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ABSTRACT

Objective: Clinical guidelines recommend annual eye examinations to detect diabetic retinopathy (DR) in

patients with diabetes. However, timely DR detection remains a problem in medically underserved and under-

resourced settings in the United States. Machine learning that identifies patients with latent/undiagnosed DR

could help to address this problem.

Materials and Methods: Using electronic health record data from 40 631 unique diabetic patients seen at Los

Angeles County Department of Health Services healthcare facilities between January 1, 2015 and December 31,

2017, we compared ten machine learning environments, including five classifier models, for assessing the pres-

ence or absence of DR. We also used data from a distinct set of 9300 diabetic patients seen between January 1,

2018 and December 31, 2018 as an external validation set.

Results: Following feature subset selection, the classifier with the best AUC on the external validation set was a

deep neural network using majority class undersampling, with an AUC of 0.8, the sensitivity of 72.17%, and spe-

cificity of 74.2%.

Discussion: A deep neural network produced the best AUCs and sensitivity results on the test set and external

validation set. Models are intended to be used to screen guideline noncompliant diabetic patients in an urban

safety-net setting.

Conclusion: Machine learning on diabetic patients’ routinely collected clinical data could help clinicians in

safety-net settings to identify and target unscreened diabetic patients who potentially have undiagnosed DR.
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INTRODUCTION

The most recent statistics published by the Centers for Disease Con-

trol and Prevention indicate that diabetes mellitus affects roughly

30.3 million individuals in the United States.1 Diabetic retinopathy

(DR) is a sight-threatening complication of diabetes, affecting al-

most one-third of adults with diabetes over age 40.2 The global

prevalence of DR in persons with diabetes is estimated to be 35.4%3

and is forecasted to almost triple during the next 45 years.4

Although DR is the leading cause of blindness in US adults be-

tween the ages of 20 and 74 years,5,6 it is treatable if detected early.

Risk factors associated with DR include the length of time a person

has had diabetes,3,7–9 high blood glucose/poor blood sugar con-

trol,3,7–10 high blood pressure,3,7,8,10 dyslipidemia/7 high choles-

terol,3 pregnancy,7 nephropathy,8 obesity,7 inflammation,7

ethnicity,7 and insulin treatment for Type II diabetes.8

The American Diabetes Association recommends annual eye

examinations for individuals with diabetes, although the screening

schedule may be increased to 2 years after an individual has one or

more annual exams indicating no DR.11 Adhering to an annual or

even biennial screening schedule for patients with diabetes in urban,

medically underserved and under-resourced areas, is complicated by

a shortage of eye specialists. Teleretinal DR screening programs

have been introduced in a variety of urban settings, including Los

Angeles, CA and Houston, TX to address the shortage of ophthal-

mologists and to move diabetic eye screening from the specialist set-

ting into the primary care setting.12–14

For this study, we partnered with the Los Angeles County De-

partment of Health Services (LACDHS). LACDHS is part of the US

medical safety net, which includes Federally Qualified Health Cen-

ters (FQHCs) as well as State and County hospitals that provide

health care services to over 16 million patients nationally—and to

roughly 2 million patients in the state of California—regardless of

the patients’ health insurance status or ability to pay.15

LACDHS is the second-largest urban healthcare system in the

United States, caring for approximately 750 000 unique patients

each year,16 including more than 142 000 uninsured patients.17 Ap-

proximately 85 000 patients with diabetes were seen at LACDHS fa-

cilities between 2019 and 2020. LACDHS launched a Teleretinal

Diabetic Retinopathy Screening Program and Reading Center in

2013 to address the need for annual eye screenings in the safety net

setting.13 The program screens patients for DR from over 200

safety-net primary care clinics in Los Angeles via retinal photo-

graphs taken with a fundus camera by medical assistants or licensed

vocational nurses in LACDHS primary care clinics. This eliminates

the need for a separate visit to an eye care provider for those with

normal images, allowing those with more advanced disease to be tri-

aged directly to treatment/subspecialty clinics.13 To adequately

manage resources in a setting with a large volume of diabetic

patients and a relatively limited number of clinicians, retinal images

from teleretinal screenings are assessed by LACDHS optometrists,

with over-reads performed by a supervising ophthalmologist. Initial

retinal examination rates of 37.7% across LACDHS facilities in

2012 improved to 64% in 2019 after the LACDHS Teleretinal DR

Screening Program implementation. Even with these gains, identify-

ing diabetic patients who are more likely to have DR but have not

presented for teleretinal or other DR screening is a priority; 36% of

eligible diabetic patients have not availed themselves of teleretinal

DR screening. Frequently, patients with the greatest challenges to

accessing diabetic care and DR screening are at the highest risk for

disease.

