https://github.com/ShaokunAn/D-EE
• Operating systems: Linux
• Programming language: C, R
• Other requirements: Multi-core processor, implementation of
MPI library (i.e., OpenMPI or IntelMPI) installed on each node
of the cluster, a reasonably fast interconnecting infrastructure,
PETSc 3.11.4 or higher
• License: GNU General Public License
• biotools: d-ee
• RRID:SCR 019058

https://github.com/ShaokunAn/D-EE
https://scicrunch.org/scicrunch/Resources/record/nlx_144509-1/SCR_019058/resolver
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Availability of Supporting Data and Materials

The PHATE data supporting the results of this article are avail-
able in the GitHub repository [17]. The iPSC data are available
in the NCBI repository with No. GSE122662 [22]. The HSPC data
are available in the NCBI repository with accession No. GSE72857
and the dataset used in our study is downloaded from their
GitHub repository [30]. An archival copy of the code is available
via the GigaScience database, GigaDB [31].

Abbreviations

CAS: Chinese Academy of Sciences; CPU: central processing
unit; D-EE: distributed optimization implementation of elas-
tic embedding; D-TSEE: distributed optimization implemen-
tation of time-series elastic embedding; EE: elastic embed-
ding; HSPC: hematopoietic stem and progenitor cells; LU:
lower–upper; NCBI: National Center for Biotechnology Informa-
tion; NNs: nearest neighbors; scRNA-seq: single-cell RNA se-
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