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ABSTRACT

Background. Gastropods of the genus Provanna are abundant and widely distributed
in deep-sea chemosynthetic environments with seven extant species described in the
northwestern Pacific.

Methods. We investigated the population history and connectivity of five Provanna

species in the northwestern Pacific through population genetic analyses using partial
sequences of the cytochrome ¢ oxidase subunit I gene.

Results. We found that P. subglabra, the most abundant and genetically diverse species,
is genetically segregated by depth. Among the five species, the three comparatively shal-
lower species (P. lucida, P. kuroshimensis, P. glabra) had a more constant demographic
history compared to the deeper species (P. subglabra, P. clathrata).

Discussion. Environmental differences, especially depth, appears to have a role in the
segregation of Provanna snails. The population of P. clathrata in the Irabu Knoll appears
to have expanded after P. subglabra population. The remaining three species, P. lucida,
P. kuroshimensis, and P. glabra, are only known from a single site each, all of which were
shallower than 1,000 m. These data indicate that Provanna gastropods are vertically

segregated, and that their population characteristics likely depend on hydrothermal

activities.

Subjects Biodiversity, Ecology, Marine Biology, Zoology, Biological Oceanography

Keywords Chemosynthetic community, DNA barcoding, Population expansion, Okinawa
Trough

INTRODUCTION

A true understanding of biodiversity is not just about counting the number of species,
but must also encompass comprehensive understanding of evolutionary processes and
natural history in a heterogeneous biosphere (Grosberg, Vermeij ¢ Wainwright, 2012). The
knowledge of evolutionary processes in the deep-sea, despite it making up about 95% of
all habitable space on Earth, is limited due to its inaccessibility. Deep-sea hydrothermal
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vents and hydrocarbon seep areas are populated by many species endemic to these deep
habitats, and provide opportunities to investigate evolutionary and ecological processes,
such as succession and the invasion of new habitats. About half of known hydrothermal
vents are located on mid-ocean ridges, while the other half are located in arc-backarc
systems (Beaulieu et al., 2013). The latter systems are younger, for example, vents in
the Mariana Trough and Manus Basin appeared only six and four million years ago,
respectively (Ishibashi ¢ Urabe, 1995). Unlike vents, hydrocarbon seeps are not confined
to spreading centres, and are found along passive and active margins around the globe.
Faunal compositions of vent and seep fauna tend to be different, and fauna in back-arc
hydrothermal vents are mostly separated among basins (Desbruyeres, Hashimoto ¢ Fabri,
2006). To understand evolutionary processes in the deep sea, it is critical to understand
how taxa invade and colonize such ecosystems.

The northwestern Pacific is an excellent model system for examining such evolutionary
processes, since there are back-arc vents (e.g., Okinawa Trough, Manus Basin) and
hydrocarbon seeps (e.g., Sagami Bay, Nankai Trough) in close proximity. The Okinawa
Trough is a back-arc basin with more than 10 known hydrothermal vent fields, and
more continue to be discovered (Ishibashi et al., 2015; Nakamura et al., 2015; Chen et al.,
2017; Miyazaki et al., 2017). As these vents appeared only two million years ago at the
southern end of the back-arc basin, the historical evidence of animals invading these
habitats can still be recovered genetically, along with ongoing evolutionary and ecological
processes. Gastropod snails of the superfamily Abyssochrysoidea radiated about 50-158
million years ago, and today they are common inhabitants of deep-sea chemosynthetic
environments including hydrothermal vent fields, hydrocarbon seep sites, and organic
falls (Johnson et al., 2010). The genus Provanna, particularly, is a representative group
in the northwestern Pacific (Fujikura, Okutani ¢ Maruyama, 2008; Johnson et al., 2010).
Recently, a combined effort of morphological and genetic approaches revealed that the
Provanna species dominant in the Sagami Bay seep area is distinct from those (at least
three species) inhabiting the Okinawa Troughvents. Furthermore, another species was
discovered from the Kuroshima Knoll seep area in the Ryukyu Trench, on the eastern side
of the Ryukyu Arc (Sasaki et al., 2016). However, ecological differences amongst species
have not been available for these species, as Provanna species are difficult to differentiate in
video imaging due to morphological similarities and their small sizes (as noted by Nakajina
etal., 2015).