Diabetic retinopathy progresses in stages, from mild nonprolifer-

ative DR (NPDR) to moderate NPDR, and from severe NPDR to

proliferative DR (PDR). Visible developments in the retina as DR

progresses include microaneurysms, intra-retinal hemorrhages, reti-

nal ischemia (cotton-wool spots), venous beading, intra-retinal mi-

crovascular abnormalities, and finally, neovascularization, the

proliferation or growth of fragile new blood vessels that can bleed

on the retina’s inner surface.9 As these visible developments are

identifiable in digital retinal images but not in structured clinical

data, imaging phenotypes are needed for DR staging. The goal of

the present work is thus to identify and target for teleretinal screen-

ing diabetic patients who: (1) may be at any stage of diabetic reti-

nopathy and (2) have not had an LACDHS guideline-recommended

annual teleretinal DR screening within 12 months (ie, patients who

have no existing or updated digital retinal images), using only DR

risk factor data from their clinical records. A related study examines

deep learning for automatic staging and grading of diabetic retinop-

athy in guideline-compliant diabetic patients who have received tele-

retinal DR screening and is beyond the scope of the current paper.

To facilitate the identification of patients with latent or undiagnosed

DR, we are developing machine learning (ML) models trained on clini-

cal data routinely collected in the course of patient care. The end goal

of this work is clinical decision support that enables timely, targeted

screening of diabetic patients at the highest risk of retinopathy, thereby

increasing the prevention of vision loss. Patients who have missed their

annual eye examinations and are identified by the ML models as being

more likely to have possible DR can be targeted to schedule their

missed teleretinal DR screening or, in the case of patients with known

complications such as cataracts that preclude teleretinal screening, to

have an in-person eye examination with an eye care provider.

LAY SUMMARY

Diabetic retinopathy is a preventable complication of diabetes and the leading cause of blindness in working-age adults in

the United States. Timely detection of diabetic retinopathy remains a problem in medically underserved and under-

resourced settings in the United States, especially within the US medical safety net, which suffers from limited resources

and a shortage of providers. Machine learning approaches that learn from routinely collected electronic health record data

to identify diabetic patients who may have undiagnosed diabetic retinopathy could help to address this problem within the

US medical safety net. Using electronic health record data from 40 631 unique diabetic patients seen at Los Angeles County

Department of Health Services healthcare facilities, we created machine learning classifiers that can identify diabetic patients

who are at high risk of having diabetic retinopathy. Our classifiers can help health care providers in safety-net settings to pri-

oritize outreach to diabetic patients at high risk for diabetic retinopathy so that they are aware of their risk and can schedule

appointments to receive the eye care that they need.
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For the present article, we performed ML using structured clini-

cal data from diabetic patients seen at LACDHS for either teleretinal

screening or in-person eye examinations between January 1, 2015

and December 31, 2017, obtaining data on 40 631 unique patients

and 30 risk factors for DR. As an external validation set for the ML

models, we collected data from a set of 9300 patients who were seen

at LACDHS between January 1, 2018 and December 31, 2018, and

who were completely distinct from the patients whose data were

used to train and initially test the ML models.

METHODS

Institutional review board approval to use clinical data for the study

was obtained from the Charles R. Drew University of Medicine and

Science under IRB#: 16-10-2491-03.

Data source and description
LACDHS uses a Cerner electronic health record (EHR) system, OR-

CHID/Millenium Powerchart which feeds data into data warehouses

accessible to the USC and UCLA CTSIs. We utilized the services of

both the UCLA and USC CTSI’s Biomedical Informatics teams to ob-

tain data for the study. To establish counts of eligible diabetic

patients for our study, we utilized the UCLA CTSI’s Los Angeles

Data Resource, creating a search for Type 1 and Type II diabetic

patients 18 years or older seen at LACDHS between 2015 and 2017

who received an eye examination. We then provided ICD-9 and ICD-

10 codes corresponding to relevant risk factors for DR to the USC

CTSI for retrieval of the relevant cases and obtained structured clini-

cal data from them for the study. Our inclusion/search criteria were

for patients 18 years or older with Type I or Type II diabetes, who re-

ceived an eye examination at County facilities between January 1,

2015 and December 31, 2017. Exclusion criteria included patients

under the age of 18, patients who had only gestational diabetes, and

patients who did not receive an eye examination for DR. There were

40 631 patient records retrieved from ORCHID with records con-

taining 31 variables, including DR diagnosis, as listed in Table 1.