For such animals inhabiting deep-sea ecosystems that can only be observed in
sporadic time points, population genetics provide valuable insights to inferring historical
parametres such as dispersal, past population sizes, and relationships among populations,
as demonstrated by Rogers ¢ Herpending (1992). Indeed, population genetics studies have
revealed many dispersal barriers for deep-sea hydrothermal vent faunas since the 1990s,
including depth, oceanic currents, and lateral offsets in mid-oceanic ridges (reviewed
in Vrijenhoek, 2010). Most of these dispersal barriers do not apply to arc-backarc and
subduction systems which have different geological features and deep currents, however,
and therefore dispersal barriers for deep-sea taxa remain poorly understood for the western
Pacific where such systems dominate (Watanabe et al., 2010). Population genetic analyses
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of animals inhabiting the western Pacific will provide new insights for evolutionary and
ecological processes shaping the deep-sea ecosystems as we know today across time, and
help to improve dispersal models (Mitarai et al., 2016).

Accordingly, we conducted population genetic analyses of five Provanna species
inhabiting the northwestern Pacific vents and seeps to understand their population history.
One species, P. glabra, dominates the hydrocarbon seeps in Sagami Bay and has been
shown to be phylogenetically very close to P. laevis in Monterey Bay, California (Sasaki
et al., 2016). Three species, including P. subglabra, P. clathrata, and P. lucida, inhabit
hydrothermal vents in the Okinawa Trough, with P. subglabra being the most abundant
and wide-spread. A further species, P. kuroshimensis, is limited to the Kuroshima Knoll
seep site in the Ryukyu Trench (Sasaki ef al., 2016). For each species we investigated genetic
diversities, which accumulates after colonization. Furthermore, we discuss the colonization
scenario of the five Provanna species inferred from their population genetics data, and the
potential factors contributing to their population history.

MATERIALS AND METHODS

Sampling

A total of 204 Provanna gastropods were collected from 10 chemosynthetic sites in Sagami
Bay, the Okinawa Trough, and the Ryukyu Trench (Fig. 1, Table 1), on-board the Japan
Agency for Marine-Earth Science and Technology (JAMSTEC) ship R/V Natsushima.
Provanna glabra was collected from the Off Hastushima seep site, Sagami Bay, by the
remotely operated vehicle (ROV) Hyper-Dolphin during the NT11-01 cruise (January
2011). Specimens from hydrothermal vent fields in the Okinawa Trough were collected by
the same submersible during the cruise NT11-20 conducted in October 2011. Provanna
kuroshimensis was collected from the Kuroshima Knoll seep site, Ryukyu Trench, during the
NTO02-07 and NT02-08 cruises in May 2002 by ROV Dolphin 3K and the human-occupied
vehicle (HOV) Shinkai 2000, respectively. Upon recovery on-board the ship, all specimens
were fixed and preserved in 99.5% ethanol or frozen in —20 °C for DNA extraction.

DNA extraction and sequencing

Genomic DNA was extracted from the foot muscle Provanna specimens using the DNeasy
Tissue Extraction Kit (QIAGEN, Valencia, CA, USA), and 1 uL of the extraction was purified
using GeneReleaser (BioVenture, San Carlos, CA, USA) following the manufacturer’s
protocol. Fragments of the mitochondrial cytochrome ¢ oxidase subunit I (COI) gene were
amplified by polymerase chain reaction from 204 specimens, using the univcrsal primers
LCO1490 and HCO2198 (Folmer et al., 1994) and the Pg501L and Pgl253R primer pair
designed for Provanna (Sasaki et al., 2016). Reaction volumes consisted of 1 pL template
DNA, 13.35 pL deionized sterilized water, 2 pL 10x PCR buffer, 1.5 uL 2.5 mM dNTP, 1
nL of each primer, and 0.15 pL of 5 U/pL Ex Tag DNA polymerase (TaKaRa, Shiga, Japan),
for a total of 20 nL. Targets were amplified by initial denaturation at 94 °C for 120 s, 30
cycles of denaturation at 94 °C for 30 s, annealing at 45 °C for 30 s, and extension at 72 °C
for 30 s, followed by final extension at 72 °C for 40 s. PCR products were purified using
ExoSAP-IT (United States Biochemical), and sequenced using the BigDye® Terminator
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Figure 1 Gross map (A) and magnified map (B) of sampling locations in the Nansei-shoto area. Cir-
cles, methane seep sites; triangles, hydrothermal fields. IDs in the capitalized letters corresponds to those
in Table 1.