Variables retrieved for the study correspond to known DR risk fac-

tors documented in the biomedical literature (eg, duration of diabe-

tes,3,7–9 high blood glucose/poor blood sugar control,3,7–10 high

blood pressure,3,7,8,10 dyslipidemia/7 high cholesterol,3 pregnancy,7

nephropathy,8 obesity,7 inflammation,7 ethnicity,7 and insulin treat-

ment for Type II diabetes8) as well as suggestions from clinician

experts regarding variables routinely collected in the EHR that might

address micro and macrovascular complications of diabetes.

Of the 40 631 patient records obtained, 12 633 records (31.1%)

represented diabetic patients with a diagnosis of DR and 27 998

(68.9%) represented diabetic patients with no DR. This represents a

class imbalance: the majority of available data involves cases in

which patients did not have DR.

Variables with more than 35% missing data were dropped from

use for ML. Date variables such as “diabetes diagnosis date” and

“date of last eye examination” were transformed into the numerical

variables “duration of diabetes in years” and “time since the last eye

exam in months.” Although only a small proportion of patients had

previous retinopathy treatment, since it is highly correlated with the

outcome variable (most people who have had previous retinopathy

treatment currently have DR), it was dropped from use for ML. The

final set of 14 predictors utilized for ML for the study, including

“duration of diabetes in years,” are listed in Table 1.

For an external validation set, through the USC CTSI, we ac-

quired data from ORCHID for 9300 Type I and Type-II diabetes

patients who were seen at LACDHS between January 1, 2018 and

December 31, 2018, and whose data were not used to train or test

the ML models.

Feature subset selection
We performed feature subset selection on the variables from Table

1: (1) to eliminate variables that were not highly predictive of DR in

our data set and (2) to make the final models more clinician-friendly

by determining a smaller subset of predictors for DR to be input

into a DR identification tool by a clinician user. Feature subset selec-

tion was performed by first establishing a lower and upper bound

on the number of variables that meaningfully predict DR and then

by identifying which variables should be in the feature subset.

Classification methods
We handled missing data using k-nearest neighbor imputation tech-

niques with a k of 9. Numeric variables were normalized prior to

Table 1. Clinical variables for patients with diabetes obtained from LACDHS EHR system

Socio-demographic variables

Agea Race Ethnicitya

Sexa Marital status Insurance status

General health overview

Diabetes diagnosis datea,b Date of last eye examinationb Pregnancy status

Previous diabetic retinopathy treatment Smoking statusc Insulin dependencea

Clinical measurements

Body mass index Diastolic blood pressurea Fasting glucose levelc

Blood urea nitrogena Systolic blood pressurea HDL

Hemoglobina Hemoglobin A1Ca Triglyceridesa

Comorbid conditions

Peripheral vascular disease Hypertension Strokea

Depression Obesity Nephropathya

Dyslipidemia Neuropathya Erectile dysfunction

Condition of interest

Diabetic retinopathy diagnosis

aIncluded (or derived variable included) in 14-variable feature subset used for ML.
bConverted to “duration of diabetes in years” þ and “time since last eye exam in months”.
cDropped due to >35% missing data.

JAMIA Open, 2021, Vol. 4, No. 3 3



use in ML. Five supervised learning models were applied: (1) a ran-

dom forest (RF) model; (2) a support vector machine (SVM) model;

(3) extreme gradient boosting (XGBOOST); (4) an ensemble of four

stacked classifiers with random forest, gradient boosting machines,

and artificial neural networks in the top layer and gradient boosting

machines in the bottom layer; and (5) deep learning with a deep neu-

ral network (DNN).

To address the class imbalance, two case sampling methods were

applied: (1) majority class undersampling; and (2) the synthetic mi-

nority over-sampling technique (SMOTE).18 In total, ten modeling-

sampling combinations were developed: (1) RF with undersampling;

(2) RF with SMOTE; (3) SVM with undersampling; (4) SVM with

SMOTE; (5) XGBOOST with undersampling; (6) XGBOOST with

SMOTE; (7) ensemble model with undersampling; (8) ensemble

model with SMOTE; (9) DNN with undersampling; and (10) DNN

with SMOTE. We assessed classifiers on all 14 predictor variables

identified through feature subset selection.