Full-size G4l DOL: 10.7717/peerj.5673/fig-1

Cycle Sequencing Kit Version 3.1 (Applied Biosystems, Foster City, CA, USA). Sequencing
reactions contained 1 pL of purified PCR products, 7.55 wL deionized sterilized water,
0.7 nL 5x BigDye Sequencing Buffer, 0.25 L of each primer, and 0.5 pL BigDye®, for
a total of 10 nL. Reactions were initially denatured at 96 °C for 60 s, and then cycled
25 times at (96 °C for 10 s, 50 °C for 50 s, 60 °C for 60 s). The resulting products were
purified using the BigDye XTerminator® Kit (Applied Biosystems, Thermo Fischer) or a
Gel Filtration Cartridge (Edge BioSystems, Gaithersburg, MD, USA), and sequenced using
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Table 1 Sampling locations. IDs correspond to sampling sites in Fig. 1.

ID Site Type Latitude Longitude Depth (m)
Sagami Bay

A Off Hatsushima Seep 35°00'N 139°14'E 1,172
Nansei-shoto area

B Minami Ensei Knoll Vent 28°24'N 127°38'E 701
C Theya North Vent 27°48'N 126°54'E 982
D Theya Ridge Vent 27°33'N 126°58'E 1,399
E Jade site, Izena Hole Vent 27°16'N 127°04'E 1,309
F Hakurei site, Izena Hole Vent 27°15'N 127°04'E 1,617
G-H Irabu Knoll Vent 25°14'N 124°52'E 1,646
1 Hatoma Knoll Vent 24°52'N 123°51'E 1,473
J Dai-yon Yonaguni Knoll Vent 24°51'N 122°42'E 1,387
K Kuroshima Knoll Seep 24°08'N 124°12'E 644

an ABI 3130 automated DNA sequencer (Applied Biosystems, Foster City, CA, USA).
Sequences obtained were aligned, checked by eye, assembled, and translated into amino
acids to confirm the absence of stop codons in Geneious v9 (http://www.geneious.com,
Kearse et al., 2012). The resulting COI sequences were registered to DDBJ, EMBL, and
GenBank under Accession Numbers AB810040 to AB810216 (Table S1).

Population genetic analyses

Parsimonious haplotype networks were reconstructed for each species from mitochondrial
COI fragments (1,044 bp) using the program TCS ver. 2.01 (Clement, Posada ¢ Crandall,
2000) with the connection probability set to 95% and sequences differing only by ambiguous
characters treated as the same haplotype. Population history was inferred from the same
mitochondrial COI fragmentsfrom about 20 specimens per population (Table 1, Fig. 1)
in the program ARLEQUIN ver. 3.5.1.2 (Schneider, Roessli ¢~ Excoffier, 2000). Nucleotide
and haplotype diversity were estimated, and parametres for the available populations
were compared by pairwise s comparison of haploid genes and exact tests (Raymiond
& Rousset, 1995), as well as AMOVA assuming two scenarios: (1) latitudinal subdivision
into northern (Theya North, Theya Ridge, JADE and Hakurei sites in the Izena Hole) and
southern (Irabu, Hatoma and Dai-yon Yonaguni) populations, or (2) depth subdivision
into shallower (Iheya North, Iheya Ridge, and JADE site in Izena Hole) and deeper (Hakurei
site in Izena Hole, Irabu, Hatoma and Dai-yon Yonaguni Knoll) populations. Genetic
mismatch distributions were also analyzed to estimate the relative time of population
expansion from a simulated sudden-expansion model (Schneider ¢ Excoffier, 1999). This
approach is based on the frequency distribution of the number of genetic differences
between paired individuals in a population, which follow a unimodal distribution soon after
demographic expansion (Rogers ¢» Herpending, 1992). Goodness-of-fit of the mismatch
distribution to the simulated sudden-expansion model was examined by X2 test, and the
number of generations since the population started expanding (¢) was estimated from

t =7t /2u , where 7 is an estimate obtained from the mismatch analysis and u is the total
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Figure 2 Distribution and local relative abundance of P. glabra (red), P. lucida (orange), P. subglabra
(yellow), P. clathrata (green), and P. kuroshimensis (blue). IDs in the capitalized letters corresponds to
location codes in Table 1.