We reserved a random selection of 33% of the 2015-2017 data

set, a total of 13 408 cases, as a test set. Using the caret19 package in

R,20 we performed 10-fold cross-validation with parameter tuning

on the remaining 67% of the data set (27 223 cases), using the first

four classifiers described above. For deep learning with DNNs, we

used the sklearn21 package in Python22 and developed multilayer

deep neural networks using the hyperbolic tangent activation (tanh)

function and a stochastic gradient descent (SGD) optimizer. For

each of the ten modeling-sampling combinations specified above,

the best model from 10-fold cross-validation was selected and saved,

with the metric for judging the best model being the area under the

ROC curve (caret also allows accuracy or Kappa to be used in place

of AUC to judge the best model). Data preprocessing methods such

as majority class undersampling and SMOTE were applied to the

training sets derived from the 27 223 cases. The ten best models

saved from the cross-validation process were assessed on the test set

and then on the external validation set. Analyses were performed in

R, using the caret and the VIM23 packages as well as in Python.

Comparisons with similar studies
Most of the related work on ML to detect DR from clinical or public

health data has focused on smaller study populations involving

fewer than 1300 diabetic patients, and in some cases, more homoge-

nous study populations, with the resulting AUCs ranging from 0.71

to 0.839.24–29 We compare our results with some of these studies.

RESULTS

Demographics
Table 2 gives an overview of the socio-demographic characteristics

collected for the 40 631 diabetic patients in the training and test set

population. Missing data are included for each category.

Univariate analyses
Table 3 lists the results from using individual logistic regression

models for each variable to determine its relationship to the presence

or absence of DR. Many of the variables are very significant because

of the large sample size (n¼40 631). Odds ratios and 95% confi-

dence intervals were not calculated for nonsignificant predictors.

After completing the univariate analysis summarized in Table 3,

we dropped three potential variables from use in our modeling

efforts: obesity, BMI, and time since last eye exam in months. Time

since last eye exam in months was dropped because the univariate

analysis shows that the longer an LACDHS patient waits to be ex-

amined for DR, the less likely the patient is to have DR. While this

may seem counterintuitive, this is because LACDHS patients with

moderate or worse DR are seen several times a year for eye examina-

tions, in accordance with local clinical guidelines, when compared

to patients who have mild DR or no DR, who are seen just once a

year. For the present study, we are trying to determine the DR risk

of patients who have self-excluded from DR screening; we do not

want a ML model to automatically assume that these patients are at

lower risk for DR because they have not been examined recently, so

that variable was dropped. Obesity and BMI were dropped from

our current modeling effort because the univariate analysis showed

that LACDHS patients who are obese or have higher BMI are less

likely to develop DR. As these findings run counter to published

knowledge on the relationship between obesity or high BMI and

DR, we have excluded these two variables from modeling. Our

study population includes patients with both Type 1 and Type 2 dia-

betes. While the vast majority of patients in our study have Type 2

diabetes and are overweight or obese, patients with Type 1 diabetes

tend to be leaner and to progress to diabetic retinopathy more

quickly. This likely influenced the analysis showing a higher BMI or

Table 2. Study population characteristics (N¼ 40 631)

Participant characteristics N (%)

Age in years

Mean (SD) 57.5 (10.5)

Missing values 0 (0.0)

Gender

Male 23 242 (57.20)

Female 17 389 (42.80)

Missing values 0 (0.0)

Ethnicity

Hispanic or Latino 28 040 (69.01)

Not Hispanic or Latino 9264 (22.80)

Missing values 3327 (8.19)

Race

American Indian or Alaska Native 135 (0.33)

Asian or Asian American 2626 (6.46)

Black or African American 3324 (8.18)

More than one race 17 612 (43.35)

Native Hawaiian or other Pacific Islander 81 (0.20)

White 4269 (10.51)

Missing values 12 584 (30.97)

Marital status

Single 13 940 (34.31)

Married 13 807 (33.98)

Divorced 1397 (3.44)

Widowed 1407 (3.46)

Separated 861 (2.12)

Missing values 9219 (22.69)

Insurance provider

Medicaid 24 117 (59.36)

Medicare 4274 10.52)

Private 5569 (13.71)

Self-pay 4887 (12.03)

CHAMPUS 1 (0.00)

Other 98 (0.24)

Missing values 1685 (4.15)

Diagnosis of retinopathy

Yes 12 633 (31.09)

No 27 998 (68.91)

Missing values 0 (0.0)
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a diagnosis of obesity as indicating a lower likelihood of having dia-

betic retinopathy, even though the literature points to high BMI as a

risk factor for DR. We thus removed these two variables until such a

time as we have an opportunity to study the impact of BMI and obe-

sity further in different diabetic patient populations.