Full-size B8 DOI: 10.7717/peerj.5673/fig-2

mutation rate per generation per gene (Schneider ¢ Excoffier, 1999). In addition, Tajima’s
D, which can be used as an indicator of historical population expansion events, was
calculated.

Bayesian Coalescent Skyline Plots were reconstructed by the software BEAST 2.5.0
(Bouckaert et al., 2014). Number of Markoc chain Monte Carlo (MCMC) were changed
from 107 to 10® after 10° to 107 burn-in processes. The results were visualized using Tracer
v. 1.7.1 (Rambaut, Suchard & Drummond, 2013).

RESULTS

The distribution and relative abundance of the five Provanna species inhabiting the
surveyed areas were summarized in Fig. 2. Three species were only found in one locality:
P. glabra in Off Hatsushimas seep site of Sagami Bay, P. lucida in Minami-Ensei Knoll, and
P. kuroshimensis in Kuroshima Knoll (Table 2). Provanna subglabra was found in all vent
sites except the Minami-Ensei Knoll and P. clathrata was found in three vent sites (Hakurei
site of Izena Hole, Irabu Knoll, and Hatoma Knoll). Provanna subglabra was often the only
species present and highly dominant when P. clathrata co-occurred (Fig. 2); the relative
abundance of P. clathrata was highest in the Irabu Knoll, the deepest of all sites surveyed
in the present study.

Genetic diversities in local populations were higher in all populations of P. subglabra
among the five species, as inferred from haplotype (H) and nucleotide (77) diversities
(Table 2). Simple parsimonious haplotype networks consisting of a few dominant
haplotypes were recovered in P. lucida and P. kuroshimensis, simple networks consisting
of diversified haplotypes were recovered in P. glabra and P. clathrata, while a complicated
haplotype network was recovered for P. subglabra (Fig. 3). Shared haplotypes were found
between local populations of P. subglabra in Theya North field and JADE site in Izena Hole
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Table2 Genetic diversity indices of local Provanna populations.

N

ID Population N Ny, N, H T Tajima’s D

A P. glabra (Sagami Bay) 22 22 49 1.0000 £ 0.0137 0.006759 + 0.003681 —1.87288"

B P. lucida (Minami-Ensei Knoll) 20 7 18 0.8053 & 0.0564 0.004194 4 0.002415 —0.51514
P. subglabra

C Theya North 20 19 56 0.9947 +0.0178 0.008499 + 0.004568 —1.78983

D Theya Ridge 16 16 47 1.0000 £ 0.0221 0.009295 + 0.005036 —1.35916

E Jade site, Izena Hole 19 16 52 0.9852 + 0.0223 0.008394 + 0.004529 —1.69953

F Hakurei site, [zena Hole 17 16 57 0.9926 £ 0.0230 0.010619 % 0.005682 —1.46468

G Irabu Knoll 21 20 53 0.9952 + 0.0165 0.009180 + 0.004894 —1.41920

I Hatoma Knoll 14 14 48 1.0000 £ 0.0270 0.008728 % 0.004798 —1.75860

] Dai-yon Yonaguni Knoll 19 18 48 0.9942 + 0.0193 0.008484 + 0.004574 —1.46415
P. clathrata

F Hakurei site, Izena Hole 1 1 ND ND ND ND

H Irabu Knoll 17 15 37 0.9853 £ 0.0252 0.005980 =+ 0.00343 —1.76989

I Hatoma Knoll 1 1 ND ND ND ND

K P. kuroshimensis (Kuroshima Knoll) 20 15 19 0.9579 + 0.0328 0.004129 + 0.002382 —0.73793

Notes.

N, number of individuals; Nj,, number of haplotypes; N,, number of polymorphic sites; H, haplotype diversity with standard errors; 7, nucleotide diversity with standard er-

rors; ND, not detected.
*P < 0.05.
P <0.01.

as well as between Theya North field and Theya Ridge, but not in populations inhabiting
Hakurei site, Hatoma, and Dai-yon Yonaguni Knolls (Fig. 3C). No statistically significant
genetic differences were found among the local populations in P. subglabra from &g and
Wright’s exact test (Table 3). The degree of genetic differentiation among local populations
was examined only for P. subglabra, as that was the only species with sufficient individuals
from more than one site (Fig. 2). Pairwise ®gr did not indicate clear genetic structures
among local populations (Table 3), and homogeneity in the haplotype distribution was
not rejected by Wright’s exact test (P > 0.05). However, the result of AMOVA, when
assuming a depth subdivision of populations, was statistically significant (P < 0.05, among
groups variation: 0.18, among populations within groups variation: 0.44, and within
populations variation: 99.38), whereas the analyses assuming a latitudinal subdivision did
not yield statsiticaly significant differences (P > 0.05, among groups variation: 0.08, among
populations within groups variation: 0.49, and within populations variation: 99.43).

Tajima’s D was negative in value for all examined populations (Table 2). Among them,
the lowest value was observed in P. glabra from the Off Hatsushima seep (—1.87288),
and the highest value was observed in P. lucida from the Minami-Ensei Knoll vent field
(—0.51514). The population of P. kuroshimensis from the Kuroshima Knoll exhibited a
similar Tajima’s D value (—0.73793) to that of P. lucida, while those of P. subglabra and
P. clathrata showed values similar (ranged from —1.78983 to —1.35916) to that of P.
glabra. Values obtained for populations of P. glabra, P. subglabra and P. clathrata were
statistically significant.
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Figure 3 Haplotype networks. P. glabra (A), P. lucida (B), P. subglabra (C), P. clathratas (D), and

P. kuroshimensis (E).
Full-size & DOI: 10.7717/peerj.5673/fig-3

Mismatch distribution was not statistically significantly different from the expansion
model distribution (P < 0.05 by x? test), which implies that population expansion occurred
in the detectable past, except for a single populations of P. glabra from the Off Hatsushima
site (Fig. 4). Tau (t) value, an indicator for the relative age of population expansion among
closely related taxa, was 7.031 for the P. glabra population from the Off Hatsushima seep
in Sagami Bay, 8.257 for the P. lucida population from Minami-Ensei Knoll, 4.021 for the
P. kuroshimensis population from Kuroshima Knoll, 5.229 for the P. clathrata population
from Irabu Knoll, and ranged between 6.980 (ITheya Ridge) and 10.867 (Hakurei site, [zena
Hole) for P. subglabra (Fig. 4). The mismatch distribution of P. lucida in Miami-Ensei
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Table 3 Population segregation (pairwise ®gr) of P. subglabra.

C D E F G I ]
C — — — — — —
D —0.00046 - - - - -
E 0.00616 0.00559 - - - —
F 0.00630 0.00369 0.01248 - - -
G 0.00264 0.00242 0.01112 0.00604 - -
I 0.00269 0.00000 0.00895 0.00373 0.00244 -
] 0.00555 0.00295 0.01170 0.00660 0.00530 0.00298

Notes.

P > 0.05 for all cells.

Knoll visually exhibited two prominent peaks, but the distribution was not statistically
different from the model distribution.

The time range of Bayesian coalescent skyline plot estimated for each species was
different, due to the dfferences in the divergence of the sequence dataset available, i.e., the
longest in P. subglabra with the highest divergence observed, compared to the other species
(Fig. 5). Historical demographic increase was inferred for P. clathrata and P. subglabra,
whereas relatively constant demographic histories were inferred for P. glabra, P. lucida, and
P. kuroshimensis.

DISCUSSION

Results from the present study elucidated the distribution and genetic diversity of five
Provanna species inhabiting chemosynthetic environments in the western Pacific, and
revealed the population history and genetic connectivity of their local populations. All five
species were restricted to either vent or seep habitats, with three (P. glabra, P. lucida, P.
kuroshimensis) currently only known from a single site, and the other two (P. subglabra and
P. clathrata) being found in at least three hydrothermal vent fields in the Okinawa Trough
(Fig. 2).