Feature subset selection
To find the optimum number of features for modeling for our data

set, we applied best subset selection regression along with R2, ad-

justed R2, Mallow’s CP (equivalent to the Akaike information crite-

rion), and Bayesian information criterion assessments. We found

that the optimum number of features required for our model has a

range from 10 to 15, as shown in Figure 1. We then performed for-

ward stepwise regression and backward stepwise regression in order

to find those features. Beginning with 10 features and adding fea-

tures incrementally until we got to 15 features, we ran models and

compared their results using sensitivity, specificity, and the area un-

der the ROC curve as assessment metrics. We observed that there

was minimal difference between the 15-feature model and the 14-

feature model and therefore selected the 14-feature model for our

data set.

In order to determine the most significant predictors of DR, po-

tential predictors from Table 3 that exhibited a P-value of <.01

from the univariate analyses (excluding the three dropped variables:

obesity, BMI, and time since last eye exam in months) were included

in a hierarchical stepwise switching algorithm to find the best set of

fourteen variables in a multivariate logistic regression. The fourteen

most significant predictors of DR from our data set are:

1. Insulin dependence ¼ “Y” (odds ratio (OR) for DR: 2.6, 95%

confidence interval for OR: 2.4–2.8);

2. BUN (OR for DR: 1.04, 95% confidence interval for OR: 1.04–

1.05);

3. Systolic blood pressure (OR for DR: 1.03, 95% confidence inter-

val for OR: 1.02–1.03);

4. Neuropathy ¼ “Y” (OR for DR: 1.63, 95% confidence interval

for OR: 1.48–1.79);

5. Hemoglobin A1c (OR for DR: 1.20, 95% confidence interval

for OR: 1.17–1.22);

6. Hemoglobin (OR for DR: 0.82, 95% confidence interval for

OR: 0.8–0.84);

7. Sex ¼ “M” (OR for DR: 1.95, 95% confidence interval for OR:

1.79–2.13);

8. Ethnicity¼“Not Hispanic or Latino” (OR for DR: 0.66, 95%

confidence interval for OR: 0.6–0.72);

9. Nephropathy ¼ “Y” (OR for DR: 1.29, 95% confidence interval

for OR: 1.16–1.45);

10. Duration of diabetes (OR for DR: 1.05, 95% confidence interval

for OR: 1.03–1.06);

11. Triglycerides (OR for DR: 1.0, 95% confidence interval for OR:

1.0–1.0);

12. Stroke ¼ “Y” (OR for DR: 1.4, 95% confidence interval for

OR: 1.18–1.65);

13. Diastolic blood pressure (OR for DR: 0.99, 95% confidence in-

terval for OR: 0.98–0.99); and

14. Age (OR for DR: 0.99, 95% confidence interval for OR: 0.99–

1.0)

Classification results
Using the 14-variable feature subset found to be most predictive, we

performed 10-fold cross-validation with the ten classifier-sampling

strategy combinations previously described in the Methods section

on the data set. Next, we applied the best models for each classifica-

Table 3. Univariate analyses of potential predictor variables

Variable P-value for testing significance

as predictor

Odds ratio 95% confidence

interval

Interpretation

Age .0003 1.00 1.00–1.01 Older, higher risk

Marital status (single vs. married) .08

Sex <.00001 1.54 1.48–1.61 Males are higher risk

Ethnicity <.00001 0.63 0.60–0.67 Not Hispanic or Latino is lower risk

Duration of diabetes (years) <.00001 1.08 1.07–1.08 Longer duration, higher risk

Pregnancy status .20

Insulin dependence <.00001 3.42 3.28–3.58 Insulin dependence, higher risk

Time since last eye exam (months) <.00001 0.98 0.98–0.98 Longer time since last eye exam, lower risk

Peripheral vascular disease <.00001 2.85 2.42–3.34 Peripheral vascular disease, higher risk

Hypertension .024

Systolic blood pressure <.00001 1.03 1.02–1.03 Higher systolic blood pressure, higher risk

Diastolic blood pressure .00022 1.01 1.00–1.01 Higher diastolic blood pressure, higher risk

Depression .002 0.90 0.83–0.96 Depression, lower risk

Obesity <.00001 0.63 0.60–0.66 Obesity, lower risk

BMI <.00001 0.97 0.96–0.97 Higher BMI, lower risk

Stroke <.00001 1.82 1.64–2.01 Stroke, higher risk

Nephropathy <.00001 3.73 3.53–3.94 Nephropathy, higher risk

Erectile dysfunction <.00001 1.34 1.19–1.51 Erectile dysfunction, higher risk

Neuropathy <.00001 2.27 2.14–2.40 Neuropathy, higher risk

Dyslipidemia <.00001 0.65 0.62–0.68 Dyslipidemia, lower risk

Insurance .05

BUN <.00001 1.09 1.09–1.09 Higher blood urea nitrogen, higher risk

HDL .16

Hemoglobin <.00001 0.73 0.72–0.74 Higher hemoglobin, lower risk

Hemoglobin A1c <.00001 1.24 1.22–1.25 Higher hemoglobin A1C, higher risk

Triglycerides .00002 1.00 1.00–1.00 Higher triglycerides, lower risk
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Figure 1. Optimal number of variables/features using various metrics.