Interestingly, both nucleotide diversity (Table 2) and number of mismatches (Fig. 4)
were higher in P. subglabra than in P. clathrata at the Irabu Knoll, suggesting that population
is more diversified in P. subglabra than P. clathrata, under the same environment. Both
species appear to have experienced sudden expansions of population in the detectable past,
according to Tajima’s D and mismatch analyses. Furthermore, t in mismatch distributions
was higher in P. subglabra (v = 8.938) than thatin P. clathrata (v = 5.229; Figs. 4G and 4H),
indicating that the historical demographic increase began earlier in P. subglabra than in P.
clathrata, as shown by the Bysian skyline plot (Fig. 5). One explanation for these results,
assuming that the nucleotide substitution rate or life-history traits are comparable in both
species, is that P. subglabra colonized the Okinawa Trough earlier than P. clathrata. This
interpretation implies that the suitable habitat for P. subglabra was formed earlier than that
for P. clathrata during the geological history of the Okinawa Trough. Provanna clathrata
appears to have adapted to deeper depths and only occurs below 1400 m deep, whereas P.
subglabra appears to occur throughout a wide depth range (Table 1; also see Miyazaki et al.,
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Figure 4 Mismatch distributions of local populations of Provanna gastropods, with number of mis-
matches plotted on horizontal axes and frequency plotted on vertical axes. IDs in the capitalized letters
are correlated with those in Table 1. (A) P. glabra from Off Hatsushima, (B) P. lucida from Minami-Ensei
Knoll, (C) P. subglabra from Iheya North, (D) P. subglabra from Iheya Ridge, (E) P. subglabra from Jade
site in Izena Hole, (F) P. subglabra from Hakurei site in Izena Hole, (G) P. subglabra from Irabu Knoll,

(H) P. clathrata from Irabu Knoll, (I) P. subglabra from Hatoma Knoll, (J) P. subglabra from Dai-yon

Yonaguni Knoll, (K) P. kuroshimensis from Kuroshima Knoll.

Full-size & DOI: 10.7717/peerj.5673/fig-4
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Figure 5 Bayesian skyline plots of Provanna gastropods, with time or mutations per sites plotted on
the horizontal axis and generation-scaled effective population size on the vertical axis. Black lines indi-
cate median estimates, and shaded zones surrounded by blue lines indicate 95% highest posterior density
limits. (A) P. glabra, (B) P. lucida, (C) P. subglabra, (D) P. clathrata, (E) P. kuroshimensis.

Full-size &l DOI: 10.7717/peerj.5673/fig-5

2017). This agrees with the fact that depth of the back-arc basin spreading centre increases
with time, meaning the deeper sites suitable for P. clathrata came into existence later than
the shallower sites suitable for P. subglabra. This interpretation therefore also highlights the
significance of habitat formation during the invasion and colonization process of Provanna
gastropods. Alternatively, since nucleotide substitution is correlated to the number of
offspring produced in a generation and the number of reproductive opportunities per year
(e.g., periodic vs. continuous reproduction), the nucleotide substitution rate may not be
uniform among Provanna species, in which case we cannot exclude that the colonization
time of the both species might be the same.
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Of the five species surveyed, P. subglabra had by far the widest distribution range, being
found in all currently examined hydrothermal vent fields in the Okinawa Trough except for
the very shallow Minami-Ensei Knoll. At this point, no Provanna species have been observed
in Yoron Hole, the shallowest hydrothermal field of the Okinawa Trough (550-600 m
deep; Watanabe & Kojima, 2015). Notably, P. subglabra appears to be segregated into two
regional populations, with the northern population inhabiting Theya North, ITheya Ridge,
and Jade site in Izena Hole, while the southern population inhabits Hakurei site in Izena
Hole, Irabu Knoll, Hatoma Knoll, and Dai-Yon Yonaguni Knoll. This segregation can be
seen in pairwise ®gr (Table 3) and parsimonious haplotype networks (Fig. 4), although
not on the results of Wright’s exact tests.

Though this genetic structure of P. subglabra initially seems to be a northern-southern
segregation, the two populations are separated within the Izena Hole vent field where
Jade and Hakurei sites are within 3 km of each other in the single caldera (Kawagucci
et al., 2010; Ishibashi et al., 2014). Genetic structure across such a close distance has not
been observed in other hydrothermal vent animals in the Okinawa Trough examined to
date (e.g., the gastropod Lepetodrilus nux (Nakamura et al., 2014), Neoverruca barnacles
(Watanabe et al., 2005), alvinocaridid shrimps (Yahagi et al., 2015). Typically, these genetic
segregations are seen in larger scales in other Pacific chemosynthetic ecosystems, such as
inter-current microplates, fracture zones, and topological depressions in the eastern Pacific
(Won et al., 2003; Hurtado, Lutz & Vrijenhoek, 2004; Johnson et al., 2006; Plouviez et al.,
2009; Vrijenhoek, 2010), or between backarc basins in the western Pacific (Kojima et al.,
20005 Kojima et al., 2001; Watanabe et al., 2005). Therefore, the segregation of P. subglabra
on either side of the Izena Hole is unlikely to be caused by distance. There was also no
significant differences between northern and southern populations of P. subglabra when
compared using AMOVA.