Figure 2. Variable correlations—principal components analysis.
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tion method to the test set and then to the external validation set

from 2018. For the application of the best models to the external

validation set, we assessed sensitivity, specificity, positive predictive

value (PPV), negative predictive value (NPV), accuracy, the Kappa

statistic, and AUC.

Table 4 lists the classification results, using majority class under-

sampling and SMOTE respectively, on the 14 predictor variables to

the test set and then to the validation set. The highest AUC and sen-

sitivity values are bolded. We also created models on all 24 predic-

tors; full results for those are included in a Supplementary material

and show that an xgboost model with majority class undersampling

produced the highest AUC on the test set (AUC¼0.813,

sensitivity¼72%, specificity¼75.43%), while a deep neural net-

work with majority class undersampling produced the highest AUC

on the external validation set (AUC¼0.805, sensitivity¼71.1%,

specificity¼73.9%).

DISCUSSION

Overview
Overall, our results show that the classifiers developed were able to

predict DR relatively well; the data preprocessing methods used were

able to overcome standard classifiers’ tendency to simply predict the

majority class (ie, no DR), although models that utilized majority class

undersampling produced better sensitivities on the test and external

validation sets. Models that utilized SMOTE had better results for spe-

cificity overall on both the test and external validation sets. Multivari-

ate analyses showed that the 14 most significant predictors of DR

were insulin dependence, BUN, systolic blood pressure, neuropathy,

hemoglobin A1C, hemoglobin, sex, ethnicity, nephropathy, duration

of diabetes, triglycerides, stroke, diastolic blood pressure, and age.

These analyses were utilized in developing parsimonious ML models

that still provide good sensitivities, specificities, and AUCs without re-

quiring all potential DR risk factors collected. Although our ML clas-

sifiers trained on 24 variables performed slightly better than ML

classifiers trained on 14 variables, we focus our discussion below on

the ML classifiers trained on 14 variables, since a goal of ours is to de-

velop tools for clinicians based on our ML models that do not require

an inordinate amount of time on data entry.

Comparison of results to those from other studies
We compare our current results to those obtained by four other

studies attempting to identify patients with undiagnosed DR from

clinical or public health data.

1. Korea National Health and Nutrition Examination Surveys

(KNHANES) study: 26

a. Training set (n ¼ 490)

Table 4. 14 variable model performance on test and validation sets

RF under XGBOOST under SVM under Ensemble model under DNN under

Model performance on 14 Variables with majority class undersampling on test set

Sensitivity (%) 71.52 70.85 72.81 70.68 73.55

Specificity (%) 73.51 74.61 72.58 74.96 72.77

PPV (%) 54.97 55.79 54.56 56.07 54.98

NPV (%) 85.09 84.99 85.52 84.97 85.88

Accuracy (%) 72.89 73.44 72.65 73.63 73.01

Kappa statistic 0.416 0.423 0.4158 0.426 0.4240

AUC 0.799 0.800 0.798 0.803 0.806

Model performance on 14 variables with majority class undersampling on external validation set

Sensitivity (%) 69.06 66.78 70.00 67.38 72.17

Specificity (%) 76.01 77.35 75.24 77.09 74.20

PPV (%) 44.45 45.05 44 44.98 43.75

NPV (%) 89.83 89.34 90.02 89.47 90.55

Accuracy (%) 74.49 75.05 74.1 74.98 73.76

Kappa statistic 0.3756 0.3759 0.3728 0.3769 0.3756

AUC 0.791 0.792 0.794 0.794 0.8

RF SMOTE Xgboost SMOTE SVM SMOTE Ensemble model SMOTE DNN SMOTE

Model performance on 14 variables with SMOTE on test set

Sensitivity (%) 62.23 49.89 61.51 63.93 72.91

Specificity (%) 80.93 86.55 82.39 79.84 72.78

PPV (%) 59.60 62.65 61.23 58.92 54.77

NPV (%) 82.57 79.25 82.56 83.04 85.59

Accuracy (%) 75.1 75.13 75.89 74.89 72.82

Kappa statistic 0.4264 0.3859 0.4384 0.4278 0.4189

AUC 0.8 0.781 0.797 0.803 0.8

Model performance on 14 variables with SMOTE on external validation set

Sensitivity (%) 57.24 46.02 58.13 60.21 70.63

Specificity (%) 83.43 87.66 84.36 82.36 74.54

PPV (%) 48.98 50.90 50.82 48.68 43.55

NPV (%) 87.53 85.38 87.88 88.16 90.13

Accuracy (%) 77.73 78.6 78.66 77.54 73.69

Kappa statistic 0.3834 0.3489 0.404 0.3921 0.3690

AUC 0.79 0.777 0.790 0.795 0.794
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b. Test set (n ¼ 163): AUC ¼ 0.83, sensitivity¼71%, specific-

ity¼75.8%, model¼SVM

c. Validation set (n ¼ 562): AUC¼0.82, sensitivity¼72.1%,

specificity¼76%, model¼penalized logistic regression

This study utilized public health records of 490 individuals from Ko-

rea for machine learning to assess DR, learning penalized logistic re-

gression, SVM, ANN, and Random Forest models. The study

authors utilized between 12 and 19 predictor variables for different

ML models and assessments. Results for their best models on test

and validation sets are shown above.

2. Taiwan study: 27

a. Total records (n ¼ 212), train-test-validation split ¼ 60%,

20%, 20%

b. Test set: AUC ¼ 0.744, accuracy ¼ 81.7%, model ¼ SVM

c. Validation set: AUC ¼ 0.801, accuracy ¼ 82.2%, model ¼
SVM

This study utilized clinical data from 212 patients at a private hospital

in Taiwan to study DR diagnosis using a variety of machine learning

models, including SVMs, ANNs, and Decision Trees. Results for the

best models on their test and validation sets are shown above.

3. US National Health and Nutrition Examination Surveys

(NHANES):28

a. Total records (n ¼ 266)

b. AUC ¼ 0.74, precision ¼ 22%, NPV ¼ 99% (results pro-

vided are assumed to be on the training set)

This study included an assessment of DR in 266 individuals with

previously undiagnosed diabetes sampled from the 2005 to 2008

versions of NHANES public health data. Authors did not make a

distinction between training, test, and external validation sets, so the

results provided above are assumed to be on the training set. Sensi-

tivities and specificities were not reported.

4. Iran study: 29

a. Total records (n ¼ 133)

b. AUC ¼ 0.804, sensitivity ¼ 76%, specificity ¼ 80.4%,

model ¼ deep neural network (results provided were from

10-fold cross-validation on the training set)

This study evaluated deep neural networks with recursive feature

elimination on risk factor data from 133 Iranian diabetic patients,

going from 24 to 14 risk factors. Data were originally collected for

assessment of diabetes complications from hospitals in Khorrama-

bad, Iran and reused in this study for ML on DR. No test set or ex-

ternal validation set details for DR were provided.

Assessment of classification results on test and external

validation sets
For the models using 14 variables, the classifier with the best AUC

on the test set was a deep neural network model using majority class

undersampling, with an AUC of 0.81, the sensitivity of 73.55%, and

specificity of 72.77%. The model with the highest sensitivity for

detecting DR on the test set was also the deep neural network classi-

fier.

The classifier with the best AUC on the external validation set

was a deep neural network model using majority class undersam-

pling, with an AUC of 0.8, the sensitivity of 72.17%, and specificity

of 74.20%. The model with the highest sensitivity for detecting DR

on the external validation set was also the deep neural network clas-

sifier.

Improvements in sensitivity came with the trade-off of decreases

in specificity. The models did well on the external validation set,

which was composed of a distinct set of patients seen at least one

year after the patients whose data were used for training and testing,

with no overlap among the three groups. This bodes well for the

models’ ability to generalize to previously unseen diabetic patients

within the LACDHS setting.

Our ML results compared well to those presented in similar stud-

ies, which utilized both public health (Korea, US) and hospital data

(Taiwan, Iran). On external validation sets, which provide a sense of

how well a model might generalize to previously unseen patients,

our deep learning model on 14 variables with undersampling pro-

duced similar AUCs (0.8) and sensitivities (72.17% vs 72.1%),

lower specificity (74.2% vs 76%) and lower accuracy (73.76% vs

75.2%) than the KNHANES study and a similar AUC (0.8 vs 0.801)

but lower accuracy (73.01% vs 82.2%) (sensitivity and specificity

were not reported) than the study using data from a private hospital

in Taiwan. Our training, test and external validation data sets were

more than sixty times the sizes of the comparable data sets utilized

for the KNHANES and Taiwan studies. We did not compare our

results to those from studies reporting only 10-fold cross-validation

results on the training set, as that does not give a good indication of

model generalizability; we were able to produce ML models with

AUCs of 1, sensitivities of 1, and specificities of 1, using 10-fold

cross-validation on our training set, indicating model overfit.