Instead, genetic segregation seen in P. subglabra is likely caused by environmental
differences, particularly depth. This is supported by a significant difference in the AMOVA
analysis between shallower and deeper populations. There is a clear gap in water depth
between Jade (1,309 m) and Hakurei (1,617 m) sites in the Izena Hole. Furthermore, the
distribution of Okinawa Trough Provanna species seems to be separated by depth, with
P. lucida in the shallowest Minami-Ensei Knoll, P. subglabra in intermediate depths, and
P. clathrata with the deepest central bathymetric range. Though chemistry of hydrothermal
fluids, such as concentration of gases, cannot be excluded entirely as a possibility, this is
unlikely to be the key environmental difference causing the segregation in P. subglabra.
In the Okinawa Trough, subseafloor phase separation leads to intra-field diversity of
mineralization which can cause drastic differences in hydrothermal fluid chemistry in
different sites (Ishibashi et al., 2015). However, in Izena Hole, the geochemistry of high-
temperature vent fluids is generally similar between Jade and Hakurei sites, except for the
concentration of minor gases including hydrogen (Ishibashi et al., 2014). This difference
in hydrogen, however, is caused by whether the rising geofluid passes through a sediment
layer or not, and not related to depth or latitude (Ishibashi et al., 2014; Kawagucci, 2015).

Genetic diversity and mismatch distribution were relatively low for P. lucida from
Minami-Ensei Knoll and P. kuroshimensis from Kuroshima Knoll, and statistical analyses
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did not indicate recent population expansion, with Tajima’s D being statistically
insignificant for both species, and constant demographic states shown by Bayesian skyline
plots. These results together suggest that these populations are fragmented or consist

of relatively small populations compared to those observed in the other species. The
distribution of these two species is restricted to depths shallower than 1,000 m, shallower
than the other Provanna species examined. Planktonic larval duration, which is important
in mediating metapopulation, is not known for Provanna gastropods but has been shown
for 69 marine organisms to have a trade-off relationship with temperature with the mean
dispersal distance increasing from 20 to 225 km as the temperature drops from 30 to

5 °C (O’Connor et al., 2007). Therefore, species in shallower waters tend to have shorter
planktonic larval durations, and thus shorter dispersal distances, especially in patchy
habitats like hydrothermal vent fields and hydrocarbon seep sites. On the other hand,
the population of P. glabra in the Off Hatsushima seep site exhibited comparable genetic
diversities to those in P. subglabra, with a clear population expansion in the past (Tajima’s
D in Table 2 and mismatch distribution in Fig. 4A).

Bayesian skyline plots (Fig. 5) inferred differences in demographic history between
the comparatively deeper-occuring species (P. clathrata and P. subglabra with historical
demographic increase) and shallower-occuring species (P. glabra, P. lucida, and
P. kuroshimensis with constant demographic histories). There was no clear pattern that
matched habitat types (i.e., seep vs. vent), further implying that depth is a key factor in
shaping the past population dynamics of Provanna species instead of habitat types (i.e.,
vents vs. seeps).

The phylogenetic analysis of Provanna based on partial DNA sequences of COI,
16STRNA, and 28SrRNA showed that P. glabra could not be separated from P. laevis
in Monterey Bay (Sasaki et al., 2016). This suggests that the population of P. glabra in the
Off Hatsushima site in fact is part of a large and complex metapopulation across the Pacific
Ocean (P. laevis in Monterey Bay being the other end), with comparable genetic diversity
to P. subglabra. More detailed morphological and genetic analyses, particularly samples
from intervening populations, are required to solve this problem.

CONCLUSION

Genetic analyses of partial mitochondrial COI sequences revealed differences in the
historical timing of colonization among Provanna species inhabiting vents and seeps

in the northwestern Pacific. Our results indicate that depth is likely the key factor in
initial colonization, niche separation, distribution determination, and speciation for these
gastropods. Additional characterization of life-history traits (such as dispersal depth
and larval duration; see Yahagi et al., 2017) is, however, required for confirming our
hypotheses and further advance our understanding of how biodiversity is generated in
deep chemosynthetic ecosystems.
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