Since the clinical goal of DR detection from EHR data using ML

is to identify patients who may have developed DR but are unaware

of the fact because they have not had their recommended annual eye

examination, classifiers that are able to maintain good sensitivity

are critical. However, we also would like to utilize methods that

achieve a minimum AUC of 0.8, which means that there cannot be a

precipitous drop in specificity. For our data set, majority class

undersampling techniques were more successful than minority class

oversampling approaches in terms of improving sensitivity while

maintaining decent specificity. Classifiers coupled with minority

class oversampling techniques achieved higher specificities but

poorer sensitivities in detecting DR.

This study marks significant progress in the search for useful di-

agnostic models for detecting probable DR solely from clinical, non-

image data. Earlier, we conducted a pilot ML study that used

8 variables documented in EyePACS (EyePACS, LLC) teleretinal

screening records for 27 116 diabetic patients, for which the highest

classifier AUC achieved was 0.745.30 That study was limited by the

fact that detailed, relevant data related to clinical measurements and

comorbid conditions from the EHR, such as BUN, blood pressure,

nephropathy, neuropathy, and triglycerides were not documented

within the EyePACS records available to us. This study of 40 631 di-

abetic patients seen in a safety net healthcare system incorporates a

wider range of relevant risk factors available from the EHR and is

the largest thus far focusing on DR prediction from nonimage data.

Duration of diabetes is a well-known risk factor for DR. A limi-

tation of our study is that the diagnosis date for diabetes recorded in

the LACDHS EHR represents when a patient was confirmed to have

diabetes by physicians within the LACDHS system and not necessar-

ily when the patient first received the diagnosis (if made outside the

LACDHS system). Therefore, if the initial diagnosis occurred out-

side the LACDHS system it was not included in the current analysis,

resulting in artificial truncation of duration of diabetes in our data

set. This could possibly be addressed in the future by using natural

8 JAMIA Open, 2021, Vol. 4, No. 3



language processing to extract information on a patient’s self-

reported duration of diabetes based on tests performed at other clin-

ical sites and relayed to their LACDHS providers. Also, our study by

necessity only included diabetes patients who had received an eye

examination. There may thus be an undersampling or oversampling

of DR in our study sample, depending on the characteristics of the

population who did not receive eye examinations.

To our knowledge, our work is the largest study of diabetic reti-

nopathy risk assessment from EHR data in a US population, with

data from over 27 000 diabetic patients utilized for training ML

classifiers. The ML models presented are intended to be used in Cali-

fornia urban safety-net settings, which cater to uninsured and under-

insured patients, and in which shortages of ophthalmologists have

necessitated the use of teleretinal screening as the primary means of

diabetic retinopathy detection in diabetes patients. The primary

intended end users of tools based on the machine learning models

we have developed would be (1) primary care physicians in the

safety net who are seeking to convince their diabetic patients that

have not yet been assessed for the risk of diabetic retinopathy to re-

ceive teleretinal screenings and (2) clinicians associated with telereti-

nal screening programs that are seeking to reach out to high-risk

patients who have fallen out of compliance with guidelines urging

annual screening.

Overall, the results observed in our study are encouraging. As a

major target for quality improvement within LACDHS is diabetic

patients’ compliance with LACDHS annual screening guidelines, in

the near term, we will apply the ML models to data from over 31

000 LACDHS diabetic patients who have not received a teleretinal

DR screening in over a year, due to a combination of patient self-

exclusion and COVID-19 pandemic-related teleretinal DR screening

service pauses. The models will help guide the prioritization of out-

reach to diabetic patients who are not guideline-compliant and pro-

vide a real-world assessment of the ML models’ utility in a major

safety net setting.

CONCLUSION

For individuals at risk of DR, timely screening, diagnosis and treat-

ment are keys to preventing vision loss. We have presented methods

that will further our goal of creating an assessment tool that can as-

sist clinicians in targeting diabetic patients in medically underserved

and under-resourced settings who have not completed an annual eye

examination but may have as yet undiagnosed DR. The ML meth-

ods developed to illustrate that it is possible to identify at-risk

patients using routinely collected clinical data from the EHR.
